Statistics for EES and MEME Chi-square tests and Fisher's exact test

Dirk Metzler

May 22, 2020

Contents

1	X^2 goodness-of-fit test	1
2	X^2 test for homogeneity/independence	3
3	Fisher's exact test	6
4	X^2 test for fitted models with free parameters	8

1 X^2 goodness-of-fit test

Mendel's experiments with peas

green (recessive) vs. yellow (dominant)

round (dominant) vs. wrinkled (recessive)

Expected frequencies when crossing double-hybrids:

	green	yellow			
wrinkled	$\frac{1}{16}$	$\frac{3}{16}$			
round	$\frac{3}{16}$	$\frac{9}{16}$			
Observed in	ı experii	ment $(n$	= 556):		
	green	yellow			
wrinkled	32	101			
round	108	315			
Do the obse	erved fre	equencies	s agree with the	ne expected one	es?
Relative fre	equencies	5:			
	green/	wrink.	yell./wrink.	green/round	yell./round
expected	0.0	625	0.1875	0.1875	0.5625
observed	0.0	576	0.1942	0.1816	0.5665

Can these deviations be well explained by pure random? Measure deviations by X^2 -statistic:

$$X^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$$

where E_i = expected number in class *i* and O_i = observed number in class *i*. Why scaling $(O_i - E_i)^2$ by dividing by $E_i = \mathbb{E}O_i$?

Let n be the total sample size and p_i be the probability (under the null hypothesis) each individual to contribute O_i .

Under the null hypothesis, O_i is binomially distributed:

$$\Pr(O_i = k) = \binom{n}{k} p_i^k \cdot (1 - p_i)^{n-k}$$

Thus,

$$\mathbb{E}(O_i - E_i)^2 = \operatorname{Var}(O_i) = n \cdot p \cdot (1 - p)$$

If p is rather small, $n \cdot p \cdot (1-p) \approx n \cdot p$ and

$$\mathbb{E}\frac{(O_i - E_i)^2}{E_i} = \frac{\operatorname{Var}(O_i)}{\mathbb{E}O_i} = 1 - p \approx 1.$$

By the way...

the binomial distribution with small p and large n can be approximated by the Poisson distribution:

$$\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} \approx \frac{\lambda^k}{k!} \cdot e^{-\lambda} \quad \text{with} \quad \lambda = n \cdot p$$

A random variable Y with possible values $0, 1, 2, \ldots$ is *Poisson distributed* with parameter λ , if

$$\Pr(Y = k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$$

Then, $\mathbb{E}Y = \operatorname{Var}(Y) = \lambda$.

	g/w	y/w	m g/r	y/r	sum
theory	0.0625	0.1875	0.1875	0.5625	
expected	34.75	104.25	104.25	312.75	556
observed	32	101	108	315	556
O-E	-2.75	-3.25	3.75	2.25	
$(O-E)^2$	7.56	10.56	14.06	5.06	
$\frac{(O-E)^2}{E}$	0.22	0.10	0.13	0.02	0.47
				X^2	= 0.47

Is a value of $X^2 = 0.47$ usual?

The distribution of X^2 depends on the *degrees of freedom* (df).

in this case: the sum of the observations must be n = 556.

 \rightsquigarrow when the first three numbers 32, 101, 108 are given, the last one is determined by

$$315 = 556 - 32 - 101 - 108$$

$$\Rightarrow df = 3$$

> pchisq(0.47,df=3)[1ex] [1] 0.07456892

p-value = 92.5%

```
> obs <- c(32,101,108,315)
> prob <- c(0.0625,0.1875,0.1875,0.5625)
> chisq.test(obs,p=prob)
```

Chi-squared test for given probabilities

data: obs X-squared = 0.47, df = 3, p-value = 0.9254

2 X^2 test for homogeneity/independence

The cowbird is a brood parasite of Oropendola

http://commons.wikimedia. org/wiki/File:Montezuma_ Oropendola.jpgphoto (c) by J. Oldenettel

References

[Smi68] N.G. Smith (1968) The advantage of being parasitized. Nature, 219(5155):690-4

