Basic Stochastics and the idea of testing

Dirk Metzler

http://evol.bio.lmu.de/_statgen

October 10, 2017

What will be the frequency X of A in the next generation?

What will be the frequency X of A in the next generation?

We don't know, as X is a random variable .

What will be the frequency X of A in the next generation?

We don't know, as X is a random variable .

However, we can ask, for example, for $\mathbb{E}X$, the expectation value of *X*,

What will be the frequency X of A in the next generation?

We don't know, as X is a random variable .

However, we can ask, for example, for

 $\mathbb{E}X$, the expectation value of *X*, or for $\Pr(X = 0.32)$, the probability that *X* takes a value of 0.32.

What will be the frequency X of A in the next generation?

We don't know, as X is a random variable .

However, we can ask, for example, for

 $\mathbb{E}X$, the expectation value of *X*, or for $\Pr(X = 0.32)$, the probability that *X* takes a value of 0.32. Even these values (especially the second on) depend on our model assumptions.

- 2 The binomial distribution
- Principle of statistical testing
- Expectation value
- 5 Variance and Correlation

Contents

- 2 The binomial distribution
- Principle of statistical testing
- Expectation value
- 5 Variance and Correlation

We start with a simpler Example: Rolling a dice, *W* is the result of the next trial.

$$S = \{1, 2, \dots, 6\}$$

Pr(W = 1) = \dots = Pr(W = 6) = $\frac{1}{6}$
(Pr(W = x) = $\frac{1}{6}$ for all $x \in \{1, \dots, 6\}$)

The state space S

of a random variable is the set of possible values.

The state space \mathcal{S} of a random variable is the set of possible values.

The distribution of a random variable Xassigns to each set $A \subseteq S$ the probability $Pr(X \in A)$ that X takes a value in A.

The state space \mathcal{S} of a random variable is the set of possible values.

The distribution of a random variable Xassigns to each set $A \subseteq S$ the probability $Pr(X \in A)$ that X takes a value in A.

In general, we use capitals for random variables (X, Y, Z, ...), and small letters (x, y, z, ...) for (possible) fixed values.

Notations for events

The event U that X takes a value in A can be written with curly brackets:

$$U = \{X \in A\}$$

We can interpret this as the set of results (elementary events) for which the event is fulfilled.

Notations for events

The event U that X takes a value in A can be written with curly brackets:

$$U = \{X \in A\}$$

We can interpret this as the set of results (elementary events) for which the event is fulfilled.

Thus, events have a lot in common with sets, and similar notations as for sets are used for events U and V:

$$U \cap V = U$$
 "and" V

is the event that takes place if and only if both U and V take place.

$$U \cup V = U$$
 "or" V

is the event that takes place if and only if U or V (or both) take place.

Let *X* and *Y* be the results of two dice rolls, $A = \{1, 2, 3\}$, and $B = \{1, 3, 5\}$. Then:

$$\{X \in A\} \cap \{X \in B\} = \{X \in A \cap B\} = \{X \in \{1,3\}\} \\ = \{X = 1\} \cup \{X = 3\}$$

and

$$\{Y \in A\} \cup \{Y \in B\} = \{Y \in A \cup B\} = \{Y \in \{1, 2, 3, 5\}\}$$

Let *X* and *Y* be the results of two dice rolls, $A = \{1, 2, 3\}$, and $B = \{1, 3, 5\}$. Then:

$$\{X \in A\} \cap \{X \in B\} = \{X \in A \cap B\} = \{X \in \{1,3\}\} \\ = \{X = 1\} \cup \{X = 3\}$$

and

$$\{Y \in A\} \cup \{Y \in B\} = \{Y \in A \cup B\} = \{Y \in \{1, 2, 3, 5\}\}$$

and

$$\{X \in A\} \cap \{Y \in B\} =$$

Let *X* and *Y* be the results of two dice rolls, $A = \{1, 2, 3\}$, and $B = \{1, 3, 5\}$. Then:

$$\{X \in A\} \cap \{X \in B\} = \{X \in A \cap B\} = \{X \in \{1,3\}\} \\ = \{X = 1\} \cup \{X = 3\}$$

and

$$\{Y \in A\} \cup \{Y \in B\} = \{Y \in A \cup B\} = \{Y \in \{1, 2, 3, 5\}\}$$

and

$$\{X \in A\} \cap \{Y \in B\} = \{(X, Y) \in A \times B\},\$$

Let *X* and *Y* be the results of two dice rolls, $A = \{1, 2, 3\}$, and $B = \{1, 3, 5\}$. Then:

$$\{X \in A\} \cap \{X \in B\} = \{X \in A \cap B\} = \{X \in \{1,3\}\} \\ = \{X = 1\} \cup \{X = 3\}$$

and

$$\{Y \in A\} \cup \{Y \in B\} = \{Y \in A \cup B\} = \{Y \in \{1, 2, 3, 5\}\}$$

and

$$\{X \in A\} \cap \{Y \in B\} = \{(X, Y) \in A \times B\},$$
 where

 $A \times B = \{(1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (2, 5), (3, 1), (3, 3), (3, 5)\}.$

The intersection

$$\{X\in A\}\cap\{X\in B\}=\{X\in A,X\in B\}=\{X\in A\cap B\}$$

is then the event that X takes a value that is in A and in B.

The intersection

$$\{X \in A\} \cap \{X \in B\} = \{X \in A, X \in B\} = \{X \in A \cap B\}$$

is then the event that X takes a value that is in A and in B. The join

$$\{X \in A\} \cup \{X \in B\} = \{X \in A \cup B\}$$

is the event that the event that X takes a value in A or in B (or both).

The intersection

$$\{X \in A\} \cap \{X \in B\} = \{X \in A, X \in B\} = \{X \in A \cap B\}$$

is then the event that *X* takes a value that is in *A* and in *B*. The join

$$\{X \in A\} \cup \{X \in B\} = \{X \in A \cup B\}$$

is the event that the event that X takes a value in A or in B (or both).

Sometimes the curly brackets are not written:

$$\Pr(X \in A, X \in B) = \Pr(\{X \in A, X \in B\})$$

Calculation rules:

Example Rolling a dice *W*:

$$Pr(W \in \{2,3\}) = \frac{2}{6} = \frac{1}{6} + \frac{1}{6}$$
$$= Pr(W = 2) + Pr(W = 3)$$
$$Pr(W \in \{1,2\} \cup \{3,4\}) = \frac{4}{6} = \frac{2}{6} + \frac{2}{6}$$
$$= Pr(W \in \{1,2\}) + Pr(W \in \{3,4\})$$

Caution:

$$Pr(W \in \{2,3\}) + Pr(W \in \{3,4\}) = \frac{2}{6} + \frac{2}{6} = \frac{4}{6}$$
$$\neq Pr(W \in \{2,3,4\}) = \frac{3}{6}$$

Example: rolling two dice (W_1, W_2) **:** Let W_1 and W_2 the result of dice 1 and dice 2.

$$Pr(W_1 \in \{4\}, W_2 \in \{2, 3, 4\})$$

= Pr((W_1, W_2) \in \{(4, 2), (4, 3), (4, 4)\})
= $\frac{3}{36} = \frac{1}{6} \cdot \frac{3}{6}$
= Pr(W_1 \in \{4\}) \cdot Pr(W_2 \in \{2, 3, 4\})

In general:

$$\mathsf{Pr}(W_1 \in A, W_2 \in B) = \mathsf{Pr}(W_1 \in A) \cdot \mathsf{Pr}(W_2 \in B)$$

for all sets $A, B \subseteq \{1, 2, \dots, 6\}$

If *S* is the sum of the results $S = W_1 + W_2$, what is the probability that S = 5, if dice 1 shows $W_1 = 2$?

