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1 The one-sample t-Test

Are large circle areas over- or underestimated?

Challenge 13 
blue+yellow=100

 blue=?

true: 75% vs 25%

Overestimated because volume could be taken instead of area?

Underestimated because diameter could be taken instead of area?
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Blue area for plot 13 (circles) estimated by n=24 students (in 2019)
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Null hypothesis: estimation X is unbiased. That is, the mean of the estimated values is

µ := EX = 75

.

Let x1, . . . , xn be the observed values.
|x− µ| = |63.6− 75| = 11.4 is 4.37 standard errors (sx/

√
n).

t :=
x− µ
sx/
√
n

= 4.37

The t value is the test statistic in Student’s (that is, Gosset’s) one-sample t-test.
If the null hypothesis is true, what is the distribution of t?
Assume

X ∼ N (µ, σ2).

⇒ X ∼ N (µ, σ2/n)

⇒ X − µ ∼ N (0, σ2/n)

⇒ X − µ
σ/
√
n
∼ N (0, 1)

But σ is replaced by s in t, which adds some variation.

General Rule 1. If X1, . . . , Xn are independently drawn from a normal distributed with mean µ and

s2 =
1

n− 1

n∑
i=1

(Xi −X)2,

then

t =
X − µ
s/
√
n

is t-distributed with n− 1 degrees of freedom (df).

The t-distribution is also called Student-distribution since Gosset published it using this synonym.

2



Density of the t-distribution
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How (im)probable is a deviation by at least 4.37 standard errors?

Pr(T = 4.37) = 0 does not help!

Compute Pr(|T | ≥ 4.37), which is the p-value.

2.34−2.34
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colored regions would be the p-value
for the case of |t| = 2.34.

R does that for us:

> pt(-4.37,df=23)+pt(4.37,df=23,lower.tail=FALSE)

[1] 0.0002238728

t-Test with R

> t.test(ba$estimated[ba$X==13],mu=mean(ba$true[ba$X==13]))

One Sample t-test

data: ba$estimated[ba$X == 13]

t = -4.3668, df = 23, p-value = 0.0002257

alternative hypothesis: true mean is not equal to 75

95 percent confidence interval:

58.23633 69.01367

sample estimates:

mean of x

63.625
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We note:
p− value = 0.0002257

i.e.: If the Null hypothesis “just random”, in our case µ = 75, holds, any deviation like the observed one
or even more is very improbable.

If we always reject the null hypothesis if and only if the p-value is below a level of significance of 0.05,
then we can say following holds:

If the null hypothesis holds, then the probability that we reject it, is only 0.05.
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Why normal q-q-plot should roughly show a straigth line.

If X ∼ N (µ, σ2), then X−µ
σ ∼ N (0, 1).

⇒
Pr

(
X − µ
σ

< q

)
= Pr(X < σ · q + µ)

This means that if q is the p-quantile of N (0, 1), then σ · q + µ is the p-quantile of X.
With exact quantiles of N

(
µ = 1, σ2 = 0.52

)
:
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Blue area for plot 13 (circles) estimated by n=24 students (in 2019)
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Estimated blue area for plot 13 (circles)
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> t.test(ba$estimated[ba$X==13 & ba$estimated>50],

mu=mean(ba$true[ba$X==13]))

One Sample t-test

data: ba$estimated[ba$X == 13 & ba$estimated > 50]

t = -5.8431, df = 21, p-value = 8.443e-06

alternative hypothesis: true mean is not equal to 75

95 percent confidence interval:

64.02948 69.78870

sample estimates:

mean of x

66.90909

Blue area for plot 13 (circles) estimated by n=24 students (in 2019)
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Estimated blue area for plot 13 (circles)
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But is it really well justfied to remove outliers?
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Perhaps rather not.

In any case the decision must be documented and reasoned.

2 Reducing the data even further

For our example data we can also try just using the following information:

n = 22 students did not give the correct value of 75

k = 20 of them underestimated the blue area

Null hypothesis is now: overestimation and underestimation have the same probability.As always we
further assume independence among the estimations. Thus, k is a realization of K ∼ bin(n, 1/2).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

binomial distribution probabilities
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00
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05

0.
10

0.
15

With two-sided testing, the p-value is the sum of all probabilities that are smaller or equal to Pr(K = k).

