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1 Examples

Complex Demography

?

substructure
population growth

recent speciation
introgression?

recombination within loci
can we still detect selection?

2 Wright Fisher model and Kingman’s Coalescent

Basic assumptions of the Wright Fisher model

• non-overlapping generations

• constant population size

• panmictic

• neutral (i.e. no selection)

• no recombination

• N diploid individuals  population of 2N haploid alleles (in case of autosomal DNA)
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Wright Fisher model
Each allele chooses an ancestor in the generation before.
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This induces a specific random distribution for the genealogies of the sampled alleles.
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Average time until two ancestral lineages coalesce: Ne generations.
Scale time: (1 time unit) = (Ne generations) ⇒ pairwise coalescence rate = 1
µ := mutation rate per generation

θ := 2Ne · µ

is the expected number of mutations between 2 random individuals
Let Ne −→∞

The Kingman Coalescent
21 3

Zeit in 
Generationen

Zeit in 
N Generatioenkk−1........

2N/(k(k−1))

2N/(6*5)

2N/(5*4)

2N/(4*3)

2N/(3*2)

2N/(2*1)

2/(6*5) = 0,667

2/(k(k−1)) = 2/(7*6) = 0,0476

2/(4*5) = 0,1

2/(4*3) = 0,167

2/(3*2) = 0,333

2/(2*1) = 1

E(total length)

= 2 ·
k−1∑
i=1

1/i

typical coalescent trees for n = 8:

4
7
1
8
3
5
2
6

1
2
8
4
5
3
6
7

1
7
2
6
5
8
3
4

7
2
5
8
3
4
1
6

4
5
7
3
8
2
1
6

7
6
1
3
2
8
4
5

8
1
4
5
7
3
2
6

7
5
8
4
6
3
1
2

2
1
8
4
6
5
3
7

2
5
1
4
6
8
3
7

5
6
1
7
2
3
4
8

4
6
2
5
8
1
3
7

simulated coalescent tree with n = 500:

4



3 Estimators for θ and Tajima’s π

Two estimators of θ
θπ (“Tajima’s π”) Average number of pairwise differences.

θW (“Watterson’s θ”) = number of mutations∑k−1
i=1 1/i

Both are unbiased estimators of θ, i.e. EθW = Eθπ = θ.
Example: Ward et al. (1991) sampled 360 bp sequences from mtDNA control region of n = 63 Nuu

Chah Nulth and observed 26 mutations.

θW =
26∑63
i=1 1/i

= 5.5123

This corresponds to 0.0153 Mutations per base and per 2 · Ne generations.Assuming a mutation rate
µ̂ ≈ 6.6 · 10−6 per generation per site this leads to an effective population size of

N̂e =
θW /360

2 · µ̂
≈ 1150 females

How precise is this estimation?

var(θW ) =
θ∑n

i=1 1/i
+ θ2 ·

∑n
i=1 1/i2

(
∑n
i=1 1/i)

2

Theorem 1 Any unbiased estimator of θ has variance at least

θ∑n−1
k=1

1
k+θ

.

(Here, we assume that the estimation is based on a single locus without recombination).
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For the Nuu Chah Nulth data we get:

θW = 5.5123

σθW = 3.42

Confidence range? (2σ-rule would leed to negative values...)
Conclusion: Ne could perhaps also be 200 or 3000 females.
How can we improve this estimate? Sample more individuals? How many individuals n would we

need to get σθW = 0.1 ·θ? From the formula for varθW follows that we need n ≈ 2 ·e100/θ. For θ = 5, this
is n ≈ 109. For θ = 1, this is n ≈ 1043. number of water molecules on earth≈ 1047 number of seconds
since big bang≈ 4.3 · 1017

Solution: sample many loci!

References

[Fel06] J. Felsenstein (2006) Accuracy of Coalescent Likelihood Estimates: Do We Need More Sites,
More Sequences, Or More Loci?Mol. Biol. Evol., 23.3: 691–700.

How to sample if

• one read is 600 bp long

• costs for developing a new locus is 40$

• costs for collecting a sample is 10 or 0.10$

• costs for a single read is 6$

• you can spend 1000$

• true θ is 1.8 (per locus)

Optimal sampling scheme: n = 7 or n = 8 , respectively, individuals and 11 loci.
With this sampling scheme we get:

σθW ≈ 0.2 · θ and σθπ ≈ 0.22 · θ

(all this is based on infinte-sites assumptions)

Tajima’s D
π π WWθ  > θ   : θ  < θ   :

D := θπ−θW
σ̂θπ−θW

substructure?
population
growth?
selection?
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4 Outline of methods

4.1 ML with Importance Sampling

The Likelihood

ψ = (ψi)i vector of model parameters

D sequence data

LD(ψ) = Prψ(D) =

∫
all Genealogies G

Prψ(D | G) · Pψ(dG).

