# Handout on <br> Mathematics for EES students - Reminder to statistical testing 

Dirk Metzler

October 14, 2022

## Contents

1 Basic notations for random variables and distributions ..... 1
2 The binomial distribution ..... 2
3 Normal distribution ..... 6
4 Principle of statistical testing ..... 8
5 Some classical tests ..... 11
5.1 t-test ..... 11
5.2 Analysis of variance (ANOVA) ..... 14
5.3 Chi-square-test ..... 15

## 1 Basic notations for random variables and distributions

Assume a small population of 100 individuals, and a neutral allele A that has frequency 0.3 in this generation.

What will be the frequency $X$ of A in the next generation?
We don't know, as $X$ is a random variable .

However, we can ask, for example, for
$\mathbb{E} X=\sum_{k} k \cdot \operatorname{Pr}(X=k)$, the expectation value of $X$, or for $\operatorname{Pr}(X=0.32)$, the probability that $X$ takes a value of 0.32 .

Even these values (especially the second on) depend on our model assumptions.

## Contents

We start with a simpler Example: Rolling a dice, $W$ is the result of the next trial.

$$
\mathcal{S}=\{1,2, \ldots, 6\} \operatorname{Pr}(W=1)=\cdots=\operatorname{Pr}(W=6)=\frac{1}{6}\left(\operatorname{Pr}(W=x)=\frac{1}{6} \text { for all } x \in\{1, \ldots, 6\}\right)
$$

A Random Variable is a result of a random incident or experiment.

The state space $\mathcal{S}$ of a random variable is the set of possible values.
The distribution of a random variable $X$ assigns to each set $A \subseteq \mathcal{S}$ the probability $\operatorname{Pr}(X \in A)$ that $X$ takes a value in $A$.

In general, we use capitals for random variables $(X, Y, Z, \ldots)$, and small letters $(x, y, z, \ldots)$ for (possible) fixed values.

## Notations for events

An event $U$ like " $X$ takes a value in $A$ " is sometimes written with curly brackets:

$$
U=\{X \in A\}
$$

## Stochastic Independence of events

$\operatorname{Pr}(U, V)$ : probability that both events $U$ and $V$ take place
$\operatorname{Pr}(U \mid V)$ : conditional probability of $U$, given that $V$ is known to take place. Note that $\operatorname{Pr}(U \mid V)=\operatorname{Pr}(U, V) / \operatorname{Pr}(V)$.
Definition 1 (stochastic independence) Two events $U$ and $V$ are (stochastically) independent if

$$
\operatorname{Pr}(U, V)=\operatorname{Pr}(U) \cdot \operatorname{Pr}(V)
$$

Note that $\operatorname{Pr}(U, V)=\operatorname{Pr}(U) \cdot \operatorname{Pr}(V)$ is equivalent to

$$
\operatorname{Pr}(U \mid V)=\operatorname{Pr}(U) \text { and also to } \operatorname{Pr}(V \mid U)=\operatorname{Pr}(V)
$$

## Stochastic Independence of random variables

Definition 2 (stochastic independence) Two random variables $X$ and $Y$ are (stochastically) independent, if the identity

$$
\operatorname{Pr}(X \in A, Y \in B)=\operatorname{Pr}(X \in A) \cdot \operatorname{Pr}(Y \in B)
$$

holds for all (measurable) subsets $A$ and $B$ of the state spaces of $X$ and $Y$.

Example:

- Tossing two dice: $X=$ result dice $1, Y=$ result dice 2 .

$$
\operatorname{Pr}(X=2, Y=5)=\frac{1}{36}=\frac{1}{6} \cdot \frac{1}{6}=\operatorname{Pr}(X=2) \cdot \operatorname{Pr}(Y=5)
$$

## 2 The binomial distribution

## Bernoulli distribution

A Bernoulli experiment is an experiment with two possible oucomes "success" and "fail", or 1 or 0 .

Bernoulli random variable $X$ : State space $\mathcal{S}=\{0,1\}$. Distribution:

$$
\begin{aligned}
& \operatorname{Pr}(X=1)=p \\
& \operatorname{Pr}(X=0)=1-p
\end{aligned}
$$

The parameter $p \in[0,1]$ is the success probability.