For p = 1/2 the binomial distribution is symmetric, such that the p-value is

Pr(K ≤ n− k) + Pr(K ≥ k) = Pr(K ≤ 2) + Pr(K ≥ 20) ≈ 0.00012.

> (s <- dbinom(0:n,n,0.5)<=dbinom(k,n,0.5))
[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
> sum(dbinom(0:n,n,0.5)[s])
[1] 0.0001211166

3 Non-parametric alternative: Wilcoxon’s signed rank test

Wilcoxon’s signed rank test
signed rank: take rank of absolute value, equipped with sign of original value

example:
values: −2.6 −2.5 −2.3 −1.3 −0.6 1.6 2.2 6.1
absolute values: 2.6 2.5 2.3 1.3 0.6 1.6 2.2 6.1
ranks: 7 6 5 2 1 3 4 8
signed ranks: −7 −6 −5 −2 −1 3 4 8

Test statistic: V = 3 + 4 + 8 = 15 (sum of positive ranks)

> wilcox.test(c(-2.6,-2.5,-2.3,-1.3,-0.6,1.6,2.2,6.1))

Wilcoxon signed rank test

6



data: c(-2.6, -2.5, -2.3, -1.3, -0.6, 1.6, 2.2, 6.1)

V = 15, p-value = 0.7422

alternative hypothesis: true location is not equal to 0

How many combinations of ranks lead to a certain value of V ?

−1− 2− 3− 4− 5− 6− 7− 8 = −36 V = 0

+1 −2− 3− 4− 5− 6− 7− 8 = −34 V = 1

−1 +2 −3− 4− 5− 6− 7− 8 = −32 V = 2

−1− 2 +3 −4− 5− 6− 7− 8 = −30 V = 3

+1 + 2 −3− 4− 5− 6− 7− 8 = −30 V = 1 + 2 = 3
...

...
...

−1+2 + 3 + 4 + 5 + 6 + 7 + 8 = 34 V = 2 + 3 + · · ·+ 8 = 35

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 V = 1 + 2 + · · ·+ 8 = 36

The null hypothesis implies that for each rank the sign is purely random.Thus, each line above has a
probability of 1/2n.There are e.g. two ways of getting a V = 3 and two of getting V = 33.

Pr(V = 3) = Pr(V = 33) =
2

28
= 0.0078

Numbers of possibilities for each possible value of V for n = 8
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Probabilities under H0 of possible values of V for n = 8

7
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example

values: −2.6 −2.5 −2.3 −1.3 −0.6 −0.2 0.1 0.4
absolute values: 2.6 2.5 2.3 1.3 0.6 0.2 0.1 0.4
ranks: 8 7 6 5 4 2 1 3
signed ranks: −8 −7 −6 −5 −4 −2 1 3

p-value for V = 4 (with n = 8):

Pr(V ∈ {0, 1, 2, 3, 4, 32, 33, 34, 35, 36}) =
1 + 1 + 1 + 2 + 2 + 2 + 2 + 1 + 1 + 1

28
= 0.054

Wilcoxon’s signed rank test

> wilcox.test(c(-2.6,-2.5,-2.3,-1.3,-0.6,-0.2,0.1,0.5))

Wilcoxon signed rank test

data: c(-2.6, -2.5, -2.3, -1.3, -0.6, -0.2, 0.1, 0.5)

V = 4, p-value = 0.05469

alternative hypothesis: true location is not equal to 0

Wilcoxon’s signed rank test

> wilcox.test(ba$estimated[ba$X==13],

mu=mean(ba$true[ba$X==13]))

Wilcoxon signed rank test with continuity correction

data: ba$estimated[ba$X == 13]

V = 6, p-value = 8.779e-05

alternative hypothesis: true location is not equal to 75

Warnmeldungen:

1: In wilcox.test.default(ba$estimated[ba$X == 13], mu = mean(ba$true[ba$X == :

cannot compute exact p value due to bindings

2: In wilcox.test.default(ba$estimated[ba$X == 13], mu = mean(ba$true[ba$X == :

cannot compute exact p value due to bindings
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4 General principles of statistical testing

• We want to argue that some deviation in the data is not just random.