Importance Sampling
Draw G1, . . . , Gk (approx.) i.i.d. with density Q and approximate∫

Prψ(D | G) Pψ(dG) ≈ 1

k

k∑
i=1

Prψ(D | Gi) · Pψ(Gi)

Q(Gi)
.

efficient for ψ with
Prψ(D | Gi) · Pψ(Gi) ≈ Q(Gi)

Methods differ in their choice of Q.

Griffiths & Tavaré (1994)
Q: Generate G backwards in time, greedy proportional to coalescence and mutation probabilities.

Choose between all allowed events.
Good for infinite sites models, inefficient if back-mutations are allowed.

4.2 MCMC for frequentists and Bayesians

Felsenstein, Kuhner, Yamato, Beerli,. . .
For some initial ψ0, sample Genealogies G approx. i.i.d. according to Prψ0

(G | D) by Metropolis-
Hastings MCMC.

Coalescent is a natural prior for G!
Two flavours:

for frequentists: use G1, . . . , Gk for Importance Sampling

Optimize approx. Likelihood → ψ1

Iterate with ψ0 replaced by ψ1

for Baysians: Then sample ψ conditioned on Genealogies and iterate to do Gibbs-sampling from
Pr(ψ,G | D).

Problems of full-data methods

• usual runtime for one dataset: several weeks or months

• complex software, development takes years

• most programs not flexible, hard to write extensions
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4.3 Approximate Bayesian Computation (ABC)

Pritchard et al. (1999)
Approximate Bayesian Computation

1. Select summary statistics S = (Si)i and compute their values s = (si)i for given data set

2. Choose tolerance δ

3. repeat until k accepted ψ′:

• Simulate ψ′ from prior distribution of ψ

• Simulate genealogy G according to Prψ′(G).

• Simulate data and compute values s′ of S

• accept ψ′ if ‖s− s′‖ ≤ δ

Only possible if a few summary statistics suffice. We will later discuss refinements and extensions of
this approach.

Beaumont, Zhang, Balding (2002)

“[...] the MCMC-based method is consistently superior to the summary-statistics-based methods and
highlights that it is well worth making the effort to obtain full-data inferences if possible.”

“[...] there are advantages to the use of summary statistics, both in the ease of implementation and in
the time to obtain the results [...]”

“Further research is needed to find a more rigorous way for choosing summary statistics, including the
use of orthogonalization and ‘projection-pursuit’ methods”

5 Importance sampling for genealogies

D: data set of DNA sequences sampled from a population. In case of a structured population sampling
locations are known.

Aim: Estimate parameters Θ := (θi,Mij)ij .
Maximum-Likelihood (ML) approach: Find the set of parameter values that maximizes the likelihood:

Θ̂ := arg max
Θ

PrΘ(D)

How to compute the likelihood?

LD(Θ) = PrΘ(D) =
∑
G

PrΘ(G) · PrΘ(D | G).

More precisely:

LD(Θ) = PrΘ(D) =

∫
all genealogies G

PrΘ(D | G) PΘ(G)dG

where PΘ(G) is the density of the (structured) coalescent distribution at the genealogy G.
What does this mean?
And what is dG?
Let’s first ask: What is the dx in ∫ 1

0

x2dx ?

dx is used in an ambigous way. This is sloppy but intuitive.
It means “a small environment around x”, but also the size of this environment.
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To explain this we be a little bit less sloppy for a few minutes and write dx for the environment and
dx for its size.

For some small n ∈ N and x ∈ R we can define dx = [x− 1
2n , x+ 1

2n ].Then, dx = 1/n.

We can approximate
∫ 1

0
x2dx by

∑
x∈{ 1

n ,
2
n ,...,

n
n}

x2 · 1

n
=

∑
x∈{ 1

n ,
2
n ,...,

n
n}

x2 · dx n→∞→
∫ 1

0

x2dx

dx is always meant to be “infinitesimally small”, i.e. dx→ 0

What is a probability density?
P (x) is the probability density of a random variable X in x if

Pr(X ∈ dx) ≈ P (x) · dx

and the “≈” becomes a “=” for “infinitesimally small” dx. This is again sloppy and intuitive.It actually
means that

lim
dx→0

Pr(X ∈ dx)

dx
= P (x)

It then follows that

Pr(X ∈ [a, b]) =

∫ b

a

P (x)dx.

