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1 Introduction

Goals of this lecture

• Learn/Remember basic mathematics and modelling used in the EES Master

• Learn to know each other

Mathematics in Biology

Feb. 2004

• Plea from W. Bialek (Physicist) and D. Botstein (Molecular
biologist) for mathematics and physics to be more integrated
in biology curricula.

• Galileo Galilei: “The book of nature is written in the language
of mathematics.”

• John Maynard Smith (book Evolutionary genetics): “If you
can’t stand algebra, keep out of evolutionary biology.”

• Robert M. May warns: misuses of maths in biology when biol-
ogists do not have enough maths knowledge.

Topics

• Sums and Products

• Equations
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• Functions, Derivatives and Integrals

• Modelling: Discrete Processes

• Modelling: Continuous Processes

• Statistics

Organization
For each session we will have:

• A handout

• An exercise sheet (corresponding to the lecture we covered during the last session)

What we expect from you:

• Come to the lecture session; ask questions if something is not clear

• exercise session: present your solutions for the exercise sheet

2 Mathematic modelling in Biology

Mathematical models in EES
Examples of models used in Ecology, Evolution or Systematics.

• Ecology: Lotka–Volterra model for predator–prey population size dynamics

• Evolution: Evolution of allele frequencies depending on mutation, selection and genetic drift
(Wright–Fisher model).

• Systematics: Sequence-evolution models for the reconstruction of phylogenies (Jukes–Cantor, HKY,
GTR,. . . ).

What is a mathematical model?

”All models are wrong, but some are useful.” G. Box

• A model is a representation of a biological system using mathematics formalism.

• A model is a simplification of the reality.

• Thus a model is built on a series of decisions or assumptions.

• In general, the more abstract the model is, the easier it is to handle but the more imprecise it
becomes.

• The art of modelling is to find the essential aspects of a biological system. This requires a good
biological and mathematical knowledge.

Purposes of mathematical modelling

Understanding a mechanism or phenomenon  simple model

Check whether an explanation really works  may require a more complex model

Making predictions  more complex models, computer simulations

Data analysis and statistical testing  more or less complex models, depending on statistical/computational
methods and size and structure of data to be explained
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3 Geometric growth

Discrete-time modelling

• Follow the evolution of a population with discrete generations

• The population size X at generation n is noted Xn.

• The Xn build a mathematical sequence.

• If this sequence is iterative, there is a function f so that Xn+1 = f(Xn) for all n.

Reminder: functions
A function f : D → R assigns to each x ∈ D one and only one f(x) ∈ R.

Some functions can be represented by an algebraic expression or have a famous name, for example:

g : R → R
x 7→ 3x2 + x− 3

h : R \ {0} → R

x 7→ 1

x

exp : R → R>0

x 7→ ex

sin : R → [−1; 1]

x 7→ sin(x)

f(x) = a + bx (affine-linear function

with intercept a and slope b)

`(x) = 2 · (x− 3)2 + 5

= 2x2 − 12x + 23 (parabola)

Reminder: exponential and logarithm
an = b⇔ n = loga b = ln b

ln a

Properties:
a0 = 1, ab+c = ab · ac, abc = (ab)c

exp(x) = ex with e ≈ 2.71828

ln(exp(x)) = exp(ln(x)) = x inverse function

Properties: loga 1 = 0, loga(bc) = loga b + loga c, loga(bn) = n loga(b)

Geometric growth model
Example: population growth of a bird population on an island

Xn+1 = Xn + Xn · b−Xn · d = Xn · (1 + b− d)
with b = birth rate and d = death rate

Define r = 1 + b− d = growth ratio,
you have a linear process Xn+1 = r ·Xn

⇒ Xn = rn ·X0
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Graphical representation
For X0 = 12 and r = 1.1
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Graphical representation
And on the log scale:

logXn = log(rn ·X0) = log(rn) + log(X0) = n log(r) + log(X0)
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4 A more complex model

Definition
Include some more realistic features:

• Immigration from mainland A

• Maximum population size / Carrying capacity K

• Mating more difficult in small populations: growth rate slow for small population size

Image credit: ”Environmental limits to population growth: Figure 1,” by OpenStax College, Biology, CC BY 4.0.

4



5 Equilibrium and stability

Long-term behaviour and fixed points
What is the state of the system on the long run?

Find x∗ = lim
n→∞

Xn.

Candidates: Fixed points = points with f(x) = x also called equilibrium points
If x∗ is a fixed point and Xn = x∗ then Xn+1 = x∗

Stability:

• x∗ globally stable: lim
n→∞

Xn = x∗ for all X0

• x∗ locally stable: lim
n→∞

Xn = x∗ if X0 close to x∗

• x∗ unstable: not even locally stable

Stability of fixed points: the cobwebbing method

Stability of fixed points: the cobwebbing method
Draw the plot of f(x) and add the line y = x.

• Start with X0

• Go vertically to the curve: you find f(X0) = X1.

• Move horizontally to the y = x line and then back vertically to the x-axis to have X1 on the x-axis.

• Go vertically to the curve: you find f(X1) = X2.

• Move horizontally to the y = x line and then back vertically to the x-axis.

• etc ...

See if you come closer to the fixed point or if you get away from it.
Repeat for several X0.