## Bernoulli distribution

## Examples:

- Tossing a coin: 1 and 0 represent "head" and "tail"
- Tossing a drawing pin: 1 and 0 represent "point upward" and "pin down"
- Does the Drosophila have a mutation that causes white eyes? 1 and 0 represent are "yes" and "no".
- A certain allele on a chromosome: 1 and 0 represent "this allele" and "other allele"

Assume a Bernoulli experiment (for example tossing a coin) with success probability $p$ is repeated $n$ times independently.
What is the probability that it...

1. ...alway succeeds?

$$
p \cdot p \cdot p \cdots p=p^{n}
$$

2. ...always fails?

$$
(1-p) \cdot(1-p) \cdots(1-p)=(1-p)^{n}
$$

3. ...first succeeds $k$ times and then fails $n-k$ times?

$$
p^{k} \cdot(1-p)^{n-k}
$$

4. ...succeeds in total $k$ times and fails the other $n-k$ times?

$$
\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}
$$

## Note

$$
\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)}{k \cdot(k-1) \cdot(k-2) \cdots 3 \cdot 2 \cdot 1}
$$

(" $n$ choose $k$ ") is the number of possibilities to choose $k$ successes in $n$ trials.

## Binomial distribution

Let $X$ be the number of successes in $n$ independent trials with success probability of $p$ each. Then,

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k} \cdot(1-p)^{n-k}
$$

holds for all $k \in\{0,1, \ldots, n\}$ and $X$ is said to be binomially distributed, for short:

$$
X \sim \operatorname{bin}(n, p)
$$

Expectation value, variance and standard deviation:

$$
\mathbb{E} X=n \cdot p, \quad \operatorname{Var}(X)=n \cdot p \cdot(1-p), \quad \sigma_{X}=\sqrt{n \cdot p \cdot(1-p)}
$$

General definition:

$$
\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2}, \quad \sigma_{X}=\sqrt{\operatorname{Var}(X)}
$$



With the binomial distribution we can treat our initial question

Assume in a small populaiton of $n=100$ individuals the neutral allele A has a frequency of 0.3 .
How probable is it that $X$, the frequency of $A$ in the next generarion is 0.32 ?

$$
\operatorname{Pr}(X=0.32)=?
$$

We can only answer this on the basis of a probabilistic model, and the answer will depend on how we model the population.

## Modeling approach

We make a few simplifying assumptions:

- Discrete generations
- The population is haploid, that is, each individual has exactly one parent in the generation before.
- constant population size $n=100$
$\operatorname{Pr}(X=0.32)$ still depends on whether few individuals have many offspring or whether all individuals have similar offspring numbers. $\operatorname{Pr}(X=0.32)$ is only defined with additional assumptions, e.g.:
- Each individual chooses its parent purely randomly in the generation before.
"purely randomly" means independent of all others and all potential parents with the same probability.
Our assumptions imply that each individuals of the next generations have a probability of 0.3 to obtain allele A, and they get their alleles independently of each other.

Therefore, the number $K$ of individuels who get allele $A$ is binomially distributed with $n=100$ and $p=0.3$ :

$$
K \sim \operatorname{bin}(n=100, p=0.3)
$$

For $X=K / n$ follows:

$$
\begin{aligned}
\operatorname{Pr}(X=0.32) & =\operatorname{Pr}(K=32)=\binom{n}{32} \cdot p^{32} \cdot(1-p)^{100-32} \\
& =\binom{100}{32} \cdot 0.3^{32} \cdot 0.7^{68} \approx 0.078
\end{aligned}
$$

## Genetic Drift

If $p$ is frequency of allele A in the current generation (population size $n$ ), the number $K$ of carriers of $A$ in the next generation is $\operatorname{bin}(n, p)$-distributed and thus satisfies:

$$
\mathbb{E} K=n \cdot p \quad \text { and } \quad \sigma_{K}=\sqrt{n \cdot p \cdot(1-p)}
$$

The allele frequency $K / n$ in the next generation is also a random variable and has the properties:

$$
\mathbb{E}(K / n)=n \cdot p / n=p \quad \text { and } \quad \sigma_{K}=\sqrt{\frac{p \cdot(1-p)}{n}}
$$

## Genetic Drift / Wright-Fisher Diffusion



Binomial distribution probabilities in $\mathbf{R}$


The R software is freely available from https://www.r-project.org/. Many like to use R with RStudio: https://www.rstudio.com/products/RStudio/

$$
\operatorname{Pr}(K=32)=\binom{100}{32} \cdot 0.3^{32} \cdot 0.7^{68} \approx 0.078
$$

```
> dbinom(32,size=100,p=0.3)
```

