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Assume a small population of 100 individuals, and a neutral
allele A that has frequency 0.3 in this generation.

What will be the frequency X of A in the next generation?

We don’t know, as X is a random variable .

However, we can ask, for example, for
EX , the expectation value of X , or for

Pr(X = 0.32) , the probability that X takes a value of 0.32.
Even these values (especially the second on) depend on our
model assumptions.
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Random Variables and Distributions

We start with a simpler Example: Rolling a dice, W is the result of
the next trial.

S = {1,2, . . . ,6}
Pr(W = 1) = · · · = Pr(W = 6) = 1

6
( Pr(W = x) = 1

6 for all x ∈ {1, . . . ,6} )
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Random Variables and Distributions

A Random Variable is a
result of a random incident or experiment.

The state space S
of a random variable is the set of possible values.

The distribution of a random variable X
assigns to each set A ⊆ S
the probability Pr(X ∈ A)
that X takes a value in A.

In general, we use capitals for
random variables (X ,Y ,Z , . . . ),

and small letters (x , y , z, . . . ) for (possible) fixed values.
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Random Variables and Distributions

Notations for events

The event U that X takes a value in A can be written with curly
brackets:

U = {X ∈ A}

We can interpret this as the set of results (elementary events) for
which the event is fulfilled.

Thus, events have a lot in common with sets, and similar notations as
for sets are used for events U and V :

U ∩ V = U “and” V

is the event that takes place if and only if both U and V take place.

U ∪ V = U “or”V

is the event that takes place if and only if U or V (or both) take place.
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Random Variables and Distributions

Example
Let X and Y be the results of two dice rolls, A = {1,2,3}, and
B = {1,3,5}. Then:

{X ∈ A} ∩ {X ∈ B} = {X ∈ A ∩ B} = {X ∈ {1,3}}
= {X = 1} ∪ {X = 3}

and

{Y ∈ A} ∪ {Y ∈ B} = {Y ∈ A ∪ B} = {Y ∈ {1,2,3,5}}

and
{X ∈ A} ∩ {Y ∈ B} = {(X ,Y ) ∈ A× B},where

A×B = {(1,1), (1,3), (1,5), (2,1), (2,3), (2,5), (3,1), (3,3), (3,5)}.
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Random Variables and Distributions

The intersection

{X ∈ A} ∩ {X ∈ B} = {X ∈ A,X ∈ B} = {X ∈ A ∩ B}

is then the event that X takes a value that is in A and in B.

The join
{X ∈ A} ∪ {X ∈ B} = {X ∈ A ∪ B}

is the event that the event that X takes a value in A or in B (or
both).
Sometimes the curly brackets are not written:

Pr(X ∈ A,X ∈ B) = Pr({X ∈ A,X ∈ B})
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Random Variables and Distributions

Calculation rules:

Example Rolling a dice W :

Pr(W ∈ {2, 3}) =
2
6

=
1
6
+

1
6

= Pr(W = 2) + Pr(W = 3)

Pr(W ∈ {1, 2} ∪ {3, 4}) =
4
6

=
2
6
+

2
6

= Pr(W ∈ {1, 2}) + Pr(W ∈ {3, 4})

Caution:

Pr(W ∈ {2, 3}) + Pr(W ∈ {3, 4}) =
2
6
+

2
6

=
4
6

6= Pr(W ∈ {2, 3, 4}) =
3
6

10 / 61



Random Variables and Distributions

Example: rolling two dice (W1,W2):
Let W1 and W2 the result of dice 1 and dice 2.

Pr(W1 ∈ {4},W2 ∈ {2,3,4})
= Pr((W1,W2) ∈ {(4,2), (4,3), (4,4)})

=
3
36

=
1
6
· 3

6
= Pr(W1 ∈ {4}) · Pr(W2 ∈ {2,3,4})

In general:

Pr(W1 ∈ A,W2 ∈ B) = Pr(W1 ∈ A) · Pr(W2 ∈ B)

for all sets A,B ⊆ {1,2, . . . ,6}
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Random Variables and Distributions

If S is the sum of the results S = W1 + W2,
what is the probability that S = 5,
if dice 1 shows W1 = 2?

Pr(S = 5|W1 = 2) !
= Pr(W2 = 3)

= 1
6 = 1/36

1/6 = Pr(S=5,W1=2)
Pr(W1=2)

What is the probability S ∈ {4,5} under the condition W1 ∈ {1,6}?

