Handout on Mathematics for EES students - Reminder to statistical testing

Dirk Metzler

October 14, 2022

Contents

1	Basic notations for random variables and distributions					
2	The binomial distribution	2				
3	Normal distribution	6				
4	Principle of statistical testing	8				
5	Some classical tests 5.1 t-test	11 11 14 15				

1 Basic notations for random variables and distributions

Assume a small population of 100 individuals, and a neutral allele A that has frequency 0.3 in this generation.

What will be the frequency X of A in the next generation?

We don't know, as X is a random variable .

However, we can ask, for example, for

 $\mathbb{E} X = \sum_k k \cdot \Pr(X = k)$, the expectation value of X, or for

Pr(X = 0.32), the probability that X takes a value of 0.32.

Even these values (especially the second on) depend on our model assumptions.

Contents

We start with a simpler Example: Rolling a dice, W is the result of the next trial.

 $S = \{1, 2, \dots, 6\}$ $\Pr(W = 1) = \dots = \Pr(W = 6) = \frac{1}{6}$ ($\Pr(W = x) = \frac{1}{6}$ for all $x \in \{1, \dots, 6\}$)

A Random Variable is a result of a random incident or experiment.

The state space \mathcal{S} of a random variable is the set of possible values.

The distribution of a random variable X assigns to each set $A \subseteq S$ the probability $Pr(X \in A)$ that X takes a value in A.

In general, we use capitals for random variables (X, Y, Z, ...), and small letters (x, y, z, ...) for (possible) fixed values.

Notations for events

An event U like "X takes a value in A" is sometimes written with curly brackets:

 $U=\{X\in A\}$

Stochastic Independence of events

 $\Pr(U, V)$: probability that both events U and V take place $\Pr(U|V)$: conditional probability of U, given that V is known to take place. Note that $\Pr(U|V) = \Pr(U, V) / \Pr(V)$.

Definition 1 (stochastic independence) Two events U and V are (stochastically) independent if

 $\Pr(U, V) = \Pr(U) \cdot \Pr(V).$

Note that $Pr(U, V) = Pr(U) \cdot Pr(V)$ is equivalent to

 $\Pr(U|V) = \Pr(U)$ and also to $\Pr(V|U) = \Pr(V)$

Stochastic Independence of random variables

Definition 2 (stochastic independence) Two random variables X and Y are (stochastically) independent, if the identity

$$\Pr(X \in A, Y \in B) = \Pr(X \in A) \cdot \Pr(Y \in B)$$

holds for all (measurable) subsets A and B of the state spaces of X and Y.

Example:

• Tossing two dice: X = result dice 1, Y = result dice 2.

$$\Pr(X = 2, Y = 5) = \frac{1}{36} = \frac{1}{6} \cdot \frac{1}{6} = \Pr(X = 2) \cdot \Pr(Y = 5)$$

2 The binomial distribution

Bernoulli distribution

A Bernoulli experiment is an experiment with two possible oucomes "success" and "fail", or 1 or 0.

Bernoulli random variable X: State space $S = \{0, 1\}$. Distribution: Pr(X = 1) = pPr(X = 0) = 1 - p

The parameter $p \in [0, 1]$ is the success probability.

Bernoulli distribution

Examples:

- Tossing a coin: 1 and 0 represent "head" and "tail"
- Tossing a drawing pin: 1 and 0 represent "point upward" and "pin down"
- Does the Drosophila have a mutation that causes white eyes? 1 and 0 represent are "yes" and "no".
- A certain allele on a chromosome: 1 and 0 represent "this allele" and "other allele"

Assume a Bernoulli experiment (for example tossing a coin) with success probability p is repeated n times independently.

What is the probability that it...

1. ...alway succeeds?

$$p \cdot p \cdot p \cdots p = p^n$$

2. ...always fails?

$$(1-p) \cdot (1-p) \cdots (1-p) = (1-p)^n$$

3. ...first succeeds k times and then fails n - k times?

$$p^k \cdot (1-p)^{n-k}$$

4. ... succeeds in total k times and fails the other n - k times?

$$\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

Note

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdots (n-k+1)}{k \cdot (k-1) \cdot (k-2) \cdots 3 \cdot 2 \cdot 1}$$

("n choose k") is the number of possibilities to choose k successes in n trials.