- Cowbird eggs look very similar to oropendola eggs.
- Usually, oropendola rigorously remove all eggs that are not very similar to theirs.
- In some areas, cowbird eggs are quite different from oropendola eggs but are tolerated.
- Why?
- Possible explanation: botfly (german: Dasselfliegen) larvae often kill juvenile oropendola.
- nests with cowbird eggs are somehow better protected against the botfly.

	no. of cowbird eggs	0	1	2	
numbers of nests affected by botflies	affected by botflies	16	2	1	
	not affected by botflies	2	11	16	
	no. of cowbird eggs		0	1	2
percentages of nests affected by botflie	es affected by botflies		89%	15%	6%

not affected by botflies 11% 85% 94%

- apparently, the affection with botflies is reduced when the nest contains cowbird eggs
- statistically significant?
- null hypothesis: The probability of a nest to be affected with botflies is independent of the presence of cowbird eggs.

	no. of cowbird eggs	0	1	2	\sum
numbers of nests affected by botflies	affected by botflies	16	2	1	1919
numbers of nests anected by botmes	not affected by botflies	2	11	16	29
	\sum	18	13	17	4848

which numbers of affected nests would we expect under the null hypothesis?

The same ratio of 19/48 in each group.

expected numbers of nests affected by botflies, given row sums and column sums

no. of cowbird eggs	0	1	2	\sum	
affected by botflies	7.1	5.1	6.7	19	
not affected by botflies	10.9	7.9	10.3	29	
\sum	18	13	17	48	
		$18 \cdot \frac{1}{4}$	$\frac{9}{8} = 7.$	125	$13 \cdot \frac{19}{48} = 5.146$

All other values are now determined by the sums. (caution: rounding errors!)

	affected by botflies	16	2	1	19
Observed (O):	not affected by botflies	2	11	16	29
	\sum	18	13	17	48

	affected by botflies	7.1	5.1	6.7	19
Expected (E):	not affected by botflies	10.9	7.9	10.3	29
	\sum	18	13	17	48

	affected by botflies	8.9	-3.1	-5.7	0
O-E:	not affected by botflies	-8.9	3.1	5.7	0
	\sum	0	0	0	0

(more precisely: 8.875 - 3.145833 - 5.729167 = 0)

$$X^2 = \sum_{i} \frac{(O_i - E_i)^2}{E_i} = 29.5544$$

- given the sums of rows and columns, two values in the table determine the rest
- \Rightarrow df=2 for contingency table with 2 rows and 3 columns
- in general for tables with n rows and m columns:

$$df = (n-1) \cdot (m-1)$$

densitiy of chi square distribution with df=2

```
> M <- matrix(c(16,2,2,11,1,16),nrow=2)
> M
     [,1] [,2] [,3]
[1,]
       16
              2
                   1
[2,]
        2
             11
                  16
> chisq.test(M)
     Pearson's Chi-squared test
data: M
X-squared = 29.5544, df = 2, p-value = 3.823e-07
   The p-value is based on approximation by \chi^2-distribution.
   Rule of thumb: \chi^2-approximation appropriate if all expectation values are \geq 5.
   Alternative: approximate p-value by simulation:
> chisq.test(M,simulate.p.value=TRUE,B=50000)
  Pearson's Chi-squared test with simulated p-value
  (based on 50000 replicates)
data: M
X-squared = 29.5544, df = NA, p-value = 2e-05
```

3 Fisher's exact test

References

[McK91] J.H. McDonald, M. Kreitman (1991) Adaptive protein evolution at the Adh locus in Drosophila. *Nature* **351**:652-654.

```
synonymous
                                 replacement
    polymorphisms
                        43
                                      \mathbf{2}
                                      7
        fixed
                        17
> McK <- matrix(c(43,17,2,7),2,
              dimnames=list(c("polymorph","fixed"),
                             c("synon","replace")))
> McK
          synon replace
                       2
polymorph
             43
                       7
fixed
              17
> chisq.test(McK)
   Pearson's Chi-squared test
   with Yates' continuity correction
data: McK
X-squared = 6.3955, df = 1, p-value = 0.01144
Warning message: In chisq.test(McK) :
Chi-Square-Approximation may be incorrect
```