• To this end we first specify a null hypothesis H0, i.e. we define, what “just random” means.

• Then we try to show: If H0 is true, then a deviation that is at least at large as the observed one, is
very improbable.

• If we can do this, we reject H0.

• How we measure deviation, must be clear before we see the data.

Statistical Testing: Important terms

null hypothesis H0 : says that what we want to substantiate is not true and anything that looks like
evidence in the data is just random. We try to reject H0.

significance level α : If H0 is true, the probability to falsely reject it, must be ≤ α (often α = 0.05).

test statistic : measures how far the data deviates from what H0 predicts into the direction of our alter-
native hypothesis.

p value : Probability that, if H0 is true, a dataset leads to a test statistic value that is as least as extreme
as the observed one.

• We reject the null hypothesis H0 if the p value is smaller than α.

• Thus, if H0 is true, the probability to (falsely) reject it is α (not the p value).

• This entails that a researcher who performs many tests with α = 0.05 on complete random data (i.e.
where H0 is always true), will falsely reject H0 in 5% of the tests.

• Therefore it is a severe violation of academic soundness to perform tests until one shows significance,
and to publish only the latter.

Testing two-sided or one-sided?

We observe a value of x that is much larger than theH0 expectation value µ.
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The pure teachings of statistical testing

• Specify a null hypothesis H0, e.g. µ = 0.

• Specify level of significance α, e.g. α = 0.05.

• Specify an event A such that
Pr
H0

(A) = α

(or at least PrH0(A) ≤ α). e.g. A = {X > q} or A = {|X − µ| > r} in general: A = {p-value ≤ α}

• AND AFTER THAT: Look at the data and check if if A occurs.

• Then, the probability that H0 is rejected in the case that H0 is actually true (“Type I error”) is just
α.

Violations against the pure teachings

“The two-sided test gave me a p-value of 0.06. Therefore, I tested one-sided
and this worked out nicely.”

is as bad as:

“At first glance I saw that x is larger than µH0
. So, I immediately applied

the one-sided test.”

Important
The decision between one-sided and two-sided must not depend on the concrete data that are used in the
test. More generally: If A is the event that will lead to the rejection of H0, (if it occurs) then A must be
defined without being influenced by the data that is used for testing.

This means: Use separate data sets for exploratory data analysis and for testing.
In some fields these rules are followed quite strictly, e.g. testing new pharmaceuticals for accreditation.
In some other fields the practical approach is more common: Just inform the reader about the p-values

of different null-hypotheses.

Severe violations against scientific standards

HARKing: Hypothesize After Results Known

p-hacking: try out different tests and different preprocessing methods until you obtain significance

If H0 is rejected on the 5%-level, which of the following statements is true?

• The null hypothesis is wrong.

• H0 is wrong with a probability of 95%.

• If H0 is true, you will see such an extreme event only in 5% of the data sets. X

If the test did not reject H0, which of the following statements are true?
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• We have to reject the alternative H1.

• H0 is true

• H0 is probably true.

• It is safe to assume that H0 was true.

• Even if H0 is true, it is not so unlikely that our test statistic takes a value that is as extreme as the
one we observed.X

• With this respect, H0 is compatible with the data.X

Some of what you should be able to explain

• Structure of t-statistic and df for one-sample t-test

• what is a qqnorm plot and how can it be used to check normality

• Rationale of Wilcoxon’s signed rank test and how to compute its test statistic

• principles of statistical testing and exact meaning of

– p-value

– significance level α

– null hypothesis

• how to report significance and non-significance

5 two-sample t-tests

Do different visualization types lead to different error rates?

blue+yellow=100
 blue= 12

blue+yellow=100
 blue= 62

blue+yellow=100
 blue= 61

blue+yellow=100
 blue= 62

blue+yellow=100
 blue= 86
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How to measure error rate?
Error= log(1 + |estimated− true|)
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Make sure later that assuptions for tests (e.g. normal distribution) are fulfilled; otherwise try a different
error function.