[1] 0.07761057
Check by using the formula:
$>$ choose $(100,32) * 0.3^{\wedge} 32 *(1-0.3)^{\wedge}(100-32)$
[1] 0.07761057

## Binomial distribution probabilities in $\mathbf{R}$

Now assume $B \sim \operatorname{bin}(10,0.3)$.

$$
\operatorname{Pr}(B \leq 2)=\operatorname{Pr}(B=0)+\operatorname{Pr}(B=1)+\operatorname{Pr}(B=2)
$$

> pbinom (2, size $=10, \mathrm{p}=0.3$ )
[1] 0.3827828
Again, check this by step-wise calculation:

```
> dbinom(0:2,size=10,p=0.3)
```

[1] $0.028247520 .12106082 \quad 0.23347444$
> sum (dbinom (0:2, size=10,p=0.3))
[1] 0.3827828

## Binomial distribution probabilities in $\mathbf{R}$

Still assume $B \sim \operatorname{bin}(10,0.3)$.

$$
\operatorname{Pr}(B>8)=\operatorname{Pr}(B=9)+\operatorname{Pr}(B=10)
$$

> pbinom(8, size=10, p=0.3, lower.tail=FALSE)
[1] 0.0001436859
Again, check this by step-wise calculation:
> dbinom(9:10, size=10, p=0.3)
[1] 1.37781e-04 5.90490e-06
> sum(dbinom (9:10, size=10,p=0.3))
[1] 0.0001436859

## 3 Normal distribution

A binomial distribution with large $n$ looks like a normal distribution:


## Density of the standard normal distribution

A random variable $Z$ with the density $f(x)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{x^{2}}{2}}$ is called standard-normally distributed.

"Gaussian bell-curve"
for short:
$Z \sim \mathcal{N}(0,1)$

$$
\mathbb{E} Z=0
$$

Var $Z=1$

If $Z$ is $\mathcal{N}(0,1)$ distributed, then $X=\sigma \cdot Z+\mu$ is normally distributed with mean $\mu$ and variance $\sigma^{2}$, for short:

$$
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

$X$ has the density

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \cdot e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Question: How to compute $\operatorname{Pr}(Z=5)$ ?
Answer: For each $x \in \mathbb{R}$ we have $\operatorname{Pr}(Z=x)=0$
(Area of width 0)
example: density of the standard normal distribution:
> plot(dnorm,from=-4,to=4)

$>\operatorname{dnorm}(0)$ [1] $0.3989423>$ dnorm ( 0, mean=1,sd=2) [1] 0.1760327
example: Computing probabilities: Let $Z \sim \mathcal{N}\left(\mu=0, \sigma^{2}=1\right)$ be standard normally distributed
$\operatorname{Pr}(Z<a)$ can be computed in R by pnorm (a)
> pnorm(0.5) [1] 0.6914625

example: Computing probabilities: Let $Z \sim \mathcal{N}\left(\mu=5, \sigma^{2}=2.25\right)$.
Computing $\operatorname{Pr}(Z \in[3,4])$ :

$$
\operatorname{Pr}(Z \in[3,4])=\operatorname{Pr}(Z<4)-\operatorname{Pr}(Z<3)
$$

$>\operatorname{pnorm}(4$, mean=5,sd=1.5) -pnorm(3,mean=5,sd=1.5) [1] 0.1612813

## Normal approximation

For large $n$ and $p$ which are not too close to 0 or 1 , we can approximate the binomial distribution by a normal distribution with the corresponding mean and variance.

$$
\begin{aligned}
& \text { If } X \sim \operatorname{bin}(n, p) \text { and } Z \sim \mathcal{N}\left(\mu=n \cdot p, \sigma^{2}=n \cdot p \cdot(1-p)\right) \text {, we get } \\
& \qquad \operatorname{Pr}(X \in[a, b]) \approx \operatorname{Pr}(Z \in[a, b])
\end{aligned}
$$

(rule of thumb: Usually okay if $n \cdot p \cdot(1-p) \geq 9$ )
$n=1000, p=0.5, n \cdot p \cdot(1-p)=250$

$n=10, p=0.2, n \cdot p \cdot(1-p)=1.6$



## 4 Principle of statistical testing

## Cats or dogs?

- We asked a representative sample of 320 LMU students whether they like cats better than dogs or vice versa.
- 168 said they prefer dogs, 132 preferred cats and 20 were undecided.
- Can we conclude that there is significant evidence that a majority of LMU students prefer dogs over cats?
(Of course the following data are purely hypothetical and this survey was never made - at least as far as I know.)