> chisq.test(McK,simulate.p.value=TRUE,B=100000)

Pearson's Chi-squared test with simulated p-value (based on 1e+05 replicates)

data: McK
X-squared = 8.4344, df = NA, p-value = 0.00649

Fisher's exact test

 $\begin{array}{c|c} A & B \\ \hline C & D \end{array}$

- null hypothesis: $\frac{\mathbb{E}A/\mathbb{E}C}{\mathbb{E}B/\mathbb{E}D} = 1$
- For 2×2 tables **exact** *p*-values can be computed (no approximation, no simulation).

```
> fisher.test(McK)
```

Fisher's Exact Test for Count Data

Given the row sums and column sums and assuming independence, the probability of a is

$$\Pr(a) = \frac{\binom{K}{a}\binom{M}{c}}{\binom{N}{U}} = \Pr(b) = \frac{\binom{K}{b}\binom{M}{d}}{\binom{N}{V}}$$

"hypergeometric distribution"

p-value:

$$\Pr(b=0) + \Pr(b=1) + \Pr(b=2)$$

\sum	One-sided Fisher test:
a b 45	for $b = 2$:
c d 24	p -value= $\Pr(0) + \Pr(1) + \Pr(2) = 0.00665313$
$\sum 60 9 69$	for $b = 3$:
	p -value= $\Pr(0) + \Pr(1) + \Pr(2) + \Pr(3) =$
$b \Pr(b)$	0.04035434
0 0.000023	Two-sided Fisher test:
1 0.00058	Sum up all probabilities that are smaller or
$2 \mid 0.00604$	equal to $\Pr(b)$.
$3 \mid 0.0337$	for $b = 2$:
4 0.1117	p-value= $Pr(0) + Pr(1) + Pr(2) = 0.00665313$
$5 \mid 0.2291$	for $b = 3$:
$6 \mid 0.2909$	p-value=
7 0.2210	Pr(0) + Pr(1) + Pr(2) + Pr(3) + Pr(9) =
8 0.0913	0.05599102
9 0.0156	

4 X^2 test for fitted models with free parameters

Given a population in *Hardy-Weinberg equilibrium* and a gene locus with two alleles A and B with frequencies p and 1 - p.

 \rightsquigarrow Genotype frequencies

estimated allele frequency p of M:

$$\frac{2 \cdot 1787 + 3037}{2 \cdot 6129} = 0.5393$$

$$\implies \text{expected:} \begin{array}{c|c} MM & MN & NN \\ p^2 & 2 \cdot p \cdot (1-p) & (1-p)^2 \\ 0.291 & 0.497 & 0.212 \\ 1782.7 & 3045.5 & 1300.7 \end{array}$$

df = k - 1 - m

k = number of categories (k=3 genotypes) m = number of model parameters (m=1 parameter p) in blood

type example:

$$df = 3 - 1 - 1 = 1$$

```
> p <- (2* 1787+3037)/(2* 6129)
> probs <- c(p^2,2*p*(1-p),(1-p)^2)
> X <- chisq.test(c(1787,3037,1305),p=probs)$statistic[[1]]
> p.value <- pchisq(X,df=1,lower.tail=FALSE)
> X
[1] 0.04827274
> p.value
[1] 0.8260966
```

- **Test result:** According to the chi-square test the data show no significant deviation from a Hardy-Weinberg equilibrium $(X^2 = 0.048, df = 1, p = 0.83)$.
- Wrong would be: "We conclude that the population is in Hardy-Weinberg equilibrium (for this gene locus)."

Reason: Statsitical tests can never show that a null hypothesis is fulfilled.

Some of what you should be able to explain

- X^2 -statistic: structure and idea
- df of different variants of X^2 test
- χ^2 distributions: when and how to use them
- Fisher's exact test
 - When applicable?
 - hypergeometric distribution
 - How, exactly, to apply two-sided
- Hardy-Weinberg equilibrium