Exercises for the course
 "Mathematical modeling in biology"

Sheet 07

Exercise 28: Wright-Fisher model with mutation

Recall the Wright-Fisher model from the lecture. Now we add mutation. Assume that at every birth event there is a certain probability of mutation. The mutation probability from type 'a' to 'A' is denoted as μ_{01} and the mutation probability from type ' A ' to 'a' is denoted as μ_{10}. The total population size is assumed to be constantly equal to $N \in \mathbb{N}$. Let the relative frequency of type 'A' be denoted by P_{n}. Write down the transition probabilities of the process $\left(P_{n}\right)_{n \in \mathbb{N}_{0}}$. A picture might be helpful for this. Having done that, calculate

$$
\mathbb{E}\left[P_{n+1} \mid P_{n}\right] \quad \text { and } \quad \operatorname{Var}\left[P_{n+1} \mid P_{n}\right]
$$

for all $n \in \mathbb{N}_{0}$.

Exercise 29: Critical binary Galton-Watson process

Consider a branching process $\left(G_{n}\right)_{n \in \mathbb{N}_{0}}$ in which each mother has zero or two daughters and both possibilities occur with equal probability. This is a critical binary Galton-Watson process. More formally, let N be the (random) number of offspring. We assume that

$$
\mathbb{P}(N=0)=\frac{1}{2}, \quad \mathbb{P}(N=2)=\frac{1}{2} .
$$

What is the expected number μ of offspring per mother? Moreover, calculate the variance σ^{2} of the offspring number. Assume $G_{0}=1$ almost surely. The lecture provides formulas for the expected number $\mathbb{E} G_{n}$ of indivduals in generation n and for the variance $\operatorname{Var} G_{n}$. What are these quantities in the case of critical binary branching? In addition show that the function $\phi:[0,1] \rightarrow[0,1]$, $s \mapsto \mathbb{E} s^{N}$ is a second-order polynomial in s.
Remark: The function ϕ is the so-called moment generating function. It generates the first moment as follows

$$
\mathbb{E}[N]=\left.\frac{d}{d s} \mathbb{E}\left[s^{N}\right]\right|_{s=1} .
$$

Higher moments can be obtained from higher order derivatives.

Exercise 30: Sweeps

A simple model for a selective sweeps is as follows. Consider a locus on which a favorable alleles B arises at time $t=0$. The wild type is b. Let p_{t} be the fraction of B 's at time $t \geq 0$. This fraction of B 's appriximately satisfies

$$
\begin{equation*}
\frac{d}{d t} p_{t}=s p_{t}\left(1-p_{t}\right), \quad p_{0}=\frac{1}{N} \tag{1}
\end{equation*}
$$

for $t \geq 0$ if the population size $N \in \mathbb{N}$ is very large (so we consider a deterministic model in this exercise). We call this the logistic sweep model.
Now consider a nearby neutral locus with alleles A and a. Let v_{t} be the frequency of allele A in the population carrying B and let w_{t} be the frequency of allele A in the population carrying b at time $t \geq 0$. Recombinations between the two loci occur at rate ρ. Draw a flow diagram and write down the equations for p_{t}, v_{t} and w_{t}.

Exercise 31: Conditional expectation

Let X and Y be the results of throwing two independent dice. Calculate

- $\mathbb{E}(X \mid Y)$,
- $\mathbb{E}(X+Y \mid Y)$,
- $\mathbb{E}(X \cdot Y \mid Y)$,
- $\mathbb{P}(X+Y \in\{7,11\} \mid Y)$ and
- $\mathbb{E}(X \mid X+Y)$. Hint: $\mathbb{E}(X+Y \mid X+Y)=X+Y$.

Hint: You might want to use the calculation rules introduced in the lecture.