Among the $n=300$ students who had a preference at all, $K=168$ preferred dogs over cats. Significantly different from 150 ?

Null hypthesis: Among the LMU students with a preference, exactly half like dogs better than cats.
If the null hypothesis is true, the number $K$ in a study as above is $\operatorname{bin}(n=300, p=0.5)$-distributed.

How improbable is a deviation of 18 from the $n \cdot p=150$ if the null hypothesis is true?



pbinom(167,300, p=0.5, lower.tail=FALSE)
dbinom $(168,300, p=0.5)$
0.02156425
0.005318873
dbinom(150,300,p=0.5)
pbinom(132,300,p=0.5) + pbinom(167,300,p=0.5,lower.tail=FALSE)
0.04602751
0.0431285

```
pbinom(167,300,p=0.5,lower.tail=FALSE)
0.02156425
pnorm(167,mean=150,sd=sqrt(75),lower.tail=FALSE)
0.02482361
pnorm(168,mean=150,sd=sqrt(75),lower.tail=FALSE)
0.01883346
sum(dnorm(168:300,mean=150,sd=sqrt(75)))
0.02159596
```


## Statistical testing

- We want to argue that some deviation in the data is not just random.
- To this end we first specify a null hypothesis $H_{0}$, i.e. we define, what "just random" means.
- Then we try to show: If $H_{0}$ is true, then a deviation that is at least as large as the observed one, is very improbable.
- If we can do this, we reject $H_{0}$.
- How we measure deviation, must be clear before we see the data.


## Statistical Testing: Important terms

null hypothesis $H_{0}$ : says that what we want to substantiate is not true and anything that looks like evidence in the data is just random. We try to reject $H_{0}$.
significance level $\alpha$ : If $H_{0}$ is true, the probability to falsly reject it, must be $\leq \alpha$ (often $\alpha=0.05$ ).
test statistic : measures how far the data deviates from what $H_{0}$ predicts into the direction of our alternative hypothesis.
$p$ value : Probability that, if $H_{0}$ is true, a dataset leads to a test statistic value that is as least as extreme as the observed one.

- We reject the null hypothesis $H_{0}$ if the $p$ value is smaller than $\alpha$.
- Thus, if $H_{0}$ is true, the probability to (falsely) reject it is $\alpha$ (not the $p$ value).
- This entails that a researcher who performs many tests with $\alpha=0.05$ on complete random data (i.e. where $H_{0}$ is always true), will falsely reject $H_{0}$ in $5 \%$ of the tests.
- Therefore it is a severe violation of academic soundness to perform tests until one shows significance, and to publish only the latter.


## Testing two-sided or one-sided?

We observe a value of $x$ that is much larger than the $H_{0}$ expectation value $\mu$.


value $=\operatorname{Pr}_{H_{0}}(X \geq x)$

## Important

The decision between one-sided and two-sided must not depend on the concrete data that are used in the test. More generally: If $\mathcal{A}$ is the event that will lead to the rejection of $H_{0}$, (if it occurs) then $\mathcal{A}$ must be defined without being influenced by the data that is used for testing.

If $H_{0}$ is rejected on the $5 \%$-level, which of the following statements is true?

- The null hypothesis is wrong. The null hypothesis is wrong.
- $H_{0}$ is wrong with a probability of $95 \%$. $H_{0}$ is wreng with a probability of $95 \%$.
- If $H_{0}$ is true, you will see such an extreme event only in $5 \%$ of the data sets. If $H_{0}$ is true, you will see such an extreme event only in $5 \%$ of the data sets.

If the test did not reject $H_{0}$, which of the following statements are true?