Pr(S ∈ {4,5}|W1 ∈ {1,6})

=
Pr(S ∈ {4,5},W1 ∈ {1,6})

Pr(W1 ∈ {1,6})

=
Pr(W2 ∈ {3,4},W1 = 1)

Pr(W1 ∈ {1,6})

=
2/36
2/6

=
1
6
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Random Variables and Distributions

Calculation rules:

0 ≤ Pr(U) ≤ 1 for each event U (in the probability space).

Pr(X ∈ S) = 1 if X is a random variable with state space S.

If the events U and V exclude each other, then

Pr(U ∪ V ) = Pr(U) + Pr(V )

The general rule is the inclusion-exclusion formula

Pr(U ∪ V ) = Pr(U) + Pr(V )− Pr(U ∩ V )

Definition of conditional probabilities:
The probability of U under the condition V

Pr(U|V ) :=
Pr(U,V )

Pr(V )

“Conditional probability of U given V ”

Note: Pr(U, V ) = Pr(V ) · Pr(U| V )
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Random Variables and Distributions

How to say

Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A) · Pr(Y ∈ B | X ∈ A)

in words:

The probability of {X ∈ A, Y ∈ B} can be computed in two steps:

First, the event {X ∈ A} must take place.

Multiply its probability with the conditional probability of {Y ∈ B},
given that {X ∈ A} is already known to take place.
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Random Variables and Distributions

Stochastic Independence of events

Definition (stochastic independence)
Two events U and V are (stochastically) independent, if the identity

Pr(U,V ) = Pr(U) · Pr(V )

holds for all events U, V .

Note that Pr(U,V ) = Pr(U) · Pr(V ) is equivalent to

Pr(U|V ) = Pr(U) and also to Pr(V |U) = Pr(V )
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Random Variables and Distributions

Stochastic Independence of random
variables

Definition (stochastic independence)
Two random variables X and Y are (stochastically) independent, if the
identity

Pr(X ∈ A,Y ∈ B) = Pr(X ∈ A) · Pr(Y ∈ B)

holds for all (measurable) subsets A and B of the state spaces of X
and Y .

Example:

Tossing two dice:
X = result dice 1, Y = result dice 2.

Pr(X = 2, Y = 5) =
1

36
=

1
6
· 1

6
= Pr(X = 2) · Pr(Y = 5)
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The binomial distribution
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The binomial distribution

Bernoulli distribution

A Bernoulli experiment is an experiment with two possible oucomes
“success” and “fail”, or 1 or 0.

Bernoulli random variable X :
State space S = {0,1}.
Distribution:

Pr(X = 1) = p
Pr(X = 0) = 1− p

The parameter p ∈ [0,1] is the success probability.
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The binomial distribution

Bernoulli distribution

Examples:

Tossing a coin: Possible outcomes are “head” and “tail”

Does the Drosophila have a mutation that causes white eyes?
Possible outcomes are “yes” or “no”.

The sex of a newborn child has the values “male” or “female”.
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The binomial distribution

Assume a Bernoulli experiment (for example tossing a coin) with
success probability p is repeated n times independently.

What is the probability that it...

1 ...alway succeeds?
p · p · p · · · p = pn

2 ...always fails?

(1− p) · (1− p) · · · (1− p) = (1− p)n

3 ...first succeeds k times and then fails n − k times?

pk · (1− p)n−k

4 ...succeeds in total k times and fails the other n − k times?(
n
k

)
· pk · (1− p)n−k
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The binomial distribution

Note(n
k

)
= n!

k!·(n−k)! (“n choose k ”) is the number of possibilities to choose k
successes in n trials.
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The binomial distribution

Binomial distribution

Let X be the number of successes in n independent trials with
success probability of p each. Then,

Pr(X = k) =
(

n
k

)
pk · (1− p)n−k

holds for all k ∈ {0,1, . . . ,n} and X is said to be binomially distributed,
for short:

X ∼ bin(n,p).
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The binomial distribution

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

probabilities of bin(n=10,p=0.2)

k

●

●

●

●

●

●

●
● ● ● ●

23 / 61



The binomial distribution

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

probabilities of bin(n=100,p=0.2)

k

●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

23 / 61



The binomial distribution

With the binomial distribution we can treat our initial question

Assume in a small populaiton of n = 100 individuals the neutral
allele A has a frequency of 0.3.