Examples
The density of the exponential distribution with rate λ at x is

λe−λx.

The density of the normal distribution with mean value µ and standard deviation σ is

1

σ
√

2π
· e−

(x−µ)2

2σ2 .

Now for dG
Let dG be a small environment around the genealogy G. This means, dG consists of all genealogies

G′ that have the same topology as G and if τ1, . . . , τn are the points in time where coalescent events or
migrations of lineages or thelike occurr in G, and τ ′1, . . . , τ

′
n are the corresponding points in time for G′,

then
∀k≤n|τk − τ ′k| ≤ ε.

Thus, the volume dG of dG can be defined to be (2ε)n. The density PΘ(G) is then defined by

PrΘ(G′ ∈ dG) ≈ PΘ(G) · dG

where PrΘ(G′ ∈ dG) is the probability that a genealogy G′ that was generated according to the prob-
ability distribution of a structured coalecent with parameter values Θ results to be in the environment
dG of G, or, more precisely:

PrΘ(G′ ∈ dG)

dG

dG→0−→ PΘ(G)

The equation

LD(Θ) = PrΘ(D) =

∫
all genealogies

PrΘ(D | G) PΘ(G)dG

should now make some more sense to us. But how can we compute it? We use Importance Sampling.

How can we compute the integral
∫ b
a
h(x)dx of this function h?
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h

Approximation by a step function: If x1, . . . , xk are the means of the partition intervals and c = b−a
k

is their width, then ∫ b

a

h(x) dx ≈
k∑
i=1

c · h(xi) =
b− a
k

k∑
i=1

h(xi).

Maybe save some time by just taking a sample of k values h(x).∫ b

a

h(x) dx ≈ b− a
k

k∑
i=1

h(Xi) =
1

k

k∑
i=1

h(Xi)
1
b−a

.

f

Maybe we know a function f that approximates h

f

We can sample more from the relevant range but we have to correct this by the Importance-Sampling
formula: ∫

h(x) dx ≈ 1

k

k∑
i=1

h(Xi)

q(Xi)

where X1, . . . , Xk are independent samples from a distribution whose density q is proportional to f . The
closer f is to h, the better the approximation.
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Sketch of proof of the IS formula

∫ b

a

h(x)dx =

∫ b

a

h(x)

q(x)
· q(x)dx

= Eq
h(X)

q(X)

=
1

k
·
k∑
i=1

h(Xi)

q(Xi)
,

where Eq is the expectation value under the assumption that X has probability density q, and X1, . . . , Xk

are independently sampled with probability density q.
Importance Sampling for computing the likelihood of for a range of parameter values Θ: Generate

genealogies G1, . . . , Gk (more or less) independently according to a probability density Q(Gi). Then,

LD(Θ) =

∫
all genealogies G

Pr
Θ

(D|G) · PΘ(G)dG

≈ 1

k

k∑
i=1

PrΘ(D|Gi) · PΘ(Gi)

Q(Gi)
.

Method differ in their choice of Q and will be most efficient if

Q(G) ≈ Pr
Θ

(D|G) · PΘ(G).

6 Griffiths und Tavaré

References

[1] Griffiths und Tavaré (1994) Ancestral Inference in Population Genetics Statistical Science 9(3):
307-319. http://www.stats.ox.ac.uk/∼griff/software.html

Start with an initial guess Θ0. Define the history of a sample to be H = (H1, H2, . . . ,H`), where the
historical events Hk can be

1. lineages i and j coalesce

2. mutation on lineage i

3. lineage i from island a traces back to island b

and H1, H2, . . . ,H` goes from present to past.
For the Importance Sampling procedure, many histories H(1), H(2), . . . ,H(M) are generated. For each

history H(i) are sampled H
(i)
1 , H

(i)
2 , . . . step by step from the tips to the root of the tree. Given the

data, not all events are possible. E.g., lineages cannot coalesce if they are of different allelic type. If the
infinite-site mutation model is used (to make the Griffith-Tavaré scheme efficient), not all mutations are

allowed.
Let bij(θ0) be the probability of the jth event h = H

(i)
j in the ith sampled history H(i) and let

(aijk(θ0))k be the series of rates of all events that would have been allowed for this step. Then, the prob-
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ability to choose h was bij(θ0)/
∑
k aijk(θ0). Thus,

∏
j bij(θ0)/

∑
k aijk(θ0) is the importance-sampling

probability Qθ0(H(i)) of the entire history H(i). According to the importance-sampling formula we get
for all θ that are not too far from θ0:

L(D)(θ) ≈
1

M

M∑
i=1

∏
j

bij(θ) ·
∑
k aijk(θ0)∑

k aijk(θ) · bij(θ0)

• Advantage over MCMC: Histories are sampled really independent of each other.