Binomial distribution

Let X be the number of successes in n independent trials with success probability of p each. Then,

$$\Pr(X=k) = \binom{n}{k} p^k \cdot (1-p)^{n-k}$$

holds for all $k \in \{0, 1, ..., n\}$ and X is said to be *binomially distributed*, for short:

$$X \sim \operatorname{bin}(n, p).$$

Expectation value, variance and standard deviation:

$$\mathbb{E}X = n \cdot p,$$
 $Var(X) = n \cdot p \cdot (1-p),$ $\sigma_X = \sqrt{n \cdot p \cdot (1-p)}$

General definition:

$$\operatorname{Var}(X) = \mathbb{E}(X - \mathbb{E}X)^2, \qquad \sigma_X = \sqrt{\operatorname{Var}(X)}$$

With the binomial distribution we can treat our initial question

probabilities of bin(n=100,p=0.2)

Assume in a small population of n = 100 individuals the neutral allele A has a frequency of 0.3.

How probable is it that X, the frequency of A in the next generation is 0.32?

$$\Pr(X = 0.32) = ?$$

We can only answer this on the basis of a probabilistic model, and the answer will depend on how we model the population.

Modeling approach

We make a few simplifying assumptions:

- Discrete generations
- The population is haploid, that is, each individual has exactly one parent in the generation before.
- constant population size n = 100

Pr(X = 0.32) still depends on whether few individuals have many offspring or whether all individuals have similar offspring numbers. Pr(X = 0.32) is only defined with additional assumptions, e.g.:

• Each individual chooses its parent purely randomly in the generation before.

"purely randomly" means *independent of all others* and *all potential parents with the same probability*. Our assumptions imply that each individuals of the next generations have a probability of 0.3 to

obtain allele A, and they get their alleles independently of each other.

Therefore, the number K of individuels who get allele A is binomially distributed with n = 100 and p = 0.3:

$$K \sim bin(n = 100, p = 0.3)$$

For X = K/n follows:

$$\Pr(X = 0.32) = \Pr(K = 32) = \binom{n}{32} \cdot p^{32} \cdot (1-p)^{100-32}$$
$$= \binom{100}{32} \cdot 0.3^{32} \cdot 0.7^{68} \approx 0.078$$

Genetic Drift

If p is frequency of allele A in the current generation (population size n), the number K of carriers of A in the next generation is bin(n, p)-distributed and thus satisfies:

$$\mathbb{E}K = n \cdot p$$
 and $\sigma_K = \sqrt{n \cdot p \cdot (1-p)}$

The allele frequency K/n in the next generation is also a random variable and has the properties:

$$\mathbb{E}(K/n) = n \cdot p/n = p$$
 and $\sigma_K = \sqrt{\frac{p \cdot (1-p)}{n}}$

Genetic Drift / Wright-Fisher Diffusion

Binomial distribution probabilities in R

The R software is freely available from https://www.r-project.org/. Many like to use R with RStudio: https://www.rstudio.com/products/RStudio/

$$\Pr(K = 32) = \binom{100}{32} \cdot 0.3^{32} \cdot 0.7^{68} \approx 0.078$$

> dbinom(32,size=100,p=0.3)
[1] 0.07761057

Check by using the formula:

> choose(100,32)*0.3^32*(1-0.3)^(100-32)
[1] 0.07761057

Binomial distribution probabilities in R

Now assume $B \sim bin(10, 0.3)$.

$$\Pr(B \le 2) = \Pr(B = 0) + \Pr(B = 1) + \Pr(B = 2)$$

> pbinom(2,size=10,p=0.3)
[1] 0.3827828

Again, check this by step-wise calculation:

> dbinom(0:2,size=10,p=0.3)
[1] 0.02824752 0.12106082 0.23347444
> sum(dbinom(0:2,size=10,p=0.3))
[1] 0.3827828

Binomial distribution probabilities in R

Still assume $B \sim bin(10, 0.3)$.

$$\Pr(B > 8) = \Pr(B = 9) + \Pr(B = 10)$$

> pbinom(8,size=10,p=0.3,lower.tail=FALSE)
[1] 0.0001436859
Again, check this by step-wise calculation:
> dbinom(9:10,size=10,p=0.3)
[1] 1.37781e-04 5.90490e-06
> sum(dbinom(9:10,size=10,p=0.3))

[1] 0.0001436859

3 Normal distribution

A binomial distribution with large n looks like a normal distribution:

Density of the standard normal distribution

A random variable Z with the density $f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$ is called *standard-normally distributed*.