How probable is it that X , the frequency of A in the next
generarion is 0.32?

Pr(X = 0.32) =?

We can only answer this on the basis of a probabilistic model,
and the answer will depend on how we model the population.
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The binomial distribution

Modeling approach
We make a few simplifying assumptions:

Discrete generations
The population is haploid, that is, each individual has
exactly one parent in the generation before.
constant population size n = 100

Pr(X = 0.32) still depends on whether few individuals have
many offspring or whether all individuals have similar offspring
numbers. Pr(X = 0.32) is only defined with additional
assumptions, e.g.:

Each individual chooses its parent purely randomly in the
generation before.

“purely randomly” means independent of all others and all
potential parents with the same probability.
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The binomial distribution

Our assumptions imply that each individuals of the next
generations have a probability of 0.3 to obtain allele A, and they
get their alleles independently of each other.

Therefore, the number K of individuels who get allele A is
binomially distributed with n = 100 and p = 0.3:

K ∼ bin(n = 100,p = 0.3)

For X = K/n follows:

Pr(X = 0.32) = Pr(K = 32) =
(

n
32

)
· p32 · (1− p)100−32

=

(
100
32

)
· 0.332 · 0.768 ≈ 0.078
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Principle of statistical testing
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Principle of statistical testing

We want to argue that some deviation in the data is not just
random.

To this end we first specify a null hypothesis H0, i.e. we
define, what “just random” means.
Then we try to show: If H0 is true, then a deviation that is at
least at large as the observed one, is very improbable.
If we can do this, we reject H0.
How we measure deviation, must be clear before we see
the data.
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Principle of statistical testing

Statistical Testing: Imporatant terms

null hypothesis H0 : says that what we want to substantiate is
not true and anything that looks like evidence in the
data is just random. We try to reject H0.

significance level α : If H0 is true, the probability to falsly reject
it, must be ≤ α (often α = 0.05).

test statistic : measures how far the data deviates from what H0

predicts into the direction of our alternative
hypothesis.

p value : Probability that, if H0 is true, a dataset leads to a
test statistic value that is as least as extreme as the
observed one.
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Principle of statistical testing

We reject the null hypothesis H0 if the p value is smaller
than α.

Thus, if H0 is true, the probability to (falsely) reject it is α
(not the p value).
This entails that a researcher who performs many tests with
α = 0.05 on complete random data (i.e. where H0 is always
true), will falsely reject H0 in 5% of the tests.
Therefore it is a severe violation of academic soundness to
perform tests until one shows significance, and to publish
only the latter.
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Principle of statistical testing

Testing two-sided or one-sided?

We observe a value of x that is much larger than the H0

expectation value µ.
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Principle of statistical testing

The pure teachings of statistical testing

Specify a null hypothesis H0, e.g. µ = 0.

Specify level of significance α, e.g. α = 0.05.
Specify an event A such that

Pr
H0
(A) = α

(or at least PrH0(A) ≤ α).

e.g. A = {X > q} or A = {|X − µ| > r}
in general: A = {p-value ≤ α}

AND AFTER THAT: Look at the data and check if if A
occurs.
Then, the probability that H0 is rejected in the case that H0

is actually true (“Type I error”) is just α.
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Principle of statistical testing

Violations against the pure teachings

“The two-sided test gave me a p-value of
0.06. Therefore, I tested one-sided and this

worked out nicely.”

is as bad as:

“At first glance I saw that x is larger than
µH0. So, I immediately applied the one-sided

test.”
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Principle of statistical testing

Important
The decision between one-sided and two-sided must not
depend on the concrete data that are used in the test.

More generally: If A is the event that will lead to the rejection of
H0, (if it occurs) then A must be defined without being
influenced by the data that is used for testing.
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Principle of statistical testing

This means: Use separate data sets for exploratory data
analysis and for testing.

In some fields these rules are followed quite strictly, e.g. testing
new pharmaceuticals for accreditation.
In some other fields the practical approach is more common:
Just inform the reader about the p-values of different
null-hypotheses. Let the reader decide which null-hypothesis
would have been the most natural one.
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Principle of statistical testing

If H0 is rejected on the 5%-level, which of the following
statements is true?

The null hypothesis is wrong.
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Principle of statistical testing

If the test did not reject H0, which of the following statements are
true?

