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1 Basic notations for random variables and distributions

Assume a small population of 100 individuals, and a neutral allele A that has frequency 0.3 in this
generation.

What will be the frequency X of A in the next generation?

We don’t know, as X is a random variable .

However, we can ask, for example, for

EX =
∑
k k · Pr(X = k) , the expectation value of X, or for

Pr(X = 0.32) , the probability that X takes a value of 0.32.

Even these values (especially the second on) depend on our model assumptions.

Contents

We start with a simpler Example: Rolling a dice, W is the result of the next trial.

S = {1, 2, . . . , 6} Pr(W = 1) = · · · = Pr(W = 6) = 1
6

( Pr(W = x) = 1
6

for all x ∈ {1, . . . , 6} )
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A Random Variable is a result of a random incident or experiment.

The state space S of a random variable is the set of possible values.

The distribution of a random variable X assigns to each set A ⊆ S the probability Pr(X ∈ A) that X takes a
value in A.

In general, we use capitals for random variables (X,Y, Z, . . . ), and small letters (x, y, z, . . . ) for (possible) fixed
values.

Notations for events
An event U like “X takes a value in A” is sometimes written with curly brackets:

U = {X ∈ A}

Stochastic Independence of events

Pr(U, V ): probability that both events U and V take place

Pr(U |V ): conditional probability of U , given that V is known to take place. Note that Pr(U |V ) = Pr(U, V )/Pr(V ).

Definition 1 (stochastic independence) Two events U and V are (stochastically) independent if

Pr(U, V ) = Pr(U) · Pr(V ).

Note that Pr(U, V ) = Pr(U) · Pr(V ) is equivalent to

Pr(U |V ) = Pr(U) and also to Pr(V |U) = Pr(V )

Stochastic Independence of random variables

Definition 2 (stochastic independence) Two random variables X and Y are (stochastically) independent, if
the identity

Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A) · Pr(Y ∈ B)

holds for all (measurable) subsets A and B of the state spaces of X and Y .

Example:

• Tossing two dice: X = result dice 1, Y = result dice 2.

Pr(X = 2, Y = 5) =
1

36
=

1

6
· 1

6
= Pr(X = 2) · Pr(Y = 5)

2 The binomial distribution

Bernoulli distribution

A Bernoulli experiment is an experiment with two possible oucomes “success” and “fail”, or 1 or 0.

Bernoulli random variable X: State space S = {0, 1}. Distribution:
Pr(X = 1) = p

Pr(X = 0) = 1− p

The parameter p ∈ [0, 1] is the success probability.
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Bernoulli distribution
Examples:

• Tossing a coin: 1 and 0 represent “head” and “tail”

• Tossing a drawing pin: 1 and 0 represent “point upward” and “pin down”

• Does the Drosophila have a mutation that causes white eyes? 1 and 0 represent are “yes” and “no”.

• A certain allele on a chromosome: 1 and 0 represent “this allele” and “other allele”

Assume a Bernoulli experiment (for example tossing a coin) with success probability p is repeated n times
independently.

What is the probability that it...

1. ...alway succeeds?
p · p · p · · · p = pn

2. ...always fails?
(1− p) · (1− p) · · · (1− p) = (1− p)n

3. ...first succeeds k times and then fails n− k times?

pk · (1− p)n−k

4. ...succeeds in total k times and fails the other n− k times?(
n

k

)
· pk · (1− p)n−k

Note (
n

k

)
=

n!

k! · (n− k)!
=
n · (n− 1) · (n− 2) · · · (n− k + 1)

k · (k − 1) · (k − 2) · · · 3 · 2 · 1

(“n choose k”) is the number of possibilities to choose k successes in n trials.

Binomial distribution
Let X be the number of successes in n independent trials with success probability of p each. Then,

Pr(X = k) =

(
n

k

)
pk · (1− p)n−k

holds for all k ∈ {0, 1, . . . , n} and X is said to be binomially distributed, for short:

X ∼ bin(n, p).

Expectation value, variance and standard deviation:

EX = n · p, Var(X) = n · p · (1− p), σX =
√
n · p · (1− p)

General definition:
Var(X) = E(X − EX)2, σX =

√
Var(X)
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With the binomial distribution we can treat our initial question
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Assume in a small populaiton of n = 100 individuals the neutral allele A has a frequency of 0.3.