$$\Pr(S = 5 | W_1 = 2) \stackrel{!}{=} \Pr(W_2 = 3)$$
$$= \frac{1}{6} = \frac{1/36}{1/6} = \frac{\Pr(S = 5, W_1 = 2)}{\Pr(W_1 = 2)}$$

If *S* is the sum of the results $S = W_1 + W_2$, what is the probability that S = 5, if dice 1 shows $W_1 = 2$?

$$\Pr(S = 5 | W_1 = 2) \stackrel{!}{=} \Pr(W_2 = 3)$$
$$= \frac{1}{6} = \frac{1/36}{1/6} = \frac{\Pr(S = 5, W_1 = 2)}{\Pr(W_1 = 2)}$$

What is the probability $S \in \{4, 5\}$ under the condition $W_1 \in \{1, 6\}$?

$$Pr(S \in \{4,5\} | W_1 \in \{1,6\}) \\ = \frac{Pr(S \in \{4,5\}, W_1 \in \{1,6\})}{Pr(W_1 \in \{1,6\})} \\ = \frac{Pr(W_2 \in \{3,4\}, W_1 = 1)}{Pr(W_1 \in \{1,6\})} \\ = \frac{2/36}{2/6} = \frac{1}{6}$$

Calculation rules:

- $0 \leq \Pr(U) \leq 1$ for each event *U* (in the probability space).
- $Pr(X \in S) = 1$ if X is a random variable with state space S.
- If the events *U* and *V* exclude each other, then

$$\Pr(U \cup V) = \Pr(U) + \Pr(V)$$

• The general rule is the inclusion-exclusion formula

$$\Pr(U \cup V) = \Pr(U) + \Pr(V) - \Pr(U \cap V)$$

• Definition of conditional probabilities: The probability of *U* under the condition *V*

$$\Pr(U|V) := \frac{\Pr(U, V)}{\Pr(V)}$$

"Conditional probability of U given V"

Calculation rules:

- $0 \leq \Pr(U) \leq 1$ for each event *U* (in the probability space).
- $Pr(X \in S) = 1$ if X is a random variable with state space S.
- If the events *U* and *V* exclude each other, then

$$\Pr(U \cup V) = \Pr(U) + \Pr(V)$$

• The general rule is the inclusion-exclusion formula

$$\Pr(U \cup V) = \Pr(U) + \Pr(V) - \Pr(U \cap V)$$

• Definition of conditional probabilities: The probability of *U* under the condition *V*

$$\Pr(U|V) := \frac{\Pr(U, V)}{\Pr(V)}$$

"Conditional probability of U given V" Note: $Pr(U, V) = Pr(V) \cdot Pr(U|V)$ How to say

$$\Pr(X \in A, Y \in B) = \Pr(X \in A) \cdot \Pr(Y \in B \mid X \in A)$$

in words:

How to say

$$\Pr(X \in A, Y \in B) = \Pr(X \in A) \cdot \Pr(Y \in B \mid X \in A)$$

in words:

The probability of $\{X \in A, Y \in B\}$ can be computed in two steps:

- First, the event $\{X \in A\}$ must take place.
- Multiply its probability with the conditional probability of {Y ∈ B}, given that {X ∈ A} is already known to take place.

Stochastic Independence of events

Definition (stochastic independence)

Two events U and V are (stochastically) independent, if the identity

 $\Pr(U, V) = \Pr(U) \cdot \Pr(V)$

holds for all events U, V.

Stochastic Independence of events

Definition (stochastic independence)

Two events U and V are (stochastically) independent, if the identity

 $\Pr(U, V) = \Pr(U) \cdot \Pr(V)$

holds for all events U, V.

Note that $Pr(U, V) = Pr(U) \cdot Pr(V)$ is equivalent to

Pr(U|V) = Pr(U) and also to Pr(V|U) = Pr(V)

Stochastic Independence of random variables

Definition (stochastic independence)

Two random variables X and Y are (stochastically) independent, if the identity

$$\Pr(X \in A, Y \in B) = \Pr(X \in A) \cdot \Pr(Y \in B)$$

holds for all (measurable) subsets A and B of the state spaces of X and Y.

Stochastic Independence of random variables

Definition (stochastic independence)

Two random variables X and Y are (stochastically) independent, if the identity

$$\Pr(X \in A, Y \in B) = \Pr(X \in A) \cdot \Pr(Y \in B)$$

holds for all (measurable) subsets A and B of the state spaces of X and Y.

Example:

• Tossing two dice: X = result dice 1, Y = result dice 2.

$$\Pr(X = 2, Y = 5) = \frac{1}{36} = \frac{1}{6} \cdot \frac{1}{6} = \Pr(X = 2) \cdot \Pr(Y = 5)$$

Contents

- 2 The binomial distribution
- 3 Principle of statistical testing
- Expectation value
- 5 Variance and Correlation
The binomial distribution

Bernoulli distribution

A Bernoulli experiment is an experiment with two possible oucomes "success" and "fail", or 1 or 0.

The binomial distribution

Bernoulli distribution

A Bernoulli experiment is an experiment with two possible oucomes "success" and "fail", or 1 or 0.

A Bernoulli experiment is an experiment with two possible oucomes "success" and "fail", or 1 or 0.

Bernoulli random variable X:

State space $S = \{0, 1\}$. Distribution:

$$Pr(X = 1) = p$$
$$Pr(X = 0) = 1 - p$$

The parameter $p \in [0, 1]$ is the success probability.

Examples:

• Tossing a coin: Possible outcomes are "head" and "tail"

Examples:

- Tossing a coin: Possible outcomes are "head" and "tail"
- Does the Drosophila have a mutation that causes white eyes? Possible outcomes are "yes" or "no".

Examples:

- Tossing a coin: Possible outcomes are "head" and "tail"
- Does the Drosophila have a mutation that causes white eyes? Possible outcomes are "yes" or "no".
- The sex of a newborn child has the values "male" or "female".

Assume a Bernoulli experiment (for example tossing a coin) with success probability *p* is repeated *n* times *independently*.

…alway succeeds?

…alway succeeds?

$$p \cdot p \cdot p \cdots p = p^n$$

…alway succeeds?

$$p \cdot p \cdot p \cdots p = p^n$$

2 ...always fails?

…alway succeeds?

$$p \cdot p \cdot p \cdots p = p^n$$

2 ...always fails?

$$(1-p) \cdot (1-p) \cdots (1-p) = (1-p)^n$$

…alway succeeds?

$$p \cdot p \cdot p \cdots p = p^n$$

2 ...always fails?

$$(1-p) \cdot (1-p) \cdots (1-p) = (1-p)^n$$

Image of the second se

…alway succeeds?

$$p \cdot p \cdot p \cdots p = p^n$$

2 ...always fails?

$$(1-p) \cdot (1-p) \cdots (1-p) = (1-p)^n$$

Image of the second se

$$p^k \cdot (1-p)^{n-k}$$

...succeeds in total k times and fails the other n – k times?

…alway succeeds?

$$p \cdot p \cdot p \cdots p = p^n$$

2 ...always fails?

$$(1-p) \cdot (1-p) \cdots (1-p) = (1-p)^n$$

Image of the second se

$$p^k \cdot (1-p)^{n-k}$$

...succeeds in total k times and fails the other n – k times?

$$\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

Note

 $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$ ("*n* choose *k*") is the number of possibilities to choose *k* successes in *n* trials.