If Z is $\mathcal{N}(0, 1)$ distributed, then $X = \sigma \cdot Z + \mu$ is normally distributed with mean μ and variance σ^2 , for short: $X \sim \mathcal{N}(\mu, \sigma^2)$

 \boldsymbol{X} has the density

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Question: How to compute Pr(Z = 5)?

Answer: For each $x \in \mathbb{R}$ we have $\Pr(Z = x) = 0$ (Area of width 0)

example: density of the standard normal distribution: > plot(dnorm,from=-4,to=4)

> dnorm(0) [1] 0.3989423 > dnorm(0,mean=1,sd=2) [1] 0.1760327 example: Computing probabilities: Let $Z \sim \mathcal{N}(\mu = 0, \sigma^2 = 1)$ be standard normally distributed

 $\Pr(Z < a)$ can be computed in R by pnorm(a)

> pnorm(0.5) [1] 0.6914625

example: Computing probabilities: Let $Z \sim \mathcal{N}(\mu = 5, \sigma^2 = 2.25)$.

Computing $\Pr(Z \in [3, 4])$:

$$\Pr(Z \in [3, 4]) = \Pr(Z < 4) - \Pr(Z < 3)$$

> pnorm(4,mean=5,sd=1.5)-pnorm(3,mean=5,sd=1.5) [1] 0.1612813

Normal approximation

For large n and p which are not too close to 0 or 1, we can approximate the binomial distribution by a normal distribution with the corresponding mean and variance.

If $X \sim bin(n, p)$ and $Z \sim \mathcal{N}(\mu = n \cdot p, \sigma^2 = n \cdot p \cdot (1 - p))$, we get $Pr(X \in [a, b]) \approx Pr(Z \in [a, b])$

(rule of thumb: Usually okay if $n \cdot p \cdot (1-p) \geq 9)$ $n=1000, \, p=0.5, \, n \cdot p \cdot (1-p) = 250$

4 Principle of statistical testing

Cats or dogs?

- We asked a representative sample of 320 LMU students whether they like cats better than dogs or vice versa.
- 168 said they prefer dogs, 132 preferred cats and 20 were undecided.
- Can we conclude that there is significant evidence that a majority of LMU students prefer dogs over cats?

(Of course the following data are purely hypothetical and this survey was never made – at least as far as I know.)

Among the n = 300 students who had a preference at all, K = 168 preferred dogs over cats. Significantly different from 150?

Null hypthesis: Among the LMU students with a preference, exactly half like dogs better than cats.

If the null hypothesis is true, the number K in a study as above is bin(n = 300, p = 0.5)-distributed.

How improbable is a deviation of 18 from the $n \cdot p = 150$ if the null hypothesis is true?

```
pbinom(167,300,p=0.5,lower.tail=FALSE)
0.02156425
pnorm(167,mean=150,sd=sqrt(75),lower.tail=FALSE)
0.02482361
pnorm(168,mean=150,sd=sqrt(75),lower.tail=FALSE)
0.01883346
sum(dnorm(168:300,mean=150,sd=sqrt(75)))
0.02159596
```

Statistical testing

- We want to argue that some deviation in the data is not just random.
- To this end we first specify a null hypothesis H_0 , i.e. we define, what "just random" means.
- Then we try to show: If H_0 is true, then a deviation that is *at least* as large as the observed one, is very improbable.
- If we can do this, we reject H_0 .
- How we measure deviation, must be clear *before* we see the data.

Statistical Testing: Important terms

- null hypothesis H_0 : says that what we want to substantiate is not true and anything that looks like evidence in the data is just random. We try to reject H_0 .
- significance level α : If H_0 is true, the probability to falsly reject it, must be $\leq \alpha$ (often $\alpha = 0.05$).
- test statistic : measures how far the data deviates from what H_0 predicts into the direction of our alternative hypothesis.
- p value : Probability that, if H_0 is true, a dataset leads to a test statistic value that is as least as extreme as the observed one.
 - We reject the null hypothesis H_0 if the p value is smaller than α .
 - Thus, if H_0 is true, the probability to (falsely) reject it is α (not the p value).
 - This entails that a researcher who performs many tests with $\alpha = 0.05$ on complete random data (i.e. where H_0 is always true), will falsely reject H_0 in 5% of the tests.
 - Therefore it is a severe violation of academic soundness to perform tests until one shows significance, and to publish only the latter.