- We have to reject the alternative $H_{1}$. We have to reject the alternative $H_{1}$.
- $H_{0}$ is true. $H_{0}$ is true
- $H_{0}$ is probably true. $H_{0}$ is probably true.
- It is safe to assume that $H_{0}$ was true. It is to assume that $H_{0}$ wastrue.
- $H_{0}$ is compatible with the data, at least with respect to the test statistic. $H_{0}$ is compatible with the data, at least with respect to the test statistic. $\sqrt{ }$


## 5 Some classical tests

## 5.1 t-test

## one-sample t-test

Data: values $X_{1}, X_{2}, \ldots, X_{n}$ with mean $\bar{X}$ and variance $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
Required: data sampled independently from (approximately) a normal distribution with unknown mean $\mu$ and unknown variance $\sigma^{2}$.
$H_{0}: \mu=\mu_{0}$

## Test statistic:

$$
t=\frac{\bar{X}-\mu_{0}}{s / \sqrt{n}}
$$

Note that $s / \sqrt{n}$ is the standard error (of the mean; SEM).
Distribution of $t$ under $H_{0}$ : Student's $t$ distribution with $(n-1)$ degrees of freedom (df).

## paired two-sample t-test

Data: pairs of values $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
Required: data sampled independently from (approximate) normal distributions with unknown means $\mu_{X}$ and $\mu_{Y}$.
$H_{0}: \mu_{X}=\mu_{Y}$
Test: one-sample t-test with data $X_{1}-Y_{1}, X_{2}-Y_{2}, \ldots, X_{n}-Y_{n}$ with null hypothesis $\mu=0$.

## two-sample t-test assuming equal variances

Data: samples $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ with means $\bar{X}$ and $\bar{Y}$ and pooled sample variance

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+\sum_{j=1}^{m}\left(Y_{j}-\bar{Y}\right)^{2}}{m+n-2}
$$

Required: data sampled independently from (approximate) normal distributions with (unknown) means $\mu_{X}$ and $\mu_{Y}$ and (unknown) equal variance $\sigma^{2}$.
$H_{0}: \mu_{X}=\mu_{Y}$

## Test statistic:

$$
t=\frac{\bar{X}-\bar{Y}}{s \cdot \sqrt{\frac{1}{n}+\frac{1}{m}}}
$$

Distribution of $t$ under $H_{0}$ : Student's t statistic with $\mathrm{df}=n+m-2$

## Welch's t-test

Data: samples $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ with means $\bar{X}$ and $\bar{Y}$ and sample variances

$$
s_{X}^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1} \quad s_{Y}^{2}=\frac{\sum_{j=1}^{m}\left(Y_{j}-\bar{Y}\right)^{2}}{m-1}
$$

Required: data sampled independently from (approximate) normal distributions with (unknown) means $\mu_{X}$ and $\mu_{Y}$ and (unknown) variances $\sigma_{X}^{2}$ and $\sigma_{Y}^{2}$.
$H_{0}: \mu_{X}=\mu_{Y}$

## Test statistic:

$$
t=\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{s_{X}^{2}}{n}+\frac{s_{Y}^{2}}{m}}}
$$

Distribution of $t$ under $H_{0}$ : Approximately (!) Student's t statistic with complicated formula for df.

```
> x <- c(2.327429, 2.723787, 4.870450, 3.084610, 3.155145, 5.058078, 3.553099,
    1.481927, 2.175777, 2.465206)
> x
    [1] 2.327429 2.723787 4.870450 3.084610 3.155145 5.058078 3.553099 1.481927
    [9] 2.175777 2.465206
> t.test(x,mu=5)
One Sample t-test
data: x
t = -5.2784, df = 9, p-value = 0.0005082
alternative hypothesis: true mean is not equal to 5
95 percent confidence interval:
    2.270796 3.908306
sample estimates:
mean of x
    3.089551
> y
    [1] 3.072246 3.295750 5.450604 3.606747 3.543977 5.915461 4.152670 1.588603
    [9] 2.816048 2.870647
> t.test(x-y)
One Sample t-test
data: x - y
t = -8.2513, df = 9, p-value = 1.727e-05
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
    -0.6902430-0.3932058
sample estimates:
    mean of x
-0.5417244
> t.test(x,y,paired=TRUE)
Paired t-test
data: x and y
```

$\mathrm{t}=-8.2513, \mathrm{df}=9$, p -value $=1.727 \mathrm{e}-05$
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
-0.6902430-0.3932058
sample estimates:
mean of the differences

$$
-0.5417244
$$

t.test ( $\mathrm{x}, \mathrm{y}$, var.equal=TRUE)

Two Sample t-test
data: $x$ and $y$
$\mathrm{t}=-0.9995, \mathrm{df}=18, \mathrm{p}$-value $=0.3308$
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
-1.6804089 0.5969601
sample estimates:
mean of $x$ mean of $y$
3.0895513 .631275
> t.test $(\mathrm{x}, \mathrm{y})$