• Disadvantage: For finite-sites models many different mutation events are allowed in each step,
which makes the method very inefficient. Stephens and Donnelly (2000) found a solution for this,
which we will discuss later in the semester.

7 Lamarc (and Migrate)

Rate parameters and time scales
For autosomal DNA:

per per 2Ni per 1/µ
generation generations generations

mutation rate µ θi
2 = 2Niµ 1

migration rate of

ancestral lineage from i mij γij = 2Nimij Mij =
mij
µ =

2γij
θi

tracing back to j
coalescence
on island i 1/(2Ni) 1 1

2Niµ
= 2

θi

Number of alleles on island i that choose their parent allele on island j:

2Ni ·mij = γij

Combining IS with MCMC

References

[1] M. Kuhner, J. Yamato, J. Felsenstein (1995) Estimating effective population size and mutation rate
from sequence data using Metropolis-Hasings sampling. Genetics 140: 1421–1430

[2] P. Beerli, J. Felsenstein (2001) Maximum likelihood estimation of a migration matrix and effective
population sizes in n subpopulations by using a coalescent approach.PNAS 98.8: 4563–4568

• MIGRATE-N http://popgen.sc.fsu.edu/Migrate/Migrate-n.html

• LAMARC http://evolution.genetics.washington.edu/lamarc/lamarc.html

LAMARC strategy

Begin with initial parameter guess Θ0 = (θ
(0)
1 , θ

(0)
2 , . . . ,M

(0)
12 ,M

(0)
12 ,M

(0)
23 , . . . ), repeat the following

steps for i = 0, 1, 2, . . . ,m− 1

1. Metropolis-Hastings MCMC sampling of genealogies G1, G2, . . . , Gk (approx.) according to the
posterior density pΘi(G|D) given the data D. What is Metropolis-Hastings MCMC?

12

http://popgen.sc.fsu.edu/Migrate/Migrate-n.html
http://evolution.genetics.washington.edu/lamarc/lamarc.html


2. importance sampling:

LD (Θ)

LD (Θi)
≈ 1

k

k∑
j=1

pΘ (Gj)

pΘi (Gj)
=: FΘi(Θ)

Why is this justified as importance sampling?

3. Θi+1 := arg maxΘ FΘi(Θ)

and hope that Θm ≈ Θ̂ = arg maxΘ LD(Θ)

Justification of step 2

LD (Θ)

LD (Θi)
≈

1
k

∑k
j=1

PrΘ(D|Gj)·pΘ(Gj)
pΘi

(Gj |D)

PrΘi(D)
(importance sampling)

=
1

k

k∑
j=1

PrΘ (D|Gj) · pΘ (Gj)

pΘi (Gj |D) · PrΘi(D)

=
1

k

k∑
j=1

PrΘ (D|Gj) · pΘ (Gj)

pΘi (Gj , D)

=
1

k

k∑
j=1

PrΘ (D|Gj) · pΘ (Gj)

PrΘi (D|Gj) · pΘi (Gj)
=

1

k

k∑
j=1

pΘ (Gj)

pΘi (Gj)

The last equation follows from PrΘ (D|Gj) = PrΘi (D|Gj), which holds since the mutation rate is always
1 and thus the D is independent of Θ when G is given.

Markov-Chain Monte Carlo (MCMC)
MCMC: construct Markov chain X0, X1, X2, ... with stationary distribution Pr(G | D) and let it

converge.

Markov property:

∀i,x : Pr(Xi+1 = x|Xi) = Pr(Xi+1 = x|Xi, Xi−1, . . . , X0)

In words: The probabilty for the next state may depend on the current state but not additionally on the
past.

“Equilibrium” or “Stationary distribution” p:

∀i,x : p(x) =
∑
y

p(y) · Pr(Xi+1 = x|Xi = y)

In words: If you choose an element of the state space according to p and go one step, the probability
to be in x is p(x) not only in the first step but also in the second step and consequently in any further
step.When you are once in equilibrium, you’ll be forever.