Conclusion from examples drawn on the board:

• If | f ′(x∗) |< 1⇒ x∗ is (locally) stable

• If | f ′(x∗) |> 1⇒ x∗ is unstable
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Reminder: derivation
Definition:

d
dxf(x) = f ′(x) = lim

h→0

f(x+h)−f(x)
h

Examples:
d
dxx

n =n · xn−1

d
dxe

x =ex

d
dx ln(x) = 1

x
d
dx cos(x) =− sin(x)
d
dx sin(x) =cos(x)

Derivation: rules
Linearity of differentiation

d

dx
[f(x) + g(x)] = f ′(x) + g′(x)

d

dx
[a · f(x)] = a · f ′(x)

Product rule
d

dx
[f(x) · g(x)] = f ′(x) · g(x) + f(x) · g′(x)

Quotient rule
d

dx

f(x)

g(x)
=

f ′(x) · g(x)− f(x) · g′(x)

g(x)
2

Chain rule
d

dx
f(g(x)) = f ′(g(x)) · g′(x)

Reminder: integration
Definition:

F is the antiderivative of f if and only if F ′(x) = f(x) and thus F (x) =
x∫
c

f(x)dx

We also have:
b∫
a

f(x)dx = F (b)− F (a) = F (x)
∣∣∣b
a

Important antiderivatives:

f(x) = xn ⇒ F (x) =
xn+1

n + 1
+ c

f(x) =
1

x
⇒ F (x) = ln(x) + c

f(x) = eax ⇒ F (x) =
1

a
eax + c
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6 The Verhulst model

Evolution of a bacterial population
Consider a population of bacteria in a medium:

If you have initially a small quantity of bacteria they will grow almost geometrically, but when the
medium (or some essential elements in it) becomes rare their growth will slow down.

We make the following assumptions:

• no migration

• no small-population effect

• limited carrying capacity

Then the population size can be modelled by:
Xn+1 = Xn · r(Xn) = Xn · r0

c
c+r0Xn

with r0 > 0 and c > 0

The reproduction rule is:
f(x) = x · r0 · c

c+r0x

Asymptotics and derivatives

f(x) =
x · r0 · c
c + r0 · x

=
r0 · x

1 + r0 · xc
=

r0
1
x + r0

c

Asymptotics:
lim
x→∞

f(x) = r0
1
∞ +

r0
c

= 1
1
c

= c

Derivatives:
f ′(x) = (c+r0x)·r0c−xr0cr0

(c+r0x)2 = c2r0
(c+r0x)2 > 0

f ′(0) = r0 initial growth rate

f ′′(x) = (c+r0x)2·0−c2r02(c+r0x)r0
(c+r0x)4 =

−2·c2r20
(c+r0x)3 < 0→ slowing down

Fixed points equation
x = f(x) = xr0c

c+r0x
⇔ (c + r0x) · x = xr0c

x1 = 0
and for x 6= 0
c + r0x2 = r0c
⇔ x2 = r0c−c

r0
= c− c

r0

Case r0 ≤ 1⇒ x2 = c− c
r0
≤ 0→ the only fixed point is x1 = 0

Case r0 > 1⇒ x2 = c− c
r0

> 0:

f ′(x2) =
c2r0

(c + r0x2)2
=

c2r0(
c + r0 ·

(
c− c

r0

))2 =
c2r0

(c + r0 · c− c)
2 =

c2r0

(r0 · c)2 =
1

r0
< 1

→ fixed point x2 is stable.
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Some conclusions on the Verhulst model

• The Verhulst model can be used to describe the dynamics of the size of a bacterial population.

• Its long-term behavior depends on the initial growth rate parameter r0.

Reminder: Soving linear or quadratic equations
Examples:

• 2 · x + 6 = 12 ⇔ x = 3

• x2 = −1 ⇔ x = ±i (imaginary number)

Second degree equations:
a · x2 + b · x + c = 0
Determinant ∆:
∆ = b2 − 4 · a · c

• if ∆ < 0→ no solution in R

• if ∆ = 0→ unique solution x = −b
2·a

• if ∆ > 0→ two solutions x = −b±
√

∆
2·a

“Midnight formula”:

0 = ax2 + bx + c

⇒ x1,2 =
−b±

√
b2 − 4 · a · c
2 · a

“p q formula”:

0 = x2 + px + q

⇒ x1,2 = −p

2
±
√(p

2

)2

− q

7 Transformation to a linear process

Consider 2 competing populations
The Verhulst model is not linear process whereas the geometric growth was (f(x) = r · xn).

Now consider two populations competing for the same ressource so that they have the same growth
limitation parameter c and their competition terms depend on the size of both populations:

• an+1 = an · ra c
c+raan+rbbn

= f1(an, bn)

• bn+1 = bn · rb c
c+raan+rbbn

= f2(an, bn)

The process is multi-dimensional and non-linear.

Consider the ratio of population sizes
Lets consider the ratio of the population sizes:

Zn = an

bn

Zn+1 = an+1

bn+1
= an·ra

bn·rb = Zn · rarb → linear!

• Zn grows exponentially for ra > rb

• Zn shrinks exponentially for ra < rb

• Zn = Z0 for ra = rb

Some of the things you should be able to explain

• The different purposes of mathematical models in biology

• The meaning of the parameters in discrete-time models like the Verhulst model

• How to study fixed points and their stability for discrete-time models
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– By cobwebbing

– Mathematically with derivatives

• The meaning of derivatives and how to calculate them

• How to solve quadratic equations and other simple equations.

• The trick to transform parameters to obtain a simpler process, e.g. a linear process
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