Statistics for EES and MEME
 Chi-square tests and Fisher's exact test

Dirk Metzler

May 22, 2020

Contents

$1 X^{2}$ goodness-of-fit test 1
$2 X^{2}$ test for homogeneity/independence 3
3 Fisher's exact test 6
$4 X^{2}$ test for fitted models with free parameters 8

$1 X^{2}$ goodness-of-fit test

Mendel's experiments with peas
green (recessive) vs. yellow (dominant)
round (dominant) vs. wrinkled (recessive)
Expected frequencies when crossing double-hybrids:
green yellow

wrinkled	$\frac{1}{16}$	$\frac{3}{16}$
round	$\frac{3}{16}$	$\frac{9}{16}$

Observed in experiment ($n=556$):
green yellow

wrinkled	32	101
round	108	315

Do the observed frequencies agree with the expected ones?
Relative frequencies:
green/wrink. yell./wrink. green/round yell./round

expected	0.0625	0.1875	0.1875	0.5625

$\begin{array}{lllll}\text { observed } & 0.0576 & 0.1942 & 0.1816 & 0.5665\end{array}$
Can these deviations be well explained by pure random?
Measure deviations by X^{2}-statistic:

$$
X^{2}=\sum_{i} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

where $E_{i}=$ expected number in class i and $O_{i}=$ observed number in class i.
Why scaling $\left(O_{i}-E_{i}\right)^{2}$ by dividing by $E_{i}=\mathbb{E} O_{i}$?
Let n be the total sample size and p_{i} be the probability (under the null hypothesis) each individual to contribute O_{i}.

Under the null hypothesis, O_{i} is binomially distributed:

$$
\operatorname{Pr}\left(O_{i}=k\right)=\binom{n}{k} p_{i}^{k} \cdot\left(1-p_{i}\right)^{n-k}
$$

Thus,

$$
\mathbb{E}\left(O_{i}-E_{i}\right)^{2}=\operatorname{Var}\left(O_{i}\right)=n \cdot p \cdot(1-p)
$$

If p is rather small, $n \cdot p \cdot(1-p) \approx n \cdot p$ and

$$
\mathbb{E} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{\operatorname{Var}\left(O_{i}\right)}{\mathbb{E} O_{i}}=1-p \approx 1
$$

By the way...
the binomial distribution with small p and large n can be approximated by the Poisson distribution:

$$
\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k} \approx \frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \quad \text { with } \quad \lambda=n \cdot p .
$$

A random variable Y with possible values $0,1,2, \ldots$ is Poisson distributed with parameter λ, if

$$
\operatorname{Pr}(Y=k)=\frac{\lambda^{k}}{k!} \cdot e^{-\lambda}
$$

Then, $\mathbb{E} Y=\operatorname{Var}(Y)=\lambda$.

	g / w	y / w	g / r	y / r	sum
theory	0.0625	0.1875	0.1875	0.5625	
expected	34.75	104.25	104.25	312.75	556
observed	32	101	108	315	556
$O-E$	-2.75	-3.25	3.75	2.25	
$(O-E)^{2}$	7.56	10.56	14.06	5.06	
$\frac{(O-E)^{2}}{E}$	0.22	0.10	0.13	0.02	0.47
			$X^{2}=0.47$		

Is a value of $X^{2}=0.47$ usual?
The distribution of X^{2} depends on the degrees of freedom (df).
in this case: the sum of the observations must be $n=556$.
\rightsquigarrow when the first three numbers $32,101,108$ are given, the last one is determined by

$$
\begin{gathered}
315=556-32-101-108 \\
\Rightarrow d f=3
\end{gathered}
$$

> pchisq(0.47,df=3)[1ex] [1] 0.07456892

$$
p \text {-value }=92.5 \%
$$

```
> obs <- c(32,101,108,315)
> prob <- c(0.0625,0.1875,0.1875,0.5625)
> chisq.test(obs,p=prob)
    Chi-squared test for given probabilities
data: obs
X-squared = 0.47, df = 3, p-value = 0.9254
```


$2 X^{2}$ test for homogeneity/independence

The cowbird is a brood parasite of Oropendola

http://commons.wikimedia. org/wiki/File:Montezuma_ Oropendola.jpgphoto (c) by J. Oldenettel

References

[Smi68] N.G. Smith (1968) The advantage of being parasitized. Nature, 219(5155):690-4

- Cowbird eggs look very similar to oropendola eggs.
- Usually, oropendola rigorously remove all eggs that are not very similar to theirs.
- In some areas, cowbird eggs are quite different from oropendola eggs but are tolerated.
- Why?
- Possible explanation: botfly (german: Dasselfliegen) larvae often kill juvenile oropendola.
- nests with cowbird eggs are somehow better protected against the botfly.

	no. of cowbird eggs	0	1	2
	affected by botflies	16	2	1
not affected by botflies	2	11	16	

	no. of cowbird eggs	0	1	2
percentages of nests affected by botflies	affected by botflies	89%	15%	6%
not affected by botflies	11%	85%	94%	

- apparently, the affection with botflies is reduced when the nest contains cowbird eggs
- statistically significant?
- null hypothesis: The probability of a nest to be affected with botflies is independent of the presence of cowbird eggs.

	no. of cowbird eggs	0	1	2	\sum
numbers of nests affected by botflies	affected by botflies	16	2	1	1919
not affected by botflies	2	11	16	29	
	\sum	18	13	17	4848

which numbers of affected nests would we expect under the null hypothesis?

The same ratio of $19 / 48$ in each group.
expected numbers of nests affected by botflies, given row sums and column sums

no. of cowbird eggs	0	1	2	\sum
affected by botflies	7.1	5.1	6.7	19
not affected by botflies	10.9	7.9	10.3	29
\sum	18	13	17	48

$$
18 \cdot \frac{19}{48}=7.125 \quad 13 \cdot \frac{19}{48}=5.146
$$

All other values are now determined by the sums. (caution: rounding errors!)
Observed (O):

affected by botflies	16	2	1	19
not affected by botflies	2	11	16	29
\sum	18	13	17	48

Expected (E):

affected by botflies	7.1	5.1	6.7	19
not affected by botflies	10.9	7.9	10.3	29
\sum	18	13	17	48

O-E:

affected by botflies	8.9	-3.1	-5.7	0
not affected by botflies	-8.9	3.1	5.7	0
\sum	0	0	0	0

(more precisely: $8.875-3.145833-5.729167=0$)

$$
X^{2}=\sum_{i} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=29.5544
$$

- given the sums of rows and columns, two values in the table determine the rest
- $\Rightarrow \mathrm{df}=2$ for contingency table with 2 rows and 3 columns
- in general for tables with n rows and m columns:

$$
d f=(n-1) \cdot(m-1)
$$

densitiy of chi square distribution with $\mathrm{df}=2$


```
> M <- matrix(c(16,2,2,11,1,16),nrow=2)
> M
    [,1] [,2] [,3]
[1,] 16 2 1
[2,] 
> chisq.test(M)
    Pearson's Chi-squared test
data: M
X-squared = 29.5544, df = 2, p-value = 3.823e-07
```

The p-value is based on approximation by χ^{2}-distribution.
Rule of thumb: χ^{2}-approximation appropriate if all expectation values are ≥ 5.
Alternative: approximate p-value by simulation:

```
> chisq.test(M,simulate.p.value=TRUE,B=50000)
```

 Pearson's Chi-squared test with simulated p-value
 (based on 50000 replicates)
 data: M
X-squared $=29.5544, \mathrm{df}=\mathrm{NA}, \mathrm{p}$-value $=2 \mathrm{e}-05$

3 Fisher's exact test

References

[McK91] J.H. McDonald, M. Kreitman (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652-654.

```
    c|cc
> McK <- matrix(c(43,17,2,7),2,
        dimnames=list(c("polymorph","fixed"),
                        c("synon","replace")))
> McK
            synon replace
polymorph 43 2
fixed 17 7
> chisq.test(McK)
    Pearson's Chi-squared test
    with Yates' continuity correction
data: McK
X-squared = 6.3955, df = 1, p-value = 0.01144
Warning message: In chisq.test(McK) :
Chi-Square-Approximation may be incorrect
```

```
> chisq.test(McK,simulate.p.value=TRUE,B=100000)
```

```
Pearson's Chi-squared test with simulated p-value
    (based on 1e+05 replicates)
```

data: McK
X-squared $=8.4344, \mathrm{df}=\mathrm{NA}, \mathrm{p}$-value $=0.00649$