How probable is it that X, the frequency of A in the next generarion is 0.32?

Pr(X = 0.32) =?

We can only answer this on the basis of a probabilistic model, and the answer will depend on how
we model the population.

Modeling approach
We make a few simplifying assumptions:

• Discrete generations

• The population is haploid, that is, each individual has exactly one parent in the generation before.

• constant population size n = 100

Pr(X = 0.32) still depends on whether few individuals have many offspring or whether all individuals
have similar offspring numbers. Pr(X = 0.32) is only defined with additional assumptions, e.g.:

• Each individual chooses its parent purely randomly in the generation before.

“purely randomly” means independent of all others and all potential parents with the same probability.
Our assumptions imply that each individuals of the next generations have a probability of 0.3 to

obtain allele A, and they get their alleles independently of each other.

Therefore, the number K of individuels who get allele A is binomially distributed with n = 100 and
p = 0.3:

K ∼ bin(n = 100, p = 0.3)

For X = K/n follows:

Pr(X = 0.32) = Pr(K = 32) =

(
n

32

)
· p32 · (1− p)100−32

=

(
100

32

)
· 0.332 · 0.768 ≈ 0.078

Genetic Drift
If p is frequency of allele A in the current generation (population size n), the number K of carriers

of A in the next generation is bin(n, p)-distributed and thus satisfies:

EK = n · p and σK =
√
n · p · (1− p)

The allele frequency K/n in the next generation is also a random variable and has the properties:

E(K/n) = n · p/n = p and σK =

√
p · (1− p)

n
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Genetic Drift / Wright–Fisher Diffusion

●

0 200 400 600 800 1000

0
10

00
20

00
30

00
40

00
50

00

0

x

Binomial distribution probabilities in R

The R software is freely available from https://www.r-project.org/.
Many like to use R with RStudio:
https://www.rstudio.com/products/RStudio/

Pr(K = 32) =

(
100

32

)
· 0.332 · 0.768 ≈ 0.078

> dbinom(32,size=100,p=0.3)

[1] 0.07761057

Check by using the formula:

> choose(100,32)*0.3^32*(1-0.3)^(100-32)

[1] 0.07761057

Binomial distribution probabilities in R
Now assume B ∼ bin(10, 0.3).

Pr(B ≤ 2) = Pr(B = 0) + Pr(B = 1) + Pr(B = 2)

> pbinom(2,size=10,p=0.3)

[1] 0.3827828

Again, check this by step-wise calculation:

> dbinom(0:2,size=10,p=0.3)

[1] 0.02824752 0.12106082 0.23347444

> sum(dbinom(0:2,size=10,p=0.3))

[1] 0.3827828

Binomial distribution probabilities in R
Still assume B ∼ bin(10, 0.3).

Pr(B > 8) = Pr(B = 9) + Pr(B = 10)

5
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> pbinom(8,size=10,p=0.3,lower.tail=FALSE)

[1] 0.0001436859

Again, check this by step-wise calculation:

> dbinom(9:10,size=10,p=0.3)

[1] 1.37781e-04 5.90490e-06

> sum(dbinom(9:10,size=10,p=0.3))

[1] 0.0001436859

3 Normal distribution

A binomial distribution with large n looks like a normal distribution:
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Density of the standard normal distribution

A random variable Z with the density f(x) = 1√
2π
· e− x2

2 is called standard-normally distributed.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

“Gaussian bell-curve”

for short:
Z ∼ N (0, 1)

EZ = 0

Var Z = 1

If Z is N (0, 1) distributed, then X = σ ·Z+µ is normally distributed with mean µ and variance σ2, for short:

X ∼ N (µ, σ2)

X has the density

f(x) =
1√
2πσ
· e−

(x−µ)2

2σ2 .

Question: How to compute Pr(Z = 5)?