We have to reject the alternative H1.
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We have to reject the alternative H1.
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It is safe to assume that H0 was true.
Even if H0 is true, it is not so unlikely that our test statistic
takes a value that is as extreme as the one we observed.
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Expectation value
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Expectation value

Definition (Expectation value)
Let X be a random variable with finite or countable state space
S = {x1, x2, x3 . . . } ⊆ R.

The expectation value of X is defined by

EX =
∑
x ∈S

x · Pr(X = x)

It is also common to write µX instead of EX .

If we replace probabilities by relative frequencies in this definition, we
get the formula for the mean value (of a sample).
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Expectation value

Definition (Expectation value)
If X is a random variable with finite or countable state space
S = {x1, x2, x3 . . . } ⊆ R, the expectation value of X is defined by

EX =
∑
x ∈S

x · Pr(X = x)

Examples:

Let X be Bernoulli distributed with success probability p ∈ [0,1].
Then we get

EX = 1 · Pr(X = 1) + 0 · Pr(X = 0) = Pr(X = 1) = p

Let W be the result of rolling a dice. Then we get

EW = 1 · Pr(W = 1) + 2 · Pr(W = 2) + . . .+ 6 · Pr(W = 6)

= 1 · 1
6 + 2 · 1

6 + . . .+ 6 · 1
6 = 211

6 = 3.5
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Expectation value

Calculating with expectatins

Theorem (Linearity of Expectation)
If X and Y are random variables with values in R and if a ∈ R, we get:

E(a · X ) = a · EX

E(X + Y ) = EX + EY

Theorem (Only if independent!)
If X and Y are stochastically independent random variables with
values in R, we get

E(X · Y ) = EX · EY.

But in general E(X · Y ) 6= EX · EY . Example:

E(W ·W ) = 91
6 = 15.167 > 12.25 = 3.5 · 3.5 = EW · EW

42 / 61



Expectation value

Calculating with expectatins

Theorem (Linearity of Expectation)
If X and Y are random variables with values in R and if a ∈ R, we get:

E(a · X ) = a · EX

E(X + Y ) = EX + EY

Theorem (Only if independent!)
If X and Y are stochastically independent random variables with
values in R, we get

E(X · Y ) = EX · EY.

But in general E(X · Y ) 6= EX · EY . Example:

E(W ·W ) = 91
6 = 15.167 > 12.25 = 3.5 · 3.5 = EW · EW

42 / 61



Expectation value

Calculating with expectatins

Theorem (Linearity of Expectation)
If X and Y are random variables with values in R and if a ∈ R, we get:

E(a · X ) = a · EX

E(X + Y ) = EX + EY

Theorem (Only if independent!)
If X and Y are stochastically independent random variables with
values in R, we get

E(X · Y ) = EX · EY.

But in general E(X · Y ) 6= EX · EY . Example:

E(W ·W ) = 91
6 = 15.167 > 12.25 = 3.5 · 3.5 = EW · EW

42 / 61



Expectation value

Proof of Linearity: If S is the state space of X and Y , and if a,b ∈ R,
we obtain:

E(a · X + b · Y )

=
∑
x∈S

∑
y∈S

(a · x + b · y)Pr(X = x ,Y = y)

= a ·
∑
x∈S

∑
y∈S

x Pr(X = x ,Y = y) + b ·
∑
x∈S

∑
y∈S

y Pr(X = x ,Y = y)

= a ·
∑
x∈S

x
∑
y∈S

Pr(X = x ,Y = y) + b ·
∑
y∈S

y
∑
x∈S

Pr(X = x ,Y = y)

= a ·
∑
x∈S

x Pr(X = x) + b ·
∑
y∈S

y Pr(Y = y)

= a · E(X ) + b · E(Y )
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Expectation value

Proof of the product formula: Let S be the state space of X and Y , and
let X and Y be (stochastically) independent.

E(X · Y )

=
∑
x∈S

∑
y∈S

(x · y)Pr(X = x ,Y = y)

=
∑
x∈S

∑
y∈S

(x · y)Pr(X = x)Pr(Y = y)

=
∑
x∈S

x Pr(X = x) ·
∑
y∈S

y Pr(Y = y)

= EX · EY ·
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Expectation value

Theorem
If X is random variable with finite state space S ⊂ R, and if
f : R→ R is a function, we obtain

E(f (X )) =
∑
x∈S

f (x) · Pr(X = x)

Exercise: proof this.
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Expectation value

Expectation of the binomial distribution
Let Y1,Y2, . . . ,Yn be the indicator variables of the n independent trials,
that is

Yi =

{
1 if trial i succeeds
0 if trial i − fails

Then X = Y1 + · · ·+ Yn is binomially distributed with parameters
(n,p), where p is the success probability of the trials.