Testing two-sided or one-sided?

We observe a value of x that is much larger than the H_0 expectation value μ .

Important

The decision between one-sided and two-sided must not depend on the concrete data that are used in the test. More generally: If \mathcal{A} is the event that will lead to the rejection of H_0 , (if it occurs) then \mathcal{A} must be defined without being influenced by the data that is used for testing.

If H_0 is rejected on the 5%-level, which of the following statements is true?

- The null hypothesis is wrong. The null hypothesis is wrong.
- H_0 is wrong with a probability of 95%. H_0 is wrong with a probability of 95%.
- If H_0 is true, you will see such an extreme event only in 5% of the data sets. If H_0 is true, you will see such an extreme event only in 5% of the data sets. \checkmark

If the test did not reject H_0 , which of the following statements are true?

• We have to reject the alternative H_1 . We have to reject the alternative H_1 .

- H_0 is true. H_0 is true
- H_0 is probably true. $\frac{H_0}{H_0}$ is probably true.
- It is safe to assume that H_0 was true. It is safe to assume that H_0 was true.
- H_0 is compatible with the data, at least with respect to the test statistic. H_0 is compatible with the data, at least with respect to the test statistic.

5 Some classical tests

5.1 t-test

one-sample t-test

Data: values X_1, X_2, \ldots, X_n with mean \overline{X} and variance $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$.

Required: data sampled independently from (approximately) a normal distribution with unknown mean μ and unknown variance σ^2 .

*H*₀: $\mu = \mu_0$

Test statistic:

$$t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$$

Note that s/\sqrt{n} is the standard error (of the mean; SEM).

Distribution of t under H_0 : Student's t distribution with (n-1) degrees of freedom (df).

paired two-sample t-test

Data: pairs of values $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$.

Required: data sampled independently from (approximate) normal distributions with unknown means μ_X and μ_Y .

*H*₀: $\mu_X = \mu_Y$

Test: one-sample t-test with data $X_1 - Y_1, X_2 - Y_2, \ldots, X_n - Y_n$ with null hypothesis $\mu = 0$.

two-sample t-test assuming equal variances

Data: samples X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m with means \overline{X} and \overline{Y} and pooled sample variance

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2} + \sum_{j=1}^{m} (Y_{j} - \overline{Y})^{2}}{m + n - 2}$$

 ${\bf Required:} \ {\rm data \ sampled \ independently \ from \ (approximate) \ normal \ distributions \ with \ (unknown) \ means \ approximate) \ approximate \ approximate) \ approximate \ approximat$

 μ_X and μ_Y and (unknown) equal variance σ^2 .

 $H_0: \mu_X = \mu_Y$

Test statistic:

$$t = \frac{\overline{X} - \overline{Y}}{s \cdot \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

Distribution of t under H_0 : Student's t statistic with df= n + m - 2

Welch's t-test

Data: samples X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m with means \overline{X} and \overline{Y} and sample variances

$$s_X^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}$$
 $s_Y^2 = \frac{\sum_{j=1}^m (Y_j - \overline{Y})^2}{m-1}$

Required: data sampled independently from (approximate) normal distributions with (unknown) means μ_X and μ_Y and (unknown) variances σ_X^2 and σ_Y^2 .

 $H_0: \ \mu_X = \mu_Y$

Test statistic:

$$t = \frac{X - Y}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}$$

Distribution of t under H_0 : Approximately (!) Student's t statistic with complicated formula for df.

```
> x <- c(2.327429, 2.723787, 4.870450, 3.084610, 3.155145, 5.058078, 3.553099,
        1.481927, 2.175777, 2.465206)
> x
 [1] 2.327429 2.723787 4.870450 3.084610 3.155145 5.058078 3.553099 1.481927
 [9] 2.175777 2.465206
> t.test(x,mu=5)
One Sample t-test
data: x
t = -5.2784, df = 9, p-value = 0.0005082
alternative hypothesis: true mean is not equal to 5
95 percent confidence interval:
2.270796 3.908306
sample estimates:
mean of x
3.089551
> y
 [1] 3.072246 3.295750 5.450604 3.606747 3.543977 5.915461 4.152670 1.588603
 [9] 2.816048 2.870647
> t.test(x-y)
One Sample t-test
data: x - y
t = -8.2513, df = 9, p-value = 1.727e-05
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.6902430 -0.3932058
sample estimates:
mean of x
-0.5417244
> t.test(x,y,paired=TRUE)
Paired t-test
data: x and y
```

```
t = -8.2513, df = 9, p-value = 1.727e-05
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
-0.6902430 -0.3932058
sample estimates:
mean of the differences
             -0.5417244
> t.test(x,y,var.equal=TRUE)
Two Sample t-test
data: x and y
t = -0.9995, df = 18, p-value = 0.3308
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
-1.6804089 0.5969601
sample estimates:
mean of x mean of y
3.089551 3.631275
> t.test(x,y)
Welch Two Sample t-test
data: x and y
t = -0.9995, df = 17.792, p-value = 0.331
alternative hypothesis: true difference in means is
not equal to 0
95 percent confidence interval:
-1.681364 0.597915
sample estimates:
mean of x mean of y
 3.089551 3.631275
```

stripchart(list(x,y),ylim=c(0.5,2.5),method="jitter")

plot(x,y,xlim=c(0,6),ylim=c(0,6))
abline(a=0,b=1)

stripchart(y-x,method="jitter",xlim=c(0,1))

5.2 Analysis of variance (ANOVA)

(one-way) anova

Like unpaired t-test with equal variances, but with more than two groups.

Data: For each group g of G groups a number J_g of values $X_{g,1}, \ldots, X_{g,J_g}$. Let $\overline{X_{g.}}$ be the mean in group g and \overline{X} be the mean of all values. Let $n = \sum_{g=1}^{G} J_g$ be the total number of values.

Required: Data sampled independently; within all groups normally distributed with the same variance.

 $H_0 {:}\ {\rm The normal \ distributions \ of \ the \ groups \ have \ the \ same \ mean.}$

Test statistic:
$$F = \frac{\sum_{g=1}^{G} J_g \cdot (\overline{X_{g.}} - \overline{X})^2 / (G-1)}{\sum_{g=1}^{G} \sum_{j=1}^{J_g} (X_{g,j} - \overline{X_{g.}})^2 / (n-G)}$$

Distribution: If H_0 holds, F is Fisher distributed with G-1 and n-G degrees of freedom.

> d <- data.frame(treat,obs)</pre> > d treatobs 1 A 0.69 2 A 0.55 3 A -0.06 B 3.69 4 5 B 3.62 6 B 3.31 7 C 0.79 8 C -0.27 9 C 3.17 10 C 2.21 > mod <- lm(obs~treat,data=d)</pre> > anova(mod) Analysis of Variance Table Response: obs Df Sum Sq Mean Sq F value Pr(>F) 2 15.4324 7.7162 7.3715 0.01893 * treat Residuals 7 7.3274 1.0468 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 **Chi-square-test** 5.3> M <- matrix(c(10,13,12, 4, + 7,24, 8,11, 12,43,36,42 +),byrow=TRUE,nrow=3, + dimnames=list(c("EES","Neuro","MolBiol"), +

+	c("Steak","Pasta","Pizza","Burger")))					
> M						
	Steak	Pasta	Pizza	Burger		
EES	10	13	12	4		
Neuro	7	24	8	11		
MolBiol	12	43	36	42		

Null hypothesis: what a student chose for lunch yesterday was independent of his or her study program.

> chisq.test(M)

Pearson's Chi-squared test

data: M X-squared = 17.011, df = 6, p-value = 0.009241

Chi-square-test of independence/homogeneity

Data: Contigency table with *n* rows and *m* columns; let O_{ij} the (integer) number in row *i* and column $j, R_i = \sum_j O_{ij}, C_j = \sum_i O_{ij}, S = \sum_i \sum_j O_{ij}$.

 H_0 : Rows are independent of columns, that is, same distribution in all rows (or columns). Conditioned on all R_i and C_j , the expectation of O_{ij} is $E_{ij} = R_i \cdot C_j / S$.

Test statistic: $X^2 = \sum_i \sum_j \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$

Distribution of X^2 under H_0 : approx. χ^2 -distributed with $(n-1) \cdot (m-1)$ degrees of freedom.