Binomial distribution

Let X be the number of successes in n independent trials with success probability of p each. Then,

$$\Pr(X=k) = \binom{n}{k} p^k \cdot (1-p)^{n-k}$$

holds for all $k \in \{0, 1, ..., n\}$ and X is said to be *binomially distributed*, for short:

 $X \sim bin(n, p).$

probabilities of bin(n=10,p=0.2)

probabilities of bin(n=100,p=0.2)

k

With the binomial distribution we can treat our initial question Assume in a small populaiton of n = 100 individuals the neutral allele A has a frequency of 0.3.

Assume in a small populaiton of n = 100 individuals the neutral allele A has a frequency of 0.3.

How probable is it that X, the frequency of A in the next generarion is 0.32?

Assume in a small populaiton of n = 100 individuals the neutral allele A has a frequency of 0.3.

How probable is it that X, the frequency of A in the next generarion is 0.32?

$$Pr(X = 0.32) = ?$$

Assume in a small populaiton of n = 100 individuals the neutral allele A has a frequency of 0.3.

How probable is it that X, the frequency of A in the next generarion is 0.32?

$$Pr(X = 0.32) = ?$$

We can only answer this on the basis of a probabilistic model, and the answer will depend on how we model the population.

We make a few simplifying assumptions:

- Discrete generations
- The population is haploid, that is, each individual has exactly one parent in the generation before.
- constant population size n = 100

We make a few simplifying assumptions:

- Discrete generations
- The population is haploid, that is, each individual has exactly one parent in the generation before.
- constant population size n = 100

Pr(X = 0.32) still depends on whether few individuals have many offspring or whether all individuals have similar offspring numbers.

We make a few simplifying assumptions:

- Discrete generations
- The population is haploid, that is, each individual has exactly one parent in the generation before.
- constant population size n = 100

Pr(X = 0.32) still depends on whether few individuals have many offspring or whether all individuals have similar offspring numbers. Pr(X = 0.32) is only defined with additional assumptions, e.g.:

We make a few simplifying assumptions:

- Discrete generations
- The population is haploid, that is, each individual has exactly one parent in the generation before.
- constant population size n = 100

Pr(X = 0.32) still depends on whether few individuals have many offspring or whether all individuals have similar offspring numbers. Pr(X = 0.32) is only defined with additional assumptions, e.g.:

• Each individual chooses its parent purely randomly in the generation before.

We make a few simplifying assumptions:

- Discrete generations
- The population is haploid, that is, each individual has exactly one parent in the generation before.
- constant population size n = 100

Pr(X = 0.32) still depends on whether few individuals have many offspring or whether all individuals have similar offspring numbers. Pr(X = 0.32) is only defined with additional assumptions, e.g.:

• Each individual chooses its parent purely randomly in the generation before.

"purely randomly" means *independent of all others* and *all potential parents with the same probability*.

Therefore, the number *K* of individuels who get allele *A* is binomially distributed with n = 100 and p = 0.3:

$$K \sim bin(n = 100, p = 0.3)$$

Therefore, the number *K* of individuels who get allele *A* is binomially distributed with n = 100 and p = 0.3:

$$K \sim bin(n = 100, p = 0.3)$$

$$Pr(X = 0.32) =$$

Therefore, the number *K* of individuels who get allele *A* is binomially distributed with n = 100 and p = 0.3:

$$K \sim bin(n = 100, p = 0.3)$$

$$\Pr(X = 0.32) = \Pr(K = 32) =$$

Therefore, the number *K* of individuels who get allele *A* is binomially distributed with n = 100 and p = 0.3:

$$K \sim bin(n = 100, p = 0.3)$$

$$\Pr(X = 0.32) = \Pr(K = 32) = \binom{n}{32} \cdot p^{32} \cdot (1 - p)^{100 - 32}$$

Therefore, the number *K* of individuels who get allele *A* is binomially distributed with n = 100 and p = 0.3:

$$K \sim bin(n = 100, p = 0.3)$$

$$\Pr(X = 0.32) = \Pr(K = 32) = \binom{n}{32} \cdot p^{32} \cdot (1 - p)^{100 - 32}$$

$$= \binom{100}{32} \cdot 0.3^{32} \cdot 0.7^{68}$$

Therefore, the number *K* of individuels who get allele *A* is binomially distributed with n = 100 and p = 0.3:

$$K \sim bin(n = 100, p = 0.3)$$

$$\Pr(X = 0.32) = \Pr(K = 32) = \binom{n}{32} \cdot p^{32} \cdot (1 - p)^{100 - 32}$$

$$= \binom{100}{32} \cdot 0.3^{32} \cdot 0.7^{68} \approx 0.078$$

Contents

- 1 Random Variables and Distributions
- 2 The binomial distribution
- Principle of statistical testing
- Expectation value
- 5 Variance and Correlation
• We want to argue that some deviation in the data is not just random.

- We want to argue that some deviation in the data is not just random.
- To this end we first specify a null hypothesis *H*₀, i.e. we define, what "just random" means.

- We want to argue that some deviation in the data is not just random.
- To this end we first specify a null hypothesis *H*₀, i.e. we define, what "just random" means.
- Then we try to show: If *H*₀ is true, then a deviation that is at least at large as the observed one, is very improbable.

- We want to argue that some deviation in the data is not just random.
- To this end we first specify a null hypothesis *H*₀, i.e. we define, what "just random" means.
- Then we try to show: If *H*₀ is true, then a deviation that is at least at large as the observed one, is very improbable.
- If we can do this, we reject H_0 .

- We want to argue that some deviation in the data is not just random.
- To this end we first specify a null hypothesis *H*₀, i.e. we define, what "just random" means.
- Then we try to show: If *H*₀ is true, then a deviation that is at least at large as the observed one, is very improbable.
- If we can do this, we reject H_0 .
- How we measure deviation, must be clear *before* we see the data.

Statistical Testing: Imporatant terms

null hypothesis H_0 : says that what we want to substantiate is not true and anything that looks like evidence in the data is just random. We try to reject H_0 .

- significance level α : If H_0 is true, the probability to falsly reject it, must be $\leq \alpha$ (often $\alpha = 0.05$).
- test statistic : measures how far the data deviates from what H_0 predicts into the direction of our alternative hypothesis.
 - p value : Probability that, if H_0 is true, a dataset leads to a test statistic value that is as least as extreme as the observed one.

 We reject the null hypothesis H₀ if the *p* value is smaller than α.

- We reject the null hypothesis H₀ if the *p* value is smaller than α.
- Thus, if H₀ is true, the probability to (falsely) reject it is α (not the *p* value).

- We reject the null hypothesis H₀ if the *p* value is smaller than α.
- Thus, if H₀ is true, the probability to (falsely) reject it is α (not the *p* value).
- This entails that a researcher who performs many tests with $\alpha = 0.05$ on complete random data (i.e. where H_0 is always true), will falsely reject H_0 in 5% of the tests.

- We reject the null hypothesis H₀ if the *p* value is smaller than α.
- Thus, if H₀ is true, the probability to (falsely) reject it is α (not the *p* value).
- This entails that a researcher who performs many tests with $\alpha = 0.05$ on complete random data (i.e. where H_0 is always true), will falsely reject H_0 in 5% of the tests.
- Therefore it is a severe violation of academic soundness to perform tests until one shows significance, and to publish only the latter.

Testing two-sided or one-sided?

We observe a value of *x* that is much larger than the H_0 expectation value μ .

• Specify a null hypothesis H_0 , e.g. $\mu = 0$.