Linearity of expectation implies

EX = E(Y1 + · · ·+ Yn)

= EY1 + · · ·+ EYn

= p + · · ·+ p = np

Note:
X ∼ bin(n,p)⇒ EX = n · p
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Variance and Correlation
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Variance and Correlation

Definition (Variance, Covariance and Correlation)
The Variance of a R-valued random variable X is

VarX = σ2
X = E

[
(X − EX )2

]
.

σX =
√

Var X is the Standard Deviation.
If Y is enother R-valued random variable,

Cov(X ,Y ) = E [(X − EX ) · (Y − EY )]

is the Covariance of X and Y .
The Correlation of X and Y is

Cor(X ,Y ) =
Cov(X ,Y )

σX · σY
.
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Variance and Correlation

The Variance
VarX = E

[
(X − EX )2

]
is the average squared deviation from the expectation.

The Correlation
Cor(X ,Y ) =

Cov(X ,Y )

σX · σY

is always between in the range from -1 to 1. The random variables X
and Y are

positively correlated, if X and Y tend to be both above average or
both below average.

negatively correlated, if X and Y tend to deviate from their
expectation values in opposite ways.

If X and Y are independent, they are also uncorrelated, that is
Cor(X ,Y ) = 0.
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Variance and Correlation

Example: rolling dice

Variance of result from rolling a dice W :

Var(W ) = E
[(

W − EW
)2]

= E
[(

W − 3.5
)2]

= (1− 3.5)2 · 1
6
+ (2− 3.5)2 · 1

6
+ . . .+ (6− 3.5)2 · 1

6

=
17.5

6
= 2.91667
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Variance and Correlation

Example: Empirical Distribution
If x1, . . . , xn ∈ R are data and if X is the result of a random draw from
the data (such that Pr(X = xi) =

1
n ), we get:

EX =
n∑

i=1

xi Pr(X = xi) =
1
n

n∑
i=1

xi = x

and

Var X = E
[(

X − EX
)2]

=
1
n

n∑
i=1

(xi − x)2

If (x1, y1), . . . , (xn, yn) ∈ R× R are data if (X ,Y ) are drawn from the
data such that Pr((X ,Y ) = (xi , yi)) =

1
n , we get

Cov (X ,Y ) = E
[(

X − EX
)(

Y − EY
)]

=
1
n

n∑
i=1

(xi − x)(yi − y)
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Variance and Correlation

Why Cov(X ,Y ) = E([X − EX ][Y − EY ])?
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Variance and Correlation
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Variance and Correlation

Why Cov(X ,Y ) = E([X − EX ][Y − EY ])?
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Variance and Correlation

Why Cov(X ,Y ) = E([X − EX ][Y − EY ])?
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Variance and Correlation

σX = 0.95, σY = 0.92

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

X

Y

53 / 61



Variance and Correlation

σX = 0.95, σY = 0.92

Cov(X ,Y ) = −0.06
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Variance and Correlation

σX = 0.95, σY = 0.92

Cov(X ,Y ) = −0.06

Cor(X ,Y ) = −0.069
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Variance and Correlation

σX = 0.95, σY = 0.92

Cov(X ,Y ) = −0.06

Cor(X ,Y ) = −0.069
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Variance and Correlation

σX = 0.95, σY = 0.92

Cov(X ,Y ) = −0.06

Cor(X ,Y ) = −0.069
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Variance and Correlation

σX = 0.95, σY = 0.92

Cov(X ,Y ) = −0.06

Cor(X ,Y ) = −0.069
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Variance and Correlation

σX = 1.14, σY = 0.78
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Variance and Correlation

σX = 1.14, σY = 0.78

Cov(X ,Y ) = 0.78
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Variance and Correlation

σX = 1.14, σY = 0.78

Cov(X ,Y ) = 0.78

Cor(X ,Y ) = 0.71
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Variance and Correlation

σX = 1.14, σY = 0.78

Cov(X ,Y ) = 0.78

Cor(X ,Y ) = 0.71
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Variance and Correlation