Theorem 2 If X0, X1, X2 . . . is a aperiodic, irreducible Markov chain on a finite state space S with
equilibrium p, it will converge against the equilibrium p in the following sense:

∀x,y : Pr (Xn = x|X0 = y)
n→∞−→ p(x)

Irreducible means:
∀x,y∃i∀m : Pr(Xi+m = x|Xm = y) > 0

Aperiodic means:
∀x,y,m : gcd ({k ∈ N|Pr(Xk+m = x|Xm = y) > 0}) = 1,

where gcd means “greatest common divisor”.
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(let’s watch a Tcl/Tk simulation of a Markov chain)
“Equilibrium” or “Stationary distribution” p:

∀i,x : p(x) =
∑
y

p(y) · Pr(Xi+1 = x|Xi = y)

Stronger condition than equilibrium: reversibility (or “detailed balance”)

p(x) · Pr(Xi+1 = y|Xi = x) = p(y) · Pr(Xi+1 = x|Xi = y)

In words: If you start in equilibrium, and it is reversible, a move from x to y is as probable as a move
from y to x.

Alternative explanation: If you watch a movie of the process starting in a reversible equilibrium, the
probability of what you see does not change if you watch the movie backwards.

Given the probability distribution Pr(.|D), how can we construct a Markov chain that converges
against it?

One possibility: Metropolis-Hastings
Given current state Xi = x propose y with Prob. Q(x→ y)
Accept proposal Xi+1 := y with probability

min

{
1,
Q(y → x) · Pr(y | D)

Q(x→ y) · Pr(x | D)

}
otherwise Xi+1 := Xi

(All this also works with continuous state space, with some probabilities replaced by densities.)

Why Metropolis-Hastings works

Let’s assume that Q(y→x)·Pr(y | D)
Q(x→y)·Pr(x | D) ≤ 1. (Otherwise swap x and y in the following argument).Then,

if we start in x, the probability Pr(x→ y) to move to y (i.e. first propose and then accept this) is

Q(x→ y) · Q(y → x) · Pr(y | D)

Q(x→ y) · Pr(x | D)
= Q(y → x)

Pr(y | D)

Pr(x | D)

If we start in y, the probability Pr(y → x) to move to x is

Q(y → x) · 1,

since our assumption implies Q(x→y)·Pr(x | D)
Q(y→x)·Pr(y | D) ≥ 1.

This implies that the reversibility condition

Pr(x | D) · Pr(x→ y) = Pr(y | D) · Pr(y → x)

is fulfilled.This implies that Pr(. | D) is an equilibrium of the Markov chain that we have just constructed,
and the latter will converge against it.(let’s watch a simulation in R)

Applying Metropolis-Hastings

• You are never in equilibrium (your target distribution), but you can get close if you run enough
steps.

• You can take more than one sample from the same chain, but you should run enough steps between
the sampling steps to make the sampled objects only weakly dependent.

• Your initial state may be “far from equilibrium” (i.e. very improbable). So you should run the
chain long enough before you start sampling (“burn-in”).
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Lamarc’s Metropolis-Hastings step
Target distribution density: pΘ(G|D), where Θ is the current set of parameter values, G is the

genealogy and D is the data.

Proposal chain: Remove a randomly picked branch and let the ancestral lineage of the isolated subtree
coalesce with the rest accoring to Θ.
⇒

Q(G′ → G)

Q(G→ G′)
=

pΘ(G)

pΘ(G′)

⇒ The MH acceptance probability is:

min

{
1,
Q(G′ → G) · pΘ(G′|D)

Q(G→ G′) · pΘ(G|D)

}
= min

{
1,
pΘ(G) · pΘ(G′, D)/Pr(D)

pΘ(G′) · pΘ(G,D)/Pr(D)

}
= min

{
1,
pΘ(G) · Pr(D|G′) · pΘ(G′)

pΘ(G′) · Pr(D|G) · pΘ(G)

}
= min

{
1,

Pr(D|G′)
Pr(D|G)

}
How to compute Pr(D|G)? Felsenstein’s pruning!

We assume that all sites evolve independent of each other. ⇒

Pr(D|G) =
∏
i

Pr(Di|G),

where Di is the i-th column in the alignment.
How to compute Pr(Di|G)? For any nucleotides (or amino acids) x, y let px be the frequency of x

and Prx→y(`) be the probability that a child node has type y, given that the parent node had type x
and the branch between the two nodes has length `. Let’s first assume that Di knows the nucleotides
at the inner nodes of G:

A T