Answer: For each x ∈ R we have Pr(Z = x) = 0 (Area of width 0)
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example: density of the standard normal distribution:
> plot(dnorm,from=-4,to=4)
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> dnorm(0) [1] 0.3989423 > dnorm(0,mean=1,sd=2) [1] 0.1760327

example: Computing probabilities: Let Z ∼ N (µ = 0, σ2 = 1) be standard normally distributed

Pr(Z < a) can be computed in R by pnorm(a)

> pnorm(0.5) [1] 0.6914625
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example: Computing probabilities: Let Z ∼ N (µ = 5, σ2 = 2.25).

Computing Pr(Z ∈ [3, 4]):
Pr(Z ∈ [3, 4]) = Pr(Z < 4)− Pr(Z < 3)

> pnorm(4,mean=5,sd=1.5)-pnorm(3,mean=5,sd=1.5) [1] 0.1612813

Normal approximation
For large n and p which are not too close to 0 or 1, we can approximate the binomial distribution by a normal
distribution with the corresponding mean and variance.

If X ∼ bin(n, p) and Z ∼ N (µ = n · p, σ2 = n · p · (1− p)), we get

Pr(X ∈ [a, b]) ≈ Pr(Z ∈ [a, b])

(rule of thumb: Usually okay if n · p · (1− p) ≥ 9)

n = 1000, p = 0.5, n · p · (1− p) = 250
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4 Principle of statistical testing

Cats or dogs?

• We asked a representative sample of 320 LMU students whether they like cats better than dogs or
vice versa.

• 168 said they prefer dogs, 132 preferred cats and 20 were undecided.

• Can we conclude that there is significant evidence that a majority of LMU students prefer dogs
over cats?

(Of course the following data are purely hypothetical and this survey was never made – at least as
far as I know.)

Among the n = 300 students who had a preference at all, K = 168 preferred dogs over cats. Signifi-
cantly different from 150?

Null hypthesis: Among the LMU students with a preference, exactly half like dogs better than cats.

If the null hypothesis is true, the number K in a study as above is bin(n = 300, p = 0.5)-distributed.
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How improbable is a deviation of 18 from the n · p = 150 if the null hypothesis is true?

0 5 11 18 25 32 39 46 53 60 67 74 81 88 95 103 112 121 130 139 148 157 166 175 184 193 202 211 220 229 238 247 256 265 274 283 292

0.
00

0.
01

0.
02

0.
03

0.
04

0 5 11 18 25 32 39 46 53 60 67 74 81 88 95 103 112 121 130 139 148 157 166 175 184 193 202 211 220 229 238 247 256 265 274 283 292

0.
00

0.
01

0.
02

0.
03

0.
04

0 5 11 18 25 32 39 46 53 60 67 74 81 88 95 103 112 121 130 139 148 157 166 175 184 193 202 211 220 229 238 247 256 265 274 283 292

0.
00

0.
01

0.
02

0.
03

0.
04

dbinom(168,300,p=0.5)

0.005318873

dbinom(150,300,p=0.5)

0.04602751

pbinom(167,300,p=0.5,lower.tail=FALSE)

0.02156425

pbinom(132,300,p=0.5) + pbinom(167,300,p=0.5,lower.tail=FALSE)

0.0431285

pbinom(167,300,p=0.5,lower.tail=FALSE)

0.02156425

pnorm(167,mean=150,sd=sqrt(75),lower.tail=FALSE)

0.02482361

pnorm(168,mean=150,sd=sqrt(75),lower.tail=FALSE)

0.01883346

sum(dnorm(168:300,mean=150,sd=sqrt(75)))

0.02159596

Statistical testing

• We want to argue that some deviation in the data is not just random.

• To this end we first specify a null hypothesis H0, i.e. we define, what “just random” means.

• Then we try to show: If H0 is true, then a deviation that is at least as large as the observed one,
is very improbable.

• If we can do this, we reject H0.

• How we measure deviation, must be clear before we see the data.
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Statistical Testing: Important terms

null hypothesis H0 : says that what we want to substantiate is not true and anything that looks like
evidence in the data is just random. We try to reject H0.

significance level α : If H0 is true, the probability to falsly reject it, must be ≤ α (often α = 0.05).

test statistic : measures how far the data deviates from what H0 predicts into the direction of our
alternative hypothesis.

p value : Probability that, if H0 is true, a dataset leads to a test statistic value that is as least as
extreme as the observed one.