σX = 1.14, σY = 0.78

Cov(X ,Y ) = 0.78

Cor(X ,Y ) = 0.71
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Variance and Correlation

σX = 1.14, σY = 0.78

Cov(X ,Y ) = 0.78

Cor(X ,Y ) = 0.71
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Variance and Correlation

σX = 0.91, σY = 0.88
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Variance and Correlation

σX = 0.91, σY = 0.88

Cov(X ,Y ) = 0
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Variance and Correlation

Calculation rules for variances

VarX = E[(X − EX )2]

VarX = Cov(X ,X )

VarX = E(X 2)− (EX )2 (Exercise!)
Var(a · X ) = a2 · VarX
Var(X + Y ) = VarX + VarY + 2 · Cov(X ,Y )

Var
(∑n

i=1 Xi
)
=
∑n

i=1 Var
(
Xi
)
+ 2 ·

∑n
j=1

∑j−1
i=1 Cov(Xi ,Xj)

If (X ,Y ) stochastically independent we get:

Var(X + Y ) = VarX + VarY
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Variance and Correlation

Calculation rules for Covariances

Cov(X ,Y ) = E[(X − EX ) · (Y − EY )]

If X and Y are independent, then Cov(X ,Y ) = 0
(but not the other way around!)

Cov(X ,Y )=Cov(Y ,X )

Cov(X ,Y ) = E(X · Y )− EX · EY (Exercise!)
Cov(a · X ,Y ) = a · Cov(X ,Y ) = Cov(X ,a · Y )

Cov(X + Z ,Y ) = Cov(X ,Y ) + Cov(Z ,Y )

Cov(X ,Z + Y ) = Cov(X ,Z ) + Cov(X ,Y )

The last three rules describe the bilinearity of covariance.
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Variance and Correlation

Calculation rules for Correlations

Cor(X ,Y ) = Cov(X ,Y )
σX ·σY

−1 ≤ Cor(X ,Y ) ≤ 1
Cor(X ,Y ) = Cor(Y ,X )

Cor(X ,Y ) = Cov(X/σX ,Y/σY )

Cor(X ,Y ) = 1 if and only if Y is an increasing, affine-linear
function of X , that is, if Y = a · X + b for appropriate a > 0
and b ∈ R.
Cor(X ,Y ) = −1 if and only if Y is an decreasing,
affine-linear function of X , that is, if Y = a · X + b for
appropriate a < 0 and b ∈ R.
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Variance and Correlation

Bernoulli distribution
A Bernoulli distributed random variable Y with success probability
p ∈ [0,1] has expectation value

EY = p

and variance
Var Y = p · (1− p)

Proof: From Pr(Y = 1) = p and Pr(Y = 0) = (1− p) follows

EY = 1 · p + 0 · (1− p) = p.

variance:
Var Y = E

(
Y 2)− (EY

)2

= 12 · p + 02 · (1− p)− p2 = p · (1− p)
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Variance and Correlation

Binomial distribution

Let Y1, · · · ,Yn be independent Bernoulli distributed with success
probability p. Then follows

n∑
i=1

Yi =: X ∼ bin(n,p)

and we get:

Var X =

Var
( n∑

i=1

Yi

)
=

n∑
i=1

Var Yi = n · p · (1− p)
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Variance and Correlation

Binomial distribution

Theorem (Expectation value and variance of the binomial distribution)

If X is binomially distributed with parameters (n,p), we get:

EX = n · p

und
Var X = n · p · (1− p)
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Variance and Correlation

Example: Genetic Drift

In a haploid population of n individuals, let p be the frequency of
some allele A. We assume that (due to some simplifying
assumptions?) the absolute frequency K of A in the next
generation is (n,p)-binomially distributed.
For X = K/n, the relative frequency in the next generation
follows:

Var(X ) = Var(K/n) = Var(K )/n2

= n · p · (1− p)/n2

=
p · (1− p)

n
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Variance and Correlation

Example: Genetic Drift

If we consider the change of allele frequencies over m
generations, the variances add up. If m is a small number, such
that p will not change much over m generations, the is variance
of change of allele frequencies is approximately

m · Var(X ) =
m · p · (1− p)

n

(because the changes per generation are independent of each
other) and thus, the standard deviation is about√

m
n
· p · (1− p)
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