Using multiple measurements per student would lead to dependencies in the data that would violate
independence assumtions in our tests.

One possible solution: Take for each student and each plot type only the mean value of the measurements
(the measurements are the estimation errors in the case).

Average errors of each student for each plot type

A B C D E F G
bar 1.065645 0.9642789 0.7630992 0.9450101 1.546024 1.5283079 1.395527
bar.stack 1.394888 1.6230186 0.7945135 1.3210294 1.711141 1.6088525 2.028028
circ 1.678805 1.7038884 2.1449357 2.0660967 1.295430 1.2954301 1.802887
pie 1.353468 0.7864461 0.6212267 1.4907948 1.376918 0.9744558 0.735763
pie3D 1.424133 1.4940845 1.0316535 0.7945135 1.023586 0.8451966 1.426942

12



H I J K L M N
bar 1.014962 1.655458 1.395527 1.165459 1.798220 1.3727371 2.605710
bar.stack 1.195617 1.682711 2.028028 1.637742 1.758303 1.1670114 1.316792
circ 1.346113 1.697049 1.802887 1.298239 1.845993 2.0249917 3.026309
pie 0.498623 1.654818 0.735763 1.319477 NA 1.3519713 1.497177
pie3D 1.001792 2.025146 1.426942 1.393275 2.698072 0.8730895 1.592161

O P Q R S T U
bar 1.599032 1.6300899 1.092981 1.859423 0.5705435 1.5607468 1.384883
bar.stack 2.297891 1.0595464 1.532854 1.892707 1.7193107 1.1750788 1.623019
circ 2.158900 1.8075584 1.561459 2.128278 NA 1.9099707 2.052395
pie 1.755138 0.9678003 1.133020 1.930243 1.1178076 0.8730895 1.263201
pie3D 2.463760 1.1968729 1.564268 1.231577 1.1442213 1.4176781 2.202529

V W X
bar 1.194348 2.016658 1.2799950
bar.stack 1.891898 1.724770 2.1487236
circ 1.340298 2.324150 1.6102338
pie 1.168980 1.344205 0.8583667
pie3D 1.407673 2.796155 1.2931365

Average errors of each student for each plot type

Mean error per student and plot type

ba
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ta
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ci
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D
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blue: small error,
red: large error,
white: missing data
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mean errors per student for each plot type

Let’s test whether errors (averaged for each student) differ significantly between bar charts and pie
charts.
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Bar charts, n=24

Average error over 8 plots
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Pie charts, n=23

Average error over 8 plots
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> t.test(M["bar",],M["pie",])

Welch Two Sample t-test

data: M["bar", ] and M["pie", ]

t = 1.9106, df = 44.466, p-value = 0.06252

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.01233732 0.46486341

sample estimates:

mean of x mean of y

1.391861 1.165598

Theorem 1 (Welch’s t-test). Suppose that X1, . . . , Xn and Y1, . . . , Ym are independent and normally dis-
tributed random variables with EXi = EYj and potentially different variances VarXi = σ2

X and VarYi = σ2
Y .

Let s2X and s2Y be the sample variances. The statistic

t =
X − Y√
s2X
n +

s2Y
m

14



approximately follows a t distribution with (
s2X
n +

s2Y
m

)2
s4X

n2·(n−1) +
s4Y

m2·(m−1)

degrees of freedom.

> t.test(M["bar",],M["pie",],var.equal=TRUE)

Two Sample t-test

data: M["bar", ] and M["pie", ]

t = 1.9043, df = 45, p-value = 0.06328

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.01305144 0.46557752

sample estimates:

mean of x mean of y

1.391861 1.165598

Theorem 2 (Student’s two-sample t-test, unpaired with equal variances). Suppose that X1, . . . , Xn and
Y1, . . . , Ym are independent and normally distributed random variables with the same mean µ and the same
variance σ2. Define the pooled sample variance to be

s2p =
(n− 1) · s2X + (m− 1) · s2Y

m+ n− 2
.