Welch Two Sample t-test
data: x and y
$\mathrm{t}=-0.9995, \mathrm{df}=17.792, \mathrm{p}$-value $=0.331$
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
-1.681364 0.597915
sample estimates:
mean of $x$ mean of $y$
3.0895513 .631275
stripchart (list $(x, y)$, ylim=c $(0.5,2.5)$, method="jitter")


```
plot(x,y,xlim=c(0,6),ylim=c(0,6))
```

abline ( $\mathrm{a}=0, \mathrm{~b}=1$ )


```
    stripchart(y-x,method="jitter",xlim=c(0,1))
```



### 5.2 Analysis of variance (ANOVA)

(one-way) anova
Like unpaired t -test with equal variances, but with more than two groups.
Data: For each group $g$ of $G$ groups a number $J_{g}$ of values $X_{g, 1}, \ldots, X_{g, J_{g}}$. Let $\overline{X_{g}}$. be the mean in group $g$ and $\bar{X}$ be the mean of all values. Let $n=\sum_{g=1}^{G} J_{g}$ be the total number of values.

Required: Data sampled independently; within all groups normally distributed with the same variance.
$H_{0}$ : The normal distributions of the groups have the same mean.
Test statistic: $F=\frac{\sum_{g=1}^{G} J_{g} \cdot\left(\overline{X_{g}}-\bar{X}\right)^{2} /(G-1)}{\sum_{g=1}^{G} \sum_{j=1}^{J_{g}}\left(X_{g, j}-\overline{X_{g} .}\right)^{2} /(n-G)}$
Distribution: If $H_{0}$ holds, $F$ is Fisher distributed with $G-1$ and $n-G$ degrees of freedom.

```
d <- data.frame(treat,obs)
> d
    treat obs
A 0.69
A 0.55
A -0.06
B B 3.69
5 B 3.62
6 B 3.31
7 C 0.79
C C -0.27
9 C 3.17
10 C 2.21
> mod <- lm(obs~ treat,data=d)
> anova(mod)
Analysis of Variance Table
Response: obs
                                    Df Sum Sq Mean Sq F value Pr(>F)
treat 2 15.4324 7.7162 7.3715 0.01893 *
Residuals 7 7.3274 1.0468
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```


### 5.3 Chi-square-test

|  | Steak | Pasta | Pizza | Burger |
| :--- | ---: | ---: | ---: | ---: |
| EES | 10 | 13 | 12 | 4 |
| Neuro | 7 | 24 | 8 | 11 |
| MolBiol | 12 | 43 | 36 | 42 |

```
```

> M <- matrix(c(10,13,12, 4,

```
> M <- matrix(c(10,13,12, 4,
+ 7,24, 8,11,
+ 7,24, 8,11,
+ 12,43,36,42
+ 12,43,36,42
+ ),byrow=TRUE,nrow=3,
+ ),byrow=TRUE,nrow=3,
+ dimnames=list(c("EES","Neuro","MolBiol"),
+ dimnames=list(c("EES","Neuro","MolBiol"),
+ c("Steak","Pasta","Pizza","Burger")))
+ c("Steak","Pasta","Pizza","Burger")))
> M
```

> M

```

Null hypothesis: what a student chose for lunch yesterday was independent of his or her study program.
```

> chisq.test(M)

```

Pearson's Chi-squared test
data: M
X-squared \(=17.011, \mathrm{df}=6, \mathrm{p}\)-value \(=0.009241\)

\section*{Chi-square-test of independence/homogeneity}

Data: Contigency table with \(n\) rows and \(m\) columns; let \(O_{i j}\) the (integer) number in row \(i\) and column \(j, R_{i}=\sum_{j} O_{i j}, C_{j}=\sum_{i} O_{i j}, S=\sum_{i} \sum_{j} O_{i j}\).
\(H_{0}\) : Rows are independent of columns, that is, same distribution in all rows (or columns). Conditioned on all \(R_{i}\) and \(C_{j}\), the expectation of \(O_{i j}\) is \(E_{i j}=R_{i} \cdot C_{j} / S\).
Test statistic: \(X^{2}=\sum_{i} \sum_{j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}\)

Distribution of \(X^{2}\) under \(H_{0}\) : approx. \(\chi^{2}\)-distributed with \((n-1) \cdot(m-1)\) degrees of freedom.```