• We reject the null hypothesis H0 if the p value is smaller than α.

• Thus, if H0 is true, the probability to (falsely) reject it is α (not the p value).

• This entails that a researcher who performs many tests with α = 0.05 on complete random data
(i.e. where H0 is always true), will falsely reject H0 in 5% of the tests.

• Therefore it is a severe violation of academic soundness to perform tests until one shows significance,
and to publish only the latter.

Testing two-sided or one-sided?

We observe a value of x that is much larger than theH0 expectation value µ.
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Important
The decision between one-sided and two-sided must not depend on the concrete data that are used in
the test. More generally: If A is the event that will lead to the rejection of H0, (if it occurs) then A
must be defined without being influenced by the data that is used for testing.

If H0 is rejected on the 5%-level, which of the following statements is true?

• The null hypothesis is wrong. The null hypothesis is wrong.

• H0 is wrong with a probability of 95%. H0 is wrong with a probability of 95%.

• If H0 is true, you will see such an extreme event only in 5% of the data sets. If H0 is true, you

will see such an extreme event only in 5% of the data sets. X

If the test did not reject H0, which of the following statements are true?

• We have to reject the alternative H1. We have to reject the alternative H1.
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• H0 is true. H0 is true

• H0 is probably true. H0 is probably true.

• It is safe to assume that H0 was true. It is safe to assume that H0 was true.

• H0 is compatible with the data, at least with respect to the test statistic. H0 is compatible with
the data, at least with respect to the test statistic.X

5 Some classical tests

5.1 t-test

one-sample t-test

Data: values X1, X2, . . . , Xn with mean X and variance s2 = 1
n−1

∑n
i=1

(
Xi −X

)2
.

Required: data sampled independently from (approximately) a normal distribution with unknown mean
µ and unknown variance σ2.

H0: µ = µ0

Test statistic:

t =
X − µ0

s/
√
n

Note that s/
√
n is the standard error (of the mean; SEM).

Distribution of t under H0: Student’s t distribution with (n− 1) degrees of freedom (df).

paired two-sample t-test

Data: pairs of values (X1, Y1), (X2, Y2), . . . , (Xn, Yn).

Required: data sampled independently from (approximate) normal distributions with unknown means
µX and µY .

H0: µX = µY

Test: one-sample t-test with data X1 − Y1, X2 − Y2, . . . , Xn − Yn with null hypothesis µ = 0.

two-sample t-test assuming equal variances

Data: samples X1, X2, . . . , Xn and Y1, Y2, . . . , Ym with means X and Y and pooled sample variance

s2 =

∑n
i=1

(
Xi −X

)2
+
∑m
j=1

(
Yj − Y

)2
m+ n− 2

Required: data sampled independently from (approximate) normal distributions with (unknown) means
µX and µY and (unknown) equal variance σ2.

H0: µX = µY

Test statistic:

t =
X − Y

s ·
√

1
n + 1

m

Distribution of t under H0: Student’s t statistic with df= n+m− 2
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Welch’s t-test

Data: samples X1, X2, . . . , Xn and Y1, Y2, . . . , Ym with means X and Y and sample variances

s2X =

∑n
i=1

(
Xi −X

)2
n− 1

s2Y =

∑m
j=1

(
Yj − Y

)2
m− 1

Required: data sampled independently from (approximate) normal distributions with (unknown) means
µX and µY and (unknown) variances σ2

X and σ2
Y .

H0: µX = µY

Test statistic:

t =
X − Y√
s2X
n +

s2Y
m

Distribution of t under H0: Approximately (!) Student’s t statistic with complicated formula for df.