The statistic

t =
X − Y

sp ·
√

1
n + 1

m

follows a t distribution with n+m− 2 degrees of freedom.

Have we missed some relevant information?
Maybe there was variation in error among the students.

We can remove this variation by paired testing, that is, apply one-sample t-test to differences in error
per student.
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> t.test(M["bar",],M["pie",],paired=TRUE)

Paired t-test

data: M["bar", ] and M["pie", ]

t = 2.3331, df = 22, p-value = 0.02918
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alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.02317965 0.39401089

sample estimates:

mean of the differences

0.2085953
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Note: what we did here looks like we tried out several tests until a test indicated significance.

This would be a severe violation of the principles of statistical testing and
of good scientific practice!

The various tests were applied above only to show the differences for teaching purposes. (So do as I say,
not as I apparently did.)

Correct: before looking at the data, anticipate that between-student variation
is possible and decide to apply paired t-test.

What is the conclusion from our test?
Let’s assume the 24 test persons were chosen randomly among all LMU biology students (which was

actually not the case).

Can we say

“LMU biology students could guess fractions significantly better from pie charts (of this
kind) than from bar charts (of this kind).”

or can we only say

“LMU biology students could guess fractions significantly better from these 8 pie charts
than from these 8 bar charts.”

???

• The true value of each plot may influence the error distribution.
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• In fact, the pie and bar charts were randomly generated from a class of charts for which they are
representative

– blue and yellow colour

– blue area is a purely randonm value from {1, 2, . . . , 99}.

• Thus, each single plot had the same chance to have a difficult or an easy true value.

• But the values used for the t-test were not the independent observations of each plot but averages over
8 plots of each type.

• Thus, each of the eight plots was used in all 23 (or 24) values, and the t-test (standard errors in
denominator of t) could not account for the variation between plots.

This implies that the results could be representative for LMU biology students (if the test
persons had been sampled randomly) but not for a class of pie/bar plots.

How can we apply the t-test to independent values for each plot?

Average for each plot the errors from all students:
pie.err 0.24 0.05 1.46 0.94 1.77 1.58 1.98 1.50
bar.err 1.07 1.44 1.96 0.54 1.49 1.54 1.65 1.44

(for one of the pie charts we averaged over only 23 student errors as one was NA.)
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●● ●● ●● ●●

● ● ●● ●● ●●

> t.test(pie.err,bar.err)

Welch Two Sample t-test

data: pie.err and bar.err

t = -0.69367, df = 11.407, p-value = 0.5018

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.8464499 0.4394227

sample estimates:

mean of x mean of y

1.188347 1.391861

So, if we use the errors values for strip charts and bar charts in a way such that they are representative
for charts of their class, the differences in error values are not significant any more.

But were the students representative for other students in this analysis?
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No, because we averaged over the students, such that the t-test could not account for variation among
the students.

Anyway, we could not find significant differences (maybe because of the small number of plots of each
type?), but even if we had found significant differences, the study design would not allow to draw conclusions
about other students than the ones involved in the experiment.

How could we draw conclusions about a class of pie charts and bar charts and about a larger population
of persons?

With different tests, e.g. nested anova / mixed-effects models.

or:

With a different study design, e.g. many students, each sees only one bar chart and one pie chart; always
new ones.

6 Wilcoxon’s rank sum test

Wilcoxon’s rank sum test (or equivalently Mann-Whitney U test) is a non-parametric alternative for the
unpaired two-sample t-test with equal variances. (But not for Welch’s t-test!)

References

[1] Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1:8083.

[2] Mann, H. B., Whitney, D. R. (1947). On a test of whether one of two random variables is stochas-
tically larger than the other. Annals of Mathematical Statistics 18:5060.