Fisher's exact test

A	B
C	D

- null hypothesis: $\frac{\mathbb{E} A / \mathbb{E} C}{\mathbb{E} B / \mathbb{E} D}=1$
- For 2×2 tables exact p-values can be computed (no approximation, no simulation).

```
> fisher.test(McK)
```

 Fisher's Exact Test for Count Data
 data: McK
p-value $=0.006653$
alternative hypothesis: true odds ratio
is not equal to 1
95 percent confidence interval:
1.43743292 .388001
sample estimates:
odds ratio
8.540913

			\sum
	43	2	45
	17	7	24
\sum	60	9	69

			\sum
	a	b	K
	c	d	M
\sum	U	V	N

Given the row sums and column sums and assuming independence, the probability of a is

$$
\operatorname{Pr}(a)=\frac{\binom{K}{a}\binom{M}{c}}{\binom{N}{U}}=\operatorname{Pr}(b)=\frac{\binom{K}{b}\binom{M}{d}}{\binom{N}{V}}
$$

"hypergeometric distribution" p-value:

$$
\operatorname{Pr}(b=0)+\operatorname{Pr}(b=1)+\operatorname{Pr}(b=2)
$$

	a b	\sum_{45}	One-sided Fisher test: for $b=2$:
	c d	24	p-value $=\operatorname{Pr}(0)+\operatorname{Pr}(1)+\operatorname{Pr}(2)=0.00665313$
\sum	$60 \quad 9$	69	for $b=3$:
b	$\operatorname{Pr}(b)$		$\begin{aligned} & p \text {-value }=\operatorname{Pr}(0)+\operatorname{Pr}(1)+\operatorname{Pr}(2)+\operatorname{Pr}(3)= \\ & 0.04035434 \end{aligned}$
0	0.000023		Two-sided Fisher test:
1	0.00058		Sum up all probabilities that are smaller or
2	0.00604		equal to $\operatorname{Pr}(b)$.
3	0.0337		for $b=2$:
4	0.1117		p-value $=\operatorname{Pr}(0)+\operatorname{Pr}(1)+\operatorname{Pr}(2)=0.00665313$
5	0.2291		for $b=3$:
6	0.2909		p-value $=$
7	0.2210		$\operatorname{Pr}(0)+\operatorname{Pr}(1)+\operatorname{Pr}(2)+\operatorname{Pr}(3)+\operatorname{Pr}(9)=$
8	0.0913		0.05599102
9	0.0156		

$4 \quad X^{2}$ test for fitted models with free parameters

Given a population in Hardy-Weinberg equilibrium and a gene locus with two alleles A and B with frequencies p and $1-p$.
\rightsquigarrow Genotype frequencies

AA	AB	BB
p^{2}	$2 \cdot p \cdot(1-p)$	$(1-p)^{2}$

example: M/N blood type; sample: 6129 white Americans

observed:	MM	MN	NN
	1787	3037	1305

estimated allele frequency p of M :

$$
\frac{2 \cdot 1787+3037}{2 \cdot 6129}=0.5393
$$

\rightsquigarrow expected:

MM	MN	NN
p^{2}	$2 \cdot p \cdot(1-p)$	$(1-p)^{2}$
0.291	0.497	0.212
1782.7	3045.5	1300.7

$$
d f=k-1-m
$$

$k=$ number of categories ($k=3$ genotypes) $m=$ number of model parameters ($m=1$ parameter p) in blood
type example:

$$
d f=3-1-1=1
$$

> p <- (2* 1787+3037)/(2* 6129)
> probs <- c $\left(p^{\wedge} 2,2 * p *(1-p),(1-p)^{\wedge} 2\right)$
> X <- chisq.test(c(1787,3037,1305), p=probs)\$statistic[[1]]
> p.value <- pchisq(X,df=1,lower.tail=FALSE)
> X
[1] 0.04827274
> p.value
[1] 0.8260966
Test result: According to the chi-square test the data show no significant deviation from a Hardy-Weinberg equilibrium ($X^{2}=0.048, d f=1, p=0.83$).

Wrong would be: "We conclude that the population is in Hardy-Weinberg equilibrium (for this gene locus)."

Reason: Statsitical tests can never show that a null hypothesis is fulfilled.
Some of what you should be able to explain

- X^{2}-statistic: structure and idea
- df of different variants of X^{2} test
- χ^{2} distributions: when and how to use them
- Fisher's exact test
- When applicable?
- hypergeometric distribution
- How, exactly, to apply two-sided
- Hardy-Weinberg equilibrium