> x <- c(2.327429, 2.723787, 4.870450, 3.084610, 3.155145, 5.058078, 3.553099,

1.481927, 2.175777, 2.465206)

> x

[1] 2.327429 2.723787 4.870450 3.084610 3.155145 5.058078 3.553099 1.481927

[9] 2.175777 2.465206

> t.test(x,mu=5)

One Sample t-test

data: x

t = -5.2784, df = 9, p-value = 0.0005082

alternative hypothesis: true mean is not equal to 5

95 percent confidence interval:

2.270796 3.908306

sample estimates:

mean of x

3.089551

> y

[1] 3.072246 3.295750 5.450604 3.606747 3.543977 5.915461 4.152670 1.588603

[9] 2.816048 2.870647

> t.test(x-y)

One Sample t-test

data: x - y

t = -8.2513, df = 9, p-value = 1.727e-05

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-0.6902430 -0.3932058

sample estimates:

mean of x

-0.5417244

> t.test(x,y,paired=TRUE)

Paired t-test

data: x and y
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t = -8.2513, df = 9, p-value = 1.727e-05

alternative hypothesis: true difference in means is

not equal to 0

95 percent confidence interval:

-0.6902430 -0.3932058

sample estimates:

mean of the differences

-0.5417244

> t.test(x,y,var.equal=TRUE)

Two Sample t-test

data: x and y

t = -0.9995, df = 18, p-value = 0.3308

alternative hypothesis: true difference in means is

not equal to 0

95 percent confidence interval:

-1.6804089 0.5969601

sample estimates:

mean of x mean of y

3.089551 3.631275

> t.test(x,y)

Welch Two Sample t-test

data: x and y

t = -0.9995, df = 17.792, p-value = 0.331

alternative hypothesis: true difference in means is

not equal to 0

95 percent confidence interval:

-1.681364 0.597915

sample estimates:

mean of x mean of y

3.089551 3.631275

stripchart(list(x,y),ylim=c(0.5,2.5),method="jitter")

2 3 4 5 6

1
2
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plot(x,y,xlim=c(0,6),ylim=c(0,6))

abline(a=0,b=1)
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stripchart(y-x,method="jitter",xlim=c(0,1))
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5.2 Analysis of variance (ANOVA)

(one-way) anova
Like unpaired t-test with equal variances, but with more than two groups.

Data: For each group g of G groups a number Jg of values Xg,1, . . . , Xg,Jg . Let Xg. be the mean in

group g and X be the mean of all values. Let n =
∑G
g=1 Jg be the total number of values.

Required: Data sampled independently; within all groups normally distributed with the same variance.

H0: The normal distributions of the groups have the same mean.

Test statistic: F =
∑G

g=1 Jg·(Xg.−X)2/(G−1)∑G
g=1

∑Jg
j=1(Xg,j−Xg.)2

/
(n−G)

Distribution: If H0 holds, F is Fisher distributed with G− 1 and n−G degrees of freedom.
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> d <- data.frame(treat,obs)

> d

treat obs

1 A 0.69

2 A 0.55

3 A -0.06

4 B 3.69

5 B 3.62

6 B 3.31

7 C 0.79

8 C -0.27

9 C 3.17

10 C 2.21

> mod <- lm(obs~treat,data=d)

> anova(mod)

Analysis of Variance Table

Response: obs

Df Sum Sq Mean Sq F value Pr(>F)

treat 2 15.4324 7.7162 7.3715 0.01893 *

Residuals 7 7.3274 1.0468

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

5.3 Chi-square-test

> M <- matrix(c(10,13,12, 4,

+ 7,24, 8,11,

+ 12,43,36,42

+ ),byrow=TRUE,nrow=3,

+ dimnames=list(c("EES","Neuro","MolBiol"),

+ c("Steak","Pasta","Pizza","Burger")))

> M

Steak Pasta Pizza Burger

EES 10 13 12 4

Neuro 7 24 8 11

MolBiol 12 43 36 42

Null hypothesis: what a student chose for lunch yesterday was independent of his or her study
program.

> chisq.test(M)

Pearson’s Chi-squared test

data: M

X-squared = 17.011, df = 6, p-value = 0.009241

Chi-square-test of independence/homogeneity

Data: Contigency table with n rows and m columns; let Oij the (integer) number in row i and column
j, Ri =

∑
j Oij , Cj =

∑
iOij , S =

∑
i

∑
j Oij .

H0: Rows are independent of columns, that is, same distribution in all rows (or columns). Conditioned
on all Ri and Cj , the expectation of Oij is Eij = Ri · Cj/S.

Test statistic: X2 =
∑
i

∑
j

(Oij−Eij)
2

Eij
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Distribution of X2 under H0: approx. χ2-distributed with (n− 1) · (m− 1) degrees of freedom.
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