- Specify a null hypothesis H_0 , e.g. $\mu = 0$.
- Specify level of significance α , e.g. $\alpha = 0.05$.

- Specify a null hypothesis H_0 , e.g. $\mu = 0$.
- Specify level of significance α , e.g. $\alpha = 0.05$.
- Specify an event ${\mathcal A}$ such that

 $\Pr_{H_0}(\mathcal{A}) = \alpha$

(or at least $Pr_{H_0}(\mathcal{A}) \leq \alpha$).

- Specify a null hypothesis H_0 , e.g. $\mu = 0$.
- Specify level of significance α , e.g. $\alpha = 0.05$.
- Specify an event ${\mathcal A}$ such that

$$\Pr_{H_0}(\mathcal{A}) = \alpha$$

(or at least
$$\mathsf{Pr}_{H_0}(\mathcal{A}) \leq \alpha$$
).
e.g. $\mathcal{A} = \{\overline{X} > q\}$ or $\mathcal{A} = \{|\overline{X} - \mu| > r\}$

- Specify a null hypothesis H_0 , e.g. $\mu = 0$.
- Specify level of significance α , e.g. $\alpha = 0.05$.
- Specify an event ${\mathcal A}$ such that

$$\Pr_{H_0}(\mathcal{A}) = \alpha$$

(or at least
$$\Pr_{H_0}(A) \leq \alpha$$
).
e.g. $A = \{\overline{X} > q\}$ or $A = \{|\overline{X} - \mu| > r\}$
in general: $A = \{p\text{-value} \leq \alpha\}$

- Specify a null hypothesis H_0 , e.g. $\mu = 0$.
- Specify level of significance α , e.g. $\alpha = 0.05$.
- Specify an event ${\mathcal A}$ such that

$$\Pr_{H_0}(\mathcal{A}) = \alpha$$

(or at least
$$\Pr_{H_0}(\mathcal{A}) \leq \alpha$$
).
e.g. $\mathcal{A} = \{\overline{X} > q\}$ or $\mathcal{A} = \{|\overline{X} - \mu| > r\}$
in general: $\mathcal{A} = \{p\text{-value} \leq \alpha\}$

• AND AFTER THAT: Look at the data and check if if *A* occurs.

- Specify a null hypothesis H_0 , e.g. $\mu = 0$.
- Specify level of significance α , e.g. $\alpha = 0.05$.
- \bullet Specify an event ${\cal A}$ such that

$$\Pr_{H_0}(\mathcal{A}) = \alpha$$

(or at least
$$\Pr_{H_0}(\mathcal{A}) \leq \alpha$$
).
e.g. $\mathcal{A} = \{\overline{X} > q\}$ or $\mathcal{A} = \{|\overline{X} - \mu| > r\}$
in general: $\mathcal{A} = \{p\text{-value} \leq \alpha\}$

- AND AFTER THAT: Look at the data and check if if *A* occurs.
- Then, the probability that H₀ is rejected in the case that H₀ is actually true ("Type I error") is just α.

Violations against the pure teachings

"The two-sided test gave me a *p*-value of 0.06. Therefore, I tested one-sided and this worked out nicely." Violations against the pure teachings

"The two-sided test gave me a *p*-value of 0.06. Therefore, I tested one-sided and this worked out nicely."

is as bad as:

Violations against the pure teachings

"The two-sided test gave me a *p*-value of 0.06. Therefore, I tested one-sided and this worked out nicely."

is as bad as:

"At first glance I saw that \overline{x} is larger than μ_{H_0} . So, I immediately applied the one-sided test."

Important

The decision between one-sided and two-sided must not depend on the concrete data that are used in the test.

Important

The decision between one-sided and two-sided must not depend on the concrete data that are used in the test. More generally: If A is the event that will lead to the rejection of H_0 , (if it occurs) then A must be defined without being influenced by the data that is used for testing.

This means: Use separate data sets for exploratory data analysis and for testing.

This means: Use separate data sets for exploratory data analysis and for testing.

In some fields these rules are followed quite strictly, e.g. testing new pharmaceuticals for accreditation. This means: Use separate data sets for exploratory data analysis and for testing.

- In some fields these rules are followed quite strictly, e.g. testing new pharmaceuticals for accreditation.
- In some other fields the practical approach is more common: Just inform the reader about the *p*-values of different null-hypotheses. Let the reader decide which null-hypothesis would have been the most natural one.

- The null hypothesis is wrong.
- ۹

٩

- The null hypothesis is wrong.
- ٩
- ٩

- The null hypothesis is wrong.
- H_0 is wrong with a probability of 95%.

٩

- The null hypothesis is wrong.
- *H*₀ is wrong with a probability of 95%.

٩

- The null hypothesis is wrong.
- H_0 is wrong with a probability of 95%.
- If *H*₀ is true, you will see such an extreme event only in 5% of the data sets.

- The null hypothesis is wrong.
- *H*₀ is wrong with a probability of 95%.
- If *H*₀ is true, you will see such an extreme event only in 5% of the data sets. ✓

- We have to reject the alternative H_1 .
- ٩
- ٩

- We have to reject the alternative H₁.
- •
- ٩
- •
- •
- •

- We have to reject the alternative H₁.
- H_0 is true.
- ٩
- ٩

- We have to reject the alternative H₁.
- H_0 is true
- ۹
- ٢
- •
- We have to reject the alternative H_1 .
- H_0 is true
- *H*₀ is probably true.
- ٩
- ۲

- We have to reject the alternative H₁.
- H₀ is true
- H₀ is probably true.
- •

- We have to reject the alternative H₁.
- H_0 is true
- H₀ is probably true.
- It is safe to assume that H_0 was true.

۹

•

- We have to reject the alternative H₁.
- H_0 is true
- *H*₀ is probably true.
- It is safe to assume that *H*₀ was true.

- We have to reject the alternative H₁.
- *H*₀ is true
- *H*₀ is probably true.
- It is safe to assume that *H*₀ was true.
- Even if *H*₀ is true, it is not so unlikely that our test statistic takes a value that is as extreme as the one we observed.
- •

- We have to reject the alternative H₁.
- *H*₀ is true
- *H*₀ is probably true.
- It is safe to assume that *H*₀ was true.
- Even if *H*₀ is true, it is not so unlikely that our test statistic takes a value that is as extreme as the one we observed.

- We have to reject the alternative H₁.
- H₀ is true
- H_0 is probably true.
- It is safe to assume that *H*₀ was true.
- Even if *H*₀ is true, it is not so unlikely that our test statistic takes a value that is as extreme as the one we observed.
- With this respect, H_0 is compatible with the data.

- We have to reject the alternative H₁.
- H_0 is true
- H_0 is probably true.
- It is safe to assume that *H*₀ was true.
- Even if *H*₀ is true, it is not so unlikely that our test statistic takes a value that is as extreme as the one we observed.
- With this respect, H_0 is compatible with the data.

Contents

- Random Variables and Distributions
- 2 The binomial distribution
- 3 Principle of statistical testing
- Expectation value
- 5 Variance and Correlation

Let *X* be a random variable with finite or countable state space $S = \{x_1, x_2, x_3 \dots\} \subseteq \mathbb{R}$.

Let *X* be a random variable with finite or countable state space $S = \{x_1, x_2, x_3 \dots\} \subseteq \mathbb{R}$. The *expectation value* of *X* is defined by

$$\mathbb{E} X = \sum_{x \in S} x \cdot \Pr(X = x)$$

Let *X* be a random variable with finite or countable state space $S = \{x_1, x_2, x_3 \dots\} \subseteq \mathbb{R}$. The *expectation value* of *X* is defined by

$$\mathbb{E} X = \sum_{x \in S} x \cdot \Pr(X = x)$$

It is also common to write μ_X instead of $\mathbb{E}X$.

