1. Logarithms and Exponentials
(a) Calulate in \mathbb{R} (note that \mathbb{R} refers to the real numbers, not to the software R) :
$\log _{3}(10), \log _{\pi}(15)$
(b) Demonstrate the following equation for $x>0$:
$\log _{a^{n}}(x)=\frac{1}{n} \log _{a}(x)$
(c) Resolve in \mathbb{R} (do not forget to think about the domain of definition of the functions): $\log _{4}(x)=-2$
$\ln (x-2)+\ln (3)=\ln (18)$
2. Compute the derivatives of the following functions:

$$
\begin{array}{ll}
f(x)=3 x^{2}-4 x+3 & g(x)=x^{2} \cdot e^{-x^{2}} \\
h(x)=x^{3} \cdot \log _{3} x & k(x)=\frac{x^{2}-5 x+3}{1+7 x^{2}} \\
p(x)=(\cos (x))^{2}+(\sin (x))^{2} & q(x)=x^{x}
\end{array}
$$

3. Assume a population of a current size of 1000 indivduals. Each day, $\approx 10 \%$ of the individuals produce one descendant (assume asexual reproduction) and $\approx 5 \%$ of the individuals die. Predict the size of the population after one year.