Observations: Two samples

X : x1, x2, . . . , xm

Y : y1, y2, . . . , yn

Test the null hypothesis: that X and Y come from the same population

alternative: X “typically larger” than Y or Y “typically larger” than X

Idea

Observations:

X : x1, x2, . . . , xm

Y : y1, y2, . . . , yn

• Sort all observations by size.

• Determine the ranks of the m X-values among all m+ n observations.
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• If the null hypothesis is true, than themX-ranks are randomly chosen from {1, 2, . . . ,m+
n}.

• Compute the sum of the X-ranks and check if it is untypically small or large compared
to sum of random ranks.

Wilcoxon’s rank-sum statistic

Observation:

X : x1, x2, . . . , xm

Y : y1, y2, . . . , yn

Frank Wilcoxon,
1892-1965

W = Sum of the X-ranks− (1 + 2 + · · ·+m)
is called

Wilcoxon’s rank-sum statistic

Wilcoxon’s rank-sum statistic

Note:

W = Sum of the X-ranks− (1 + 2 + · · ·+m)

We could also use the sum of the Y -ranks, because

Sum of the X-ranks + Sum of the Y -ranks

= Sum of all ranks

= 1 + 2 + · · ·+ (m+ n) =
(m+ n)(m+ n+ 1)

2

A small example

• Observations:

X : 1.5, 5.6, 35.2

Y : 7.9, 38.1, 41.0, 56.7, 112.1, 197.4, 381.8

• Pool observations and sort: 1.5, 5.6, 7.9, 35.2, 38.1, 41.0, 56.7, 112.1, 197.4, 381.8

• Determine ranks: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

• rank-sum: W = 1 + 2 + 4− (1 + 2 + 3) = 1
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Significance

Null hypothesis:
X-sample and Y -sample were taken from the same distribution

The 3 ranks of the X-sample 1 2 3 4 5 6 7 8 9 10

could just as well have been any 3 ranks 1 2 3 4 5 6 7 8 9 10

There are 10·9·8
3·2·1 = 120 possibilities.

(In general: (m+n)(m+n−1)···(n+1)
m(m−1)···1 ) = (m+n)!

n!m!
=

(
m+n
m

)
possibilities)

Distribution or the Wilcoxon statistic (m = 3, n = 7)[1ex]
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Under the null hypothesis all rank configurations are equally likely, thus

P(W = w) =
number of possibilities with rank-sum statistic w

120

We see in our example: 1.5, 5.6, 7.9, 35.2, 38.1, 41.0, 56.7, 112.1, 197.4, 381.8 W = 1

P(W ≤ 1) + P(W ≥ 20) = P(W = 0) + P(W = 1) + P(W = 20) + P(W = 21) = 1+1+1+1
120

·
= 0.033
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Distribution of the Wilcoxon statistic (m = 3, n = 7)[1ex]
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For our example (W = 1):

p-value = P(such an extreme W ) = 4/120 = 0.033

We reject the null hypothesis, that the distributions of X and Y were equal,
on the 5%-level.

Wilcoxon test in R with wilcox.test:

> x

[1] 1.5 5.6 35.2

> y

[1] 7.9 38.1 41.0 56.7 112.1 197.4 381.8

> wilcox.test(x,y)

Wilcoxon rank sum test

data: x and y

W = 1, p-value = 0.03333

alternative hypothesis: true location shift is

not equal to 0

IMPORTANT!
Can Wilcoxon’s rank sum test replace Welch’s t-test? Not in general, because its null

hypothesis is that the data come from the same distribution, not just that the means are
equal. If we want to test whether the means are different but allow the standard deviations to
be different (like in the assumptions of Welch’s t-test), the Wilcoxon test cannot be applied!
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Some of what you should be able to explain

• Structure of t-statistic and df for

– one-sample t-test

– paired two-sample t-test

– unpaired two-sample t-test

∗ with equal variances

∗ Welch’s t-test

• when and why to use the different t-test variants

• summarizing measurements in a statistic (here: our Error function) that fulfills basic assumptions of
the test

• summarize data to avoid dependencies; e.g. average over multiple measurements

• Assumptions of Wilcoxon’s rank sum test and when and how to apply it.

see also the topics listed on page 11
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