If we replace probabilities by relative frequencies in this definition, we get the formula for the mean value (of a sample).

If *X* is a random variable with finite or countable state space $S = \{x_1, x_2, x_3 \dots\} \subseteq \mathbb{R}$, the *expectation value* of *X* is defined by

$$\mathbb{E} X = \sum_{x \in S} x \cdot \Pr(X = x)$$

Examples:

 Let X be Bernoulli distributed with success probability p ∈ [0, 1]. Then we get

$$\mathbb{E}X = 1 \cdot \Pr(X = 1) + 0 \cdot \Pr(X = 0) = \Pr(X = 1) = p$$

If *X* is a random variable with finite or countable state space $S = \{x_1, x_2, x_3 \dots\} \subseteq \mathbb{R}$, the *expectation value* of *X* is defined by

$$\mathbb{E}X = \sum_{x \in S} x \cdot \Pr(X = x)$$

Examples:

 Let X be Bernoulli distributed with success probability p ∈ [0, 1]. Then we get

$$\mathbb{E}X = 1 \cdot \Pr(X = 1) + 0 \cdot \Pr(X = 0) = \Pr(X = 1) = p$$

• Let W be the result of rolling a dice. Then we get

$$\mathbb{E}W = 1 \cdot \Pr(W = 1) + 2 \cdot \Pr(W = 2) + \ldots + 6 \cdot \Pr(W = 6)$$

= $1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \ldots + 6 \cdot \frac{1}{6} = 21\frac{1}{6} = 3.5$

Calculating with expectatins

Theorem (Linearity of Expectation)

If X and Y are random variables with values in \mathbb{R} and if $a \in \mathbb{R}$, we get:

- $\mathbb{E}(a \cdot X) = a \cdot \mathbb{E}X$
- $\mathbb{E}(X + Y) = \mathbb{E}X + \mathbb{E}Y$

Calculating with expectatins

Theorem (Linearity of Expectation)

If X and Y are random variables with values in \mathbb{R} and if $a \in \mathbb{R}$, we get:

- $\mathbb{E}(a \cdot X) = a \cdot \mathbb{E}X$
- $\mathbb{E}(X + Y) = \mathbb{E}X + \mathbb{E}Y$

Theorem (Only if independent!)

If X and Y are **stochastically independent** random variables with values in \mathbb{R} , we get

• $\mathbb{E}(X \cdot Y) = \mathbb{E}X \cdot \mathbb{E}Y.$

Calculating with expectatins

Theorem (Linearity of Expectation)

If X and Y are random variables with values in \mathbb{R} and if $a \in \mathbb{R}$, we get:

- $\mathbb{E}(a \cdot X) = a \cdot \mathbb{E}X$
- $\mathbb{E}(X + Y) = \mathbb{E}X + \mathbb{E}Y$

Theorem (Only if independent!)

If X and Y are **stochastically independent** random variables with values in \mathbb{R} , we get

• $\mathbb{E}(X \cdot Y) = \mathbb{E}X \cdot \mathbb{E}Y.$

But in general $\mathbb{E}(X \cdot Y) \neq \mathbb{E}X \cdot \mathbb{E}Y$. Example:

$$\mathbb{E}(W \cdot W) = \frac{91}{6} = 15.167 > 12.25 = 3.5 \cdot 3.5 = \mathbb{E}W \cdot \mathbb{E}W$$

Proof of Linearity: If S is the state space of X and Y, and if $a, b \in \mathbb{R}$, we obtain:

$$\mathbb{E}(a \cdot X + b \cdot Y)$$

$$= \sum_{x \in S} \sum_{y \in S} (a \cdot x + b \cdot y) \operatorname{Pr}(X = x, Y = y)$$

$$= a \cdot \sum_{x \in S} \sum_{y \in S} x \operatorname{Pr}(X = x, Y = y) + b \cdot \sum_{x \in S} \sum_{y \in S} y \operatorname{Pr}(X = x, Y = y)$$

$$= a \cdot \sum_{x \in S} x \sum_{y \in S} \operatorname{Pr}(X = x, Y = y) + b \cdot \sum_{y \in S} y \sum_{x \in S} \operatorname{Pr}(X = x, Y = y)$$

$$= a \cdot \sum_{x \in S} x \operatorname{Pr}(X = x) + b \cdot \sum_{y \in S} y \operatorname{Pr}(Y = y)$$

$$= a \cdot \mathbb{E}(X) + b \cdot \mathbb{E}(Y)$$

Proof of the product formula: Let S be the state space of X and Y, and let X and Y be (stochastically) independent.

$$\mathbb{E}(X \cdot Y)$$

$$= \sum_{x \in S} \sum_{y \in S} (x \cdot y) \operatorname{Pr}(X = x, Y = y)$$

$$= \sum_{x \in S} \sum_{y \in S} (x \cdot y) \operatorname{Pr}(X = x) \operatorname{Pr}(Y = y)$$

$$= \sum_{x \in S} x \operatorname{Pr}(X = x) \cdot \sum_{y \in S} y \operatorname{Pr}(Y = y)$$

$$= \mathbb{E}X \cdot \mathbb{E}Y \cdot$$

Theorem

If X is random variable with finite state space $S \subset \mathbb{R}$, and if $f : \mathbb{R} \to \mathbb{R}$ is a function, we obtain

$$\mathbb{E}(f(X)) = \sum_{x \in S} f(x) \cdot \Pr(X = x)$$

Exercise: proof this.

Let $Y_1, Y_2, ..., Y_n$ be the indicator variables of the *n* independent trials, that is

 $Y_i = \begin{cases} 1 & \text{if trial } i \text{ succeeds} \\ 0 & \text{if trial } i - \text{ fails} \end{cases}$

Let Y_1, Y_2, \ldots, Y_n be the indicator variables of the *n* independent trials, that is

 $Y_i = \begin{cases} 1 & \text{if trial } i \text{ succeeds} \\ 0 & \text{if trial } i - \text{ fails} \end{cases}$

Then $X = Y_1 + \cdots + Y_n$ is binomially distributed with parameters (n, p), where p is the success probability of the trials.

Let $Y_1, Y_2, ..., Y_n$ be the indicator variables of the *n* independent trials, that is

 $Y_i = \begin{cases} 1 & \text{if trial } i \text{ succeeds} \\ 0 & \text{if trial } i - \text{ fails} \end{cases}$

Then $X = Y_1 + \cdots + Y_n$ is binomially distributed with parameters (n, p), where p is the success probability of the trials.

Linearity of expectation implies

$$\mathbb{E}X = \mathbb{E}(Y_1 + \dots + Y_n) \\ = \mathbb{E}Y_1 + \dots + \mathbb{E}Y_n$$

Let $Y_1, Y_2, ..., Y_n$ be the indicator variables of the *n* independent trials, that is

 $Y_i = \begin{cases} 1 & \text{if trial } i \text{ succeeds} \\ 0 & \text{if trial } i - \text{ fails} \end{cases}$

Then $X = Y_1 + \cdots + Y_n$ is binomially distributed with parameters (n, p), where p is the success probability of the trials.

Linearity of expectation implies

$$\mathbb{E}X = \mathbb{E}(Y_1 + \dots + Y_n)$$

= $\mathbb{E}Y_1 + \dots + \mathbb{E}Y_n$
= $p + \dots + p = np$

Let $Y_1, Y_2, ..., Y_n$ be the indicator variables of the *n* independent trials, that is

 $Y_i = \begin{cases} 1 & \text{if trial } i \text{ succeeds} \\ 0 & \text{if trial } i - \text{ fails} \end{cases}$

Then $X = Y_1 + \cdots + Y_n$ is binomially distributed with parameters (n, p), where p is the success probability of the trials.

Linearity of expectation implies

$$\mathbb{E}X = \mathbb{E}(Y_1 + \dots + Y_n)$$

= $\mathbb{E}Y_1 + \dots + \mathbb{E}Y_n$
= $p + \dots + p = np$

Note:

$$X \sim \operatorname{bin}(n, p) \Rightarrow \mathbb{E}X = n \cdot p$$

Contents

- 1 Random Variables and Distributions
- 2 The binomial distribution
- Principle of statistical testing
- Expectation value

The *Variance* of a \mathbb{R} -valued random variable X is

$$\operatorname{Var} X = \sigma_X^2 = \mathbb{E}\left[(X - \mathbb{E} X)^2 \right].$$

The *Variance* of a \mathbb{R} -valued random variable X is

$$\operatorname{Var} X = \sigma_X^2 = \mathbb{E}\left[(X - \mathbb{E} X)^2 \right].$$

 $\sigma_X = \sqrt{\text{Var } X}$ is the *Standard Deviation*.

The *Variance* of a \mathbb{R} -valued random variable X is

$$\operatorname{Var} X = \sigma_X^2 = \mathbb{E}\left[(X - \mathbb{E} X)^2 \right].$$

 $\sigma_X = \sqrt{\text{Var } X}$ is the *Standard Deviation*. If *Y* is enother \mathbb{R} -valued random variable,

$$\operatorname{Cov}(X, Y) = \mathbb{E}\left[(X - \mathbb{E}X) \cdot (Y - \mathbb{E}Y)\right]$$

is the *Covariance* of *X* and *Y*.

The *Variance* of a \mathbb{R} -valued random variable X is

$$\operatorname{Var} X = \sigma_X^2 = \mathbb{E}\left[(X - \mathbb{E} X)^2 \right].$$

 $\sigma_X = \sqrt{\text{Var } X}$ is the *Standard Deviation*. If *Y* is enother \mathbb{R} -valued random variable,

$$\operatorname{Cov}(X, Y) = \mathbb{E}\left[(X - \mathbb{E}X) \cdot (Y - \mathbb{E}Y)\right]$$

is the *Covariance* of *X* and *Y*. The *Correlation* of *X* and *Y* is

$$\operatorname{Cor}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y}$$

The Variance

$$\mathsf{Var} X = \mathbb{E}\left[(X - \mathbb{E} X)^2
ight]$$

is the average squared deviation from the expectation.

The Variance

$$\mathsf{Var}X = \mathbb{E}\left[(X - \mathbb{E}X)^2
ight]$$

is the average squared deviation from the expectation.

The Correlation

$$\operatorname{Cor}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

is always between in the range from -1 to 1. The random variables X and Y are

- positively correlated, if X and Y tend to be both above average or both below average.
- negatively correlated, if X and Y tend to deviate from their expectation values in opposite ways.

The Variance

$$\mathsf{Var} X = \mathbb{E}\left[(X - \mathbb{E} X)^2
ight]$$

is the average squared deviation from the expectation.

The Correlation

$$\operatorname{Cor}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

is always between in the range from -1 to 1. The random variables X and Y are

- positively correlated, if X and Y tend to be both above average or both below average.
- negatively correlated, if X and Y tend to deviate from their expectation values in opposite ways.

If X and Y are independent, they are also uncorrelated, that is Cor(X, Y) = 0.

Example: rolling dice

Variance of result from rolling a dice *W*:

$$Var(W) = \mathbb{E}[(W - \mathbb{E}W)^{2}]$$

= $\mathbb{E}[(W - 3.5)^{2}]$
= $(1 - 3.5)^{2} \cdot \frac{1}{6} + (2 - 3.5)^{2} \cdot \frac{1}{6} + \dots + (6 - 3.5)^{2} \cdot \frac{1}{6}$
= $\frac{17.5}{6}$
= 2.91667

Example: Empirical Distribution

If $x_1, \ldots, x_n \in \mathbb{R}$ are data and if X is the result of a random draw from the data (such that $Pr(X = x_i) = \frac{1}{n}$), we get:

$$\mathbb{E}X = \sum_{i=1}^{n} x_i \operatorname{Pr}(X = x_i) = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

and

Var
$$X = \mathbb{E}[(X - \mathbb{E}X)^2] = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

Example: Empirical Distribution

If $x_1, \ldots, x_n \in \mathbb{R}$ are data and if X is the result of a random draw from the data (such that $Pr(X = x_i) = \frac{1}{n}$), we get:

$$\mathbb{E}X = \sum_{i=1}^{n} x_i \operatorname{Pr}(X = x_i) = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

and

Var
$$X = \mathbb{E}[(X - \mathbb{E}X)^2] = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

If $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R} \times \mathbb{R}$ are data if (X, Y) are drawn from the data such that $Pr((X, Y) = (x_i, y_i)) = \frac{1}{n}$, we get

$$\operatorname{Cov}(X,Y) = \mathbb{E}\left[\left(X - \mathbb{E}X\right)\left(Y - \mathbb{E}Y\right)\right] = \frac{1}{n}\sum_{i=1}^{n}(x_i - \overline{x})(y_i - \overline{y})$$
Why $\operatorname{Cov}(X, Y) = \mathbb{E}([X - \mathbb{E}X][Y - \mathbb{E}Y])$?

Why $Cov(X, Y) = \mathbb{E}([X - \mathbb{E}X][Y - \mathbb{E}Y])$?

Why $Cov(X, Y) = \mathbb{E}([X - \mathbb{E}X][Y - \mathbb{E}Y])$?

Why $Cov(X, Y) = \mathbb{E}([X - \mathbb{E}X][Y - \mathbb{E}Y])$?

Why $Cov(X, Y) = \mathbb{E}([X - \mathbb{E}X][Y - \mathbb{E}Y])$?

Why $Cov(X, Y) = \mathbb{E}([X - \mathbb{E}X][Y - \mathbb{E}Y])$?

Why $Cov(X, Y) = \mathbb{E}([X - \mathbb{E}X][Y - \mathbb{E}Y])$?

 $\sigma_X = 0.95, \, \sigma_Y = 0.92$

$$\sigma_X = 0.95, \, \sigma_Y = 0.92$$

 $\text{Cov}(X, Y) = -0.06$

$$\sigma_X = 0.95, \, \sigma_Y = 0.92$$

 $Cov(X, Y) = -0.06$
 $Cor(X, Y) = -0.069$

 $\sigma_X = 0.95, \, \sigma_Y = 0.92$ $\sigma_X = 1.13, \, \sigma_Y = 1.2$ Cov(X, Y) = -0.06Cor(X, Y) = -0.069

 $\sigma_X = 0.95, \, \sigma_Y = 0.92$ $\sigma_X = 1.13, \, \sigma_Y = 1.2$ Cov(X, Y) = -0.06 Cov(X, Y) = -1.26Cor(X, Y) = -0.069

 $\sigma_X = 0.95, \, \sigma_Y = 0.92$ Cov(X, Y) = -0.06Cor(X, Y) = -0.069 $\sigma_X = 1.13, \, \sigma_Y = 1.2$ Cov(X, Y) = -1.26 Cor(X, Y) = -0.92

 $\sigma_X = 1.14, \, \sigma_Y = 0.78$

$$\sigma_X = 1.13, \sigma_Y = 1.2$$

Cov(X, Y) = -1.26
Cor(X, Y) = -0.92

$$\sigma_X = 1.14, \, \sigma_Y = 0.78$$

Cov $(X, Y) = 0.78$

$$\sigma_X = 1.13, \sigma_Y = 1.2$$

Cov(X, Y) = -1.26
Cor(X, Y) = -0.92

- $\sigma_X = 1.14, \, \sigma_Y = 0.78$ $\sigma_X = 0.78$ $\sigma_Y = 0.78$ $\sigma_Y = 0.78$ $\sigma_Y = 0.78$ $\sigma_Y = 0.71$ $\sigma_Y = 0.71$ $\sigma_Y = 0.71$
- $\sigma_X = 1.13, \sigma_Y = 1.2$ Cov(X, Y) = -1.26 Cor(X, Y) = -0.92

$$\sigma_X = 1.14, \, \sigma_Y = 0.78$$
 $\sigma_X = 1.03, \, \sigma_Y = 0.32$
 $Cov(X, Y) = 0.78$
 $Cor(X, Y) = 0.71$

 $\sigma_X = 1.14, \, \sigma_Y = 0.78$ $\sigma_X = 1.03, \, \sigma_Y = 0.32$ Cov(X, Y) = 0.78Cov(X, Y) = 0.71

 $\sigma_X = 1.14, \, \sigma_Y = 0.78$ Cov(X, Y) = 0.78Cor(X, Y) = 0.71 $\sigma_X = 1.03, \, \sigma_Y = 0.32$ Cov(X, Y) = 0.32 Cor(X, Y) = 0.95

 $\sigma_X = 0.91, \, \sigma_Y = 0.88$

$$\sigma_X = 1.03, \, \sigma_Y = 0.32$$

 $Cov(X, Y) = 0.32$
 $Cor(X, Y) = 0.95$

 $\sigma_X = 0.91, \, \sigma_Y = 0.88$ Cov(X, Y) = 0 $\sigma_X = 1.03, \, \sigma_Y = 0.32$ Cov(X, Y) = 0.32Cor(X, Y) = 0.95

 $\sigma_X = 0.91, \, \sigma_Y = 0.88$ Cov(X, Y) = 0Cor(X, Y) = 0 $\sigma_X = 1.03, \, \sigma_Y = 0.32$ Cov(X, Y) = 0.32Cor(X, Y) = 0.95

$$\operatorname{Var} X = \mathbb{E}[(X - \mathbb{E}X)^2]$$

• Var X = Cov(X, X)

$$\operatorname{Var} X = \mathbb{E}[(X - \mathbb{E}X)^2]$$

$$\operatorname{Var} X = \mathbb{E}[(X - \mathbb{E}X)^2]$$

•
$$Var X = Cov(X, X)$$

• Var
$$X = \mathbb{E}(X^2) - (\mathbb{E}X)^2$$
 (E

•
$$Var(a \cdot X) = a^2 \cdot Var X$$

(Exercise!)

 $\operatorname{Var} X = \mathbb{E}[(X - \mathbb{E}X)^2]$

•
$$Var X = Cov(X, X)$$

- $\operatorname{Var} X = \mathbb{E}(X^2) (\mathbb{E}X)^2$ (Exercise!)
- $\operatorname{Var}(a \cdot X) = a^2 \cdot \operatorname{Var} X$
- $Var(X + Y) = VarX + VarY + 2 \cdot Cov(X, Y)$

$$\operatorname{Var} X = \mathbb{E}[(X - \mathbb{E}X)^2]$$

•
$$VarX = Cov(X, X)$$

- $\operatorname{Var} X = \mathbb{E}(X^2) (\mathbb{E}X)^2$ (Exercise!)
- $\operatorname{Var}(a \cdot X) = a^2 \cdot \operatorname{Var} X$
- $Var(X + Y) = VarX + VarY + 2 \cdot Cov(X, Y)$
- Var $\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) + 2 \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} \operatorname{Cov}(X_{i}, X_{j})$

$$\operatorname{Var} X = \mathbb{E}[(X - \mathbb{E}X)^2]$$

•
$$VarX = Cov(X, X)$$

• Var
$$X = \mathbb{E}(X^2) - (\mathbb{E}X)^2$$
 (Exercise!)

•
$$Var(a \cdot X) = a^2 \cdot Var X$$

• $Var(X + Y) = VarX + VarY + 2 \cdot Cov(X, Y)$

•
$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \cdot \sum_{j=1}^{n} \sum_{i=1}^{j-1} \operatorname{Cov}(X_{i}, X_{j})$$

• If (X, Y) stochastically independent we get:

$$Var(X + Y) = VarX + VarY$$

$$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - EX) \cdot (Y - \mathbb{E}Y)]$$

 If X and Y are independent, then Cov(X, Y) = 0 (but not the other way around!)

$$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - EX) \cdot (Y - \mathbb{E}Y)]$$

- If X and Y are independent, then Cov(X, Y) = 0 (but not the other way around!)
- Cov(X, Y)=Cov(Y, X)

$$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - EX) \cdot (Y - \mathbb{E}Y)]$$

- If X and Y are independent, then Cov(X, Y) = 0 (but not the other way around!)
- Cov(X, Y)=Cov(Y, X)
- $Cov(X, Y) = \mathbb{E}(X \cdot Y) \mathbb{E}X \cdot \mathbb{E}Y$ (Exercise!)

$$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - EX) \cdot (Y - \mathbb{E}Y)]$$

 If X and Y are independent, then Cov(X, Y) = 0 (but not the other way around!)

•
$$Cov(X, Y) = Cov(Y, X)$$

- $Cov(X, Y) = \mathbb{E}(X \cdot Y) \mathbb{E}X \cdot \mathbb{E}Y$ (Exercise!)
- $\operatorname{Cov}(a \cdot X, Y) = a \cdot \operatorname{Cov}(X, Y) = \operatorname{Cov}(X, a \cdot Y)$

$$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - EX) \cdot (Y - \mathbb{E}Y)]$$

- If X and Y are independent, then Cov(X, Y) = 0 (but not the other way around!)
- Cov(X, Y)=Cov(Y, X)
- $Cov(X, Y) = \mathbb{E}(X \cdot Y) \mathbb{E}X \cdot \mathbb{E}Y$ (Exercise!)
- $\operatorname{Cov}(a \cdot X, Y) = a \cdot \operatorname{Cov}(X, Y) = \operatorname{Cov}(X, a \cdot Y)$
- $\operatorname{Cov}(X + Z, Y) = \operatorname{Cov}(X, Y) + \operatorname{Cov}(Z, Y)$

$$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - EX) \cdot (Y - \mathbb{E}Y)]$$

 If X and Y are independent, then Cov(X, Y) = 0 (but not the other way around!)

•
$$Cov(X, Y) = Cov(Y, X)$$

• $Cov(X, Y) = \mathbb{E}(X \cdot Y) - \mathbb{E}X \cdot \mathbb{E}Y$ (Exercise!)

•
$$\operatorname{Cov}(a \cdot X, Y) = a \cdot \operatorname{Cov}(X, Y) = \operatorname{Cov}(X, a \cdot Y)$$

- $\operatorname{Cov}(X + Z, Y) = \operatorname{Cov}(X, Y) + \operatorname{Cov}(Z, Y)$
- $\operatorname{Cov}(X, Z + Y) = \operatorname{Cov}(X, Z) + \operatorname{Cov}(X, Y)$

$$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - EX) \cdot (Y - \mathbb{E}Y)]$$

 If X and Y are independent, then Cov(X, Y) = 0 (but not the other way around!)

