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1 X2 goodness-of-fit test

Mendel’s experiments with peas
green (recessive) vs. yellow (dominant)

round (dominant) vs. wrinkled (recessive)

Expected frequencies when crossing double-hybrids:

green yellow

wrinkled 1
16

3
16

round 3
16

9
16

Observed in experiment (n = 556):
green yellow

wrinkled 32 101

round 108 315
Do the observed frequencies agree with the expected ones?
Relative frequencies:

green/wrink. yell./wrink. green/round yell./round

expected 0.0625 0.1875 0.1875 0.5625

observed 0.0576 0.1942 0.1816 0.5665

Can these deviations be well explained by pure random?
Measure deviations by X2-statistic:

X2 =
∑
i

(Oi − Ei)2

Ei
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where Ei = expected number in class i and Oi = observed number in class i.
Why scaling (Oi − Ei)2 by dividing by Ei = EOi?

Let n be the total sample size and pi be the probability (under the null hypothesis) each individual to
contribute Oi.

Under the null hypothesis, Oi is binomially distributed:

Pr(Oi = k) =

(
n

k

)
pki · (1− pi)n−k.

Thus,
E(Oi − Ei)2 = Var(Oi) = n · p · (1− p).

If p is rather small, n · p · (1− p) ≈ n · p and

E
(Oi − Ei)2

Ei
=

Var(Oi)

EOi
= 1− p ≈ 1.

By the way...

the binomial distribution with small p and large n can be approximated by the Poisson distribution:(
n

k

)
· pk · (1− p)n−k ≈ λk

k!
· e−λ with λ = n · p.

A random variable Y with possible values 0, 1, 2, . . . is Poisson distributed with parameter λ, if

Pr(Y = k) =
λk

k!
· e−λ.

Then, EY = Var(Y ) = λ.
g/w y/w g/r y/r sum

theory 0.0625 0.1875 0.1875 0.5625

expected 34.75 104.25 104.25 312.75 556

observed 32 101 108 315 556

O − E −2.75 −3.25 3.75 2.25

(O − E)2 7.56 10.56 14.06 5.06

(O−E)2

E 0.22 0.10 0.13 0.02 0.47

X2 = 0.47

Is a value of X2 = 0.47 usual?
The distribution of X2 depends on the degrees of freedom (df).
in this case: the sum of the observations must be n = 556.
 when the first three numbers 32, 101, 108 are given, the last one is determined by

315 = 556− 32− 101− 108.

⇒ df = 3
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> pchisq(0.47,df=3)[1ex] [1] 0.07456892

p-value = 92.5%

> obs <- c(32,101,108,315)

> prob <- c(0.0625,0.1875,0.1875,0.5625)

> chisq.test(obs,p=prob)

Chi-squared test for given probabilities

data: obs

X-squared = 0.47, df = 3, p-value = 0.9254

2 X2 test for homogeneity/independence

The cowbird is a brood parasite of Oropendola
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http://commons.wikimedia.

org/wiki/File:Montezuma_

Oropendola.jpgphoto (c) by
J. Oldenettel
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• Cowbird eggs look very similar to oropendola eggs.

• Usually, oropendola rigorously remove all eggs that are not very similar to theirs.

• In some areas, cowbird eggs are quite different from oropendola eggs but are tolerated.

• Why?

• Possible explanation: botfly (german: Dasselfliegen) larvae often kill juvenile oropendola.

• nests with cowbird eggs are somehow better protected against the botfly.

numbers of nests affected by botflies
no. of cowbird eggs 0 1 2
affected by botflies 16 2 1

not affected by botflies 2 11 16

percentages of nests affected by botflies
no. of cowbird eggs 0 1 2
affected by botflies 89% 15% 6%

not affected by botflies 11% 85% 94%

• apparently, the affection with botflies is reduced when the nest contains cowbird eggs

• statistically significant?

• null hypothesis: The probability of a nest to be affected with botflies is independent of the presence of
cowbird eggs.

numbers of nests affected by botflies

no. of cowbird eggs 0 1 2
∑

affected by botflies 16 2 1 1919
not affected by botflies 2 11 16 29∑

18 13 17 4848

which numbers of affected nests would we expect under the null hypothesis?

The same ratio of 19/48 in each group.
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expected numbers of nests affected by botflies, given row sums and column sums
no. of cowbird eggs 0 1 2

∑
affected by botflies 7.1 5.1 6.7 19

not affected by botflies 10.9 7.9 10.3 29∑
18 13 17 48

18 · 19

48
= 7.125 13 · 19

48
= 5.146

All other values are now determined by the sums. (caution: rounding errors!)

Observed (O):
affected by botflies 16 2 1 19

not affected by botflies 2 11 16 29∑
18 13 17 48

Expected (E):
affected by botflies 7.1 5.1 6.7 19

not affected by botflies 10.9 7.9 10.3 29∑
18 13 17 48

O-E:
affected by botflies 8.9 -3.1 -5.7 0

not affected by botflies -8.9 3.1 5.7 0∑
0 0 0 0

(more precisely: 8.875− 3.145833− 5.729167 = 0)

X2 =
∑
i

(Oi − Ei)2

Ei
= 29.5544

• given the sums of rows and columns, two values in the table determine the rest

• ⇒ df=2 for contingency table with 2 rows and 3 columns

• in general for tables with n rows and m columns:

df = (n− 1) · (m− 1)
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> M <- matrix(c(16,2,2,11,1,16),nrow=2)

> M

[,1] [,2] [,3]

[1,] 16 2 1

[2,] 2 11 16

> chisq.test(M)

Pearson’s Chi-squared test

data: M

X-squared = 29.5544, df = 2, p-value = 3.823e-07

The p-value is based on approximation by χ2-distribution.
Rule of thumb: χ2-approximation appropriate if all expectation values are ≥ 5.
Alternative: approximate p-value by simulation:

> chisq.test(M,simulate.p.value=TRUE,B=50000)

Pearson’s Chi-squared test with simulated p-value

(based on 50000 replicates)

data: M

X-squared = 29.5544, df = NA, p-value = 2e-05

3 Fisher’s exact test

References

[McK91] J.H. McDonald, M. Kreitman (1991) Adaptive protein evolution at the Adh locus in Drosophila.
Nature 351:652-654.

synonymous replacement
polymorphisms 43 2

fixed 17 7

> McK <- matrix(c(43,17,2,7),2,

dimnames=list(c("polymorph","fixed"),

c("synon","replace")))

> McK

synon replace

polymorph 43 2

fixed 17 7

> chisq.test(McK)

Pearson’s Chi-squared test

with Yates’ continuity correction

data: McK

X-squared = 6.3955, df = 1, p-value = 0.01144

Warning message: In chisq.test(McK) :

Chi-Square-Approximation may be incorrect
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> chisq.test(McK,simulate.p.value=TRUE,B=100000)

Pearson’s Chi-squared test with simulated p-value

(based on 1e+05 replicates)

data: McK

X-squared = 8.4344, df = NA, p-value = 0.00649

Fisher’s exact test
A B
C D

• null hypothesis: EA/EC
EB/ED = 1

• For 2× 2 tables exact p-values can be computed (no approximation, no simulation).

> fisher.test(McK)

Fisher’s Exact Test for Count Data

data: McK

p-value = 0.006653

alternative hypothesis: true odds ratio

is not equal to 1

95 percent confidence interval:

1.437432 92.388001

sample estimates:

odds ratio

8.540913 ∑
43 2 45
17 7 24∑
60 9 69

∑
a b K
c d M∑
U V N

Given the row sums and column sums and assuming independence, the probability of a is

Pr(a) =

(
K
a

)(
M
c

)(
N
U

) = Pr(b) =

(
K
b

)(
M
d

)(
N
V

)
“hypergeometric distribution”

p-value:
Pr(b = 0) + Pr(b = 1) + Pr(b = 2)
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∑
a b 45
c d 24∑
60 9 69

b Pr(b)
0 0.000023
1 0.00058
2 0.00604
3 0.0337
4 0.1117
5 0.2291
6 0.2909
7 0.2210
8 0.0913
9 0.0156

One-sided Fisher test:
for b = 2:
p-value=Pr(0) + Pr(1) + Pr(2) = 0.00665313
for b = 3:
p-value=Pr(0) + Pr(1) + Pr(2) + Pr(3) =
0.04035434
Two-sided Fisher test:
Sum up all probabilities that are smaller or
equal to Pr(b).
for b = 2:
p-value=Pr(0) + Pr(1) + Pr(2) = 0.00665313
for b = 3:
p-value=
Pr(0) + Pr(1) + Pr(2) + Pr(3) + Pr(9) =
0.05599102

4 X2 test for fitted models with free parameters

Given a population in Hardy-Weinberg equilibrium and a gene locus with two alleles A and B with frequencies
p and 1− p.

 Genotype frequencies

AA AB BB
p2 2 · p · (1− p) (1− p)2

example: M/N blood type; sample: 6129 white Americans

observed:
MM MN NN
1787 3037 1305

estimated allele frequency p of M:

2 · 1787 + 3037

2 · 6129
= 0.5393

 expected:

MM MN NN
p2 2 · p · (1− p) (1− p)2

0.291 0.497 0.212
1782.7 3045.5 1300.7
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MM

NN

NM

6129

6129

6129

all possible observations (O   ,O   ,O   ) are located on 
a triangle (simplex) between
                     (6129,0,0)
                     (0,6129,0)
            and   (0,0,6129)

NNMNMM

MM

NN

NM

6129

6129

6129
The points representing the Expected Values

0 and 1 and thus form a curve in the simplex.

(E    ,E   ,E   ) depend on one parameter p betweenMM MN NN

MM

NN

NM

6129

6129

6129 under the null hypothesis, one of these values must

   be the true one
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MM

NN

NM

6129

6129

6129

The observed (O   ,O   ,O   ) will deviate from the

expected.
MM NNNM

MM

NN

NM

6129

6129

6129 We do not know the true expectation values

so we estimate (E   ,E   ,E    ) by taking the

closest point on the curve of possible values,

i.e. we hit the curve in a right angle.

NNMNMM

MM

NN

NM

6129

6129

6129 We do not know the true expectation values

so we estimate (E   ,E   ,E    ) by taking the

closest point on the curve of possible values,

i.e. we hit the curve in a right angle.

NNMNMM

Thus, deviations between our

our observations (O   ,O   ,O   ) and

our (E   ,E   ,E   ) can only be in one

         dimension: perpendicular to

         the curve.

MM NM NN

MM NNNM

df = k − 1−m

k = number of categories (k=3 genotypes) m = number of model parameters (m=1 parameter p) in blood
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type example:
df = 3− 1− 1 = 1

> p <- (2* 1787+3037)/(2* 6129)

> probs <- c(p^2,2*p*(1-p),(1-p)^2)

> X <- chisq.test(c(1787,3037,1305),p=probs)$statistic[[1]]

> p.value <- pchisq(X,df=1,lower.tail=FALSE)

> X

[1] 0.04827274

> p.value

[1] 0.8260966

Test result: According to the chi-square test the data show no significant deviation from a Hardy-Weinberg
equilibrium (X2 = 0.048, df = 1, p = 0.83).

Wrong would be: “We conclude that the population is in Hardy-Weinberg equilibrium (for this gene lo-
cus).”

Reason: Statsitical tests can never show that a null hypothesis is fulfilled.

Some of what you should be able to explain

• X2-statistic: structure and idea

• df of different variants of X2 test

• χ2 distributions: when and how to use them

• Fisher’s exact test

– When applicable?

– hypergeometric distribution

– How, exactly, to apply two-sided

• Hardy-Weinberg equilibrium
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