Exercises for the course
 "Mathematical modeling in biology"

Sheet 06

Exercise 24: Blower's model for HIV-progression II Recall Blower's model for HIVprogression from Exercise 16. Now include the possibility of resistance of some virus cells.

Exercise 25: A simple Markov chain A simple minded random walker moves in discrete time between three locations A, B and C with the following probabilities

- From A to B or C with equal probability.
- From B to A twice as often as from B to A.
- Never from C to A. In a quarter of the cases, he stays at C.
- He is never two times in a row in A or in B.

What you should do:

- Draw a flow diagram.
- Then write down the transition matrix.
- Finally check that $\rho=(698) / 23$ is an invariant distribution on the tree locations.

Exercise 26: A random walk with drift In the lecture, we had a symmetric random walk on \mathbb{Z} and caculated the approximate position at time n for large $n \in \mathbb{N}$. Now we consider a random walk with drift. Fix $p \in[0,1]$. Let $\left(R_{n}\right)_{n \in \mathbb{N}_{0}}$ be a Markov process in discrete time as follows:

- $R_{0}=0$
- The random walker takes a step to the right with probability $\frac{1+p}{2}$.

Determine the approximate position of the random walker at large times, that is, determine the approximate distribution of R_{n} when $n \in \mathbb{N}$ is large. Hint: Apply the central limit theorem.

Exercise 27: Equilibria and stability The following model arises in the context of hostparasite systems where a defense allele is also costly and negative selected. Let $a \in(1, \infty), \theta \in$ $\left(\frac{1}{a}, \frac{1}{a-1}\right)$ and $s \in(0, \infty)$. Determine the equilibria of the following differential equation

$$
\frac{d}{d t} x_{t}=\left(a-x_{t}\right)\left(\theta\left(a-x_{t}\right)-1\right)-s x_{t}\left(1-x_{t}\right)
$$

Convince yourself that $x_{t} \in[0,1]$ for all times $t \in[0, \infty)$. Moreover determine stability of all equilibria. Hint: Do not get lost in calculations. Argue with the type of the function on the right-hand side to see, which points are in $[0,1]$.