•
$$Cov(X, Y) = Cov(Y, X)$$

• $Cov(X, Y) = \mathbb{E}(X \cdot Y) - \mathbb{E}X \cdot \mathbb{E}Y$ (Exercise!)

•
$$\operatorname{Cov}(a \cdot X, Y) = a \cdot \operatorname{Cov}(X, Y) = \operatorname{Cov}(X, a \cdot Y)$$

- $\operatorname{Cov}(X + Z, Y) = \operatorname{Cov}(X, Y) + \operatorname{Cov}(Z, Y)$
- $\operatorname{Cov}(X, Z + Y) = \operatorname{Cov}(X, Z) + \operatorname{Cov}(X, Y)$

The last three rules describe the bilinearity of covariance.

Calculation rules for Correlations

$$\operatorname{Cor}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y}$$

•
$$-1 \leq \operatorname{Cor}(X, Y) \leq 1$$

• Cor(X, Y) = Cor(Y, X)

•
$$\operatorname{Cor}(X, Y) = \operatorname{Cov}(X/\sigma_X, Y/\sigma_Y)$$
Calculation rules for Correlations

$$\operatorname{Cor}(X, Y) = \frac{\operatorname{Cov}_{(X,Y)}}{\sigma_X \cdot \sigma_Y}$$

•
$$-1 \leq \operatorname{Cor}(X, Y) \leq 1$$

•
$$\operatorname{Cor}(X, Y) = \operatorname{Cor}(Y, X)$$

•
$$\operatorname{Cor}(X, Y) = \operatorname{Cov}(X/\sigma_X, Y/\sigma_Y)$$

Cor(X, Y) = 1 if and only if Y is an increasing, affine-linear function of X, that is, if Y = a ⋅ X + b for appropriate a > 0 and b ∈ ℝ.

Calculation rules for Correlations

$$\operatorname{Cor}(X, Y) = \frac{\operatorname{Cov}_{(X,Y)}}{\sigma_{X} \cdot \sigma_{Y}}$$

•
$$-1 \leq \operatorname{Cor}(X, Y) \leq 1$$

•
$$\operatorname{Cor}(X, Y) = \operatorname{Cor}(Y, X)$$

•
$$\operatorname{Cor}(X, Y) = \operatorname{Cov}(X/\sigma_X, Y/\sigma_Y)$$

- Cor(X, Y) = 1 if and only if Y is an increasing, affine-linear function of X, that is, if Y = a ⋅ X + b for appropriate a > 0 and b ∈ ℝ.
- Cor(X, Y) = −1 if and only if Y is an decreasing, affine-linear function of X, that is, if Y = a · X + b for appropriate a < 0 and b ∈ ℝ.

Variance and Correlation

Bernoulli distribution

A Bernoulli distributed random variable *Y* with success probability $p \in [0, 1]$ has expectation value

$$\mathbb{E}Y = p$$

and variance

$$Var Y = p \cdot (1 - p)$$

Variance and Correlation

Bernoulli distribution

A Bernoulli distributed random variable *Y* with success probability $p \in [0, 1]$ has expectation value

$$\mathbb{E}Y = p$$

and variance

$$Var \ Y = p \cdot (1 - p)$$

Proof: From
$$Pr(Y = 1) = p$$
 and $Pr(Y = 0) = (1 - p)$ follows
 $\mathbb{E}Y = 1 \cdot p + 0 \cdot (1 - p) = p.$

Variance and Correlation

Bernoulli distribution

A Bernoulli distributed random variable *Y* with success probability $p \in [0, 1]$ has expectation value

$$\mathbb{E}Y = p$$

and variance

$$Var \ Y = p \cdot (1 - p)$$

Proof: From
$$Pr(Y = 1) = p$$
 and $Pr(Y = 0) = (1 - p)$ follows
 $\mathbb{E}Y = 1 \cdot p + 0 \cdot (1 - p) = p.$

variance:

Var
$$Y = \mathbb{E}(Y^2) - (\mathbb{E}Y)^2$$

= $1^2 \cdot p + 0^2 \cdot (1 - p) - p^2 = p \cdot (1 - p)$

Let Y_1, \dots, Y_n be independent Bernoulli distributed with success probability *p*. Then follows

$$\sum_{i=1}^n Y_i =: X \sim \mathsf{bin}(n,p)$$

Var
$$X =$$

Let Y_1, \dots, Y_n be independent Bernoulli distributed with success probability p. Then follows

$$\sum_{i=1}^n Y_i =: X \sim \mathsf{bin}(n,p)$$

$$\operatorname{Var} X = \operatorname{Var} \left(\sum_{i=1}^{n} Y_i \right) =$$

Let Y_1, \dots, Y_n be independent Bernoulli distributed with success probability *p*. Then follows

$$\sum_{i=1}^n Y_i =: X \sim \mathsf{bin}(n,p)$$

$$\operatorname{Var} X = \operatorname{Var} \left(\sum_{i=1}^{n} Y_{i} \right) = \sum_{i=1}^{n} \operatorname{Var} Y_{i} =$$

Let Y_1, \dots, Y_n be independent Bernoulli distributed with success probability *p*. Then follows

$$\sum_{i=1}^n Y_i =: X \sim \mathsf{bin}(n, p)$$

$$\operatorname{Var} X = \operatorname{Var} \left(\sum_{i=1}^{n} Y_{i} \right) = \sum_{i=1}^{n} \operatorname{Var} Y_{i} = n \cdot p \cdot (1 - p)$$

Theorem (Expectation value and variance of the binomial distribution) If X is binomially distributed with parameters (n, p), we get:

 $\mathbb{E}X = n \cdot p$

und

$$Var X = n \cdot p \cdot (1 - p)$$

In a haploid population of *n* individuals, let *p* be the frequency of some allele *A*. We assume that (due to some simplifying assumptions?) the absolute frequency *K* of A in the next generation is (n, p)-binomially distributed.

For X = K/n, the relative frequency in the next generation follows:

$$\operatorname{Var}(X) = \operatorname{Var}(K/n) = \operatorname{Var}(K)/n^2$$

In a haploid population of *n* individuals, let *p* be the frequency of some allele *A*. We assume that (due to some simplifying assumptions?) the absolute frequency *K* of A in the next generation is (n, p)-binomially distributed.

For X = K/n, the relative frequency in the next generation follows:

$$\operatorname{Var}(X) = \operatorname{Var}(K/n) = \operatorname{Var}(K)/n^2 = n \cdot p \cdot (1-p)/n^2$$

In a haploid population of *n* individuals, let *p* be the frequency of some allele *A*. We assume that (due to some simplifying assumptions?) the absolute frequency *K* of A in the next generation is (n, p)-binomially distributed.

For X = K/n, the relative frequency in the next generation follows:

$$\operatorname{Var}(X) = \operatorname{Var}(K/n) = \operatorname{Var}(K)/n^2 = n \cdot p \cdot (1-p)/n^2$$

$$=rac{p\cdot(1-p)}{n}$$

If we consider the change of allele frequencies over m generations, the variances add up. If m is a small number, such that p will not change much over m generations, the is variance of change of allele frequencies is approximately

$$m \cdot \operatorname{Var}(X) = rac{m \cdot p \cdot (1-p)}{n}$$

(because the changes per generation are independent of each other) and thus, the standard deviation is about

$$\sqrt{rac{m}{n}\cdot p\cdot (1-p)}$$