Exercises for the course
"Mathematical modeling in biology"
Sheet 12

Exercise 48: Diffusion approximation of a nearly critical Galton-Watson process Recall the binary Galton-Watson process from Exercise 40. Let the initial number $G_{0}^{(n)} \in \mathbb{N}_{0}$ of individuals scale with $n \in \mathbb{N}$, that is, $G_{0}^{(n)} / n \rightarrow x \in[0, \infty)$ as $n \rightarrow \infty$. The branching rate per individual is $\beta \in(0, \infty)$. Assume that this process is nearly critical in the following sense: Let the probability $p_{n} \in(0,1)$ of having 2 children scale such that $n \cdot\left(2 p_{n}-1\right) \rightarrow s \in \mathbb{R}$ as $n \rightarrow \infty$, that is, $p_{n}=\frac{1}{2}+\frac{s}{2 n}+o\left(\frac{1}{n}\right)$ as $n \rightarrow \infty$. What is the diffusion approximation of the rescaled and accelerated process $\left(G_{t n}^{(n)} / n\right)_{t \geq 0}$ for large $n \in \mathbb{N}_{0}$?

Exercise 49: Itô's formula Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Bronian motion. Define

$$
X_{t}=c \exp \left(\beta B_{t}+\alpha t\right), \quad t \in[0, \infty)
$$

where $c, \alpha, \beta \in(0, \infty)$. Apply Itô's formula to $f(t, x):=c \exp (\beta x+\alpha t), t, x \in[0, \infty)$, and show that $X_{t}=f\left(t, B_{t}\right)$ satisfies the stochastic differential equation

$$
d X_{t}=\left(\alpha+\frac{1}{2} \beta^{2}\right) X_{t} d t+\beta X_{t} d B_{t}
$$

and $X_{0}=c$.
Exercise 50: Diffusion approximation of a branching-coalescing process Recall the branching-coalescing process $\left(X_{t}^{(n)}\right)_{t \geq 0}$ from Exercise 42 with branching rate $\beta \in(0, \infty)$ per individual, probability $p_{n} \in(0,1)$ of having 2 children, immigration rate $\iota_{n} \in(0, \infty)$ and coalescence rate $\gamma_{n} \in(0, \infty)$ per pair of individuals. Let the initial number $X_{0}^{(n)} \in \mathbb{N}_{0}$ of individuals scale with $n \in \mathbb{N}$, that is, $X_{0}^{(n)} / n \rightarrow x \in[0, \infty)$ as $n \rightarrow \infty$. Assume that the parameters scale as follows: $n\left(2 p_{n}-1\right) \rightarrow s \in \mathbb{R}, n \iota_{n} \rightarrow \rho \in[0, \infty)$ and $n^{2} \gamma_{n} \rightarrow c \in[0, \infty)$ as $n \rightarrow \infty$. What is the diffusion approximation of the rescaled and accelerated process $\left(X_{t n}^{(n)} / n\right)_{t \geq 0}$ for large $n \in \mathbb{N}_{0}$?

Exercise 51: Itô's formula and the Itô isometry Apply the Itô isometry to calculate the first two moments $\mathbb{E}^{x}\left[X_{t}\right], t \in[0, \infty)$, and $\mathbb{E}^{x}\left[\left(X_{t}\right)^{2}\right], t \in[0, \infty)$, of the following processes

- $d X_{t}=t d B_{t}$, that is, $X_{t}=x+\int_{0}^{t} s d B_{s}$,
- Feller diffusion with immigration: $d X_{t}=\alpha d t+\sqrt{\beta X_{t}} d B_{t}$

Hint: Use Itô's formula for the second moment of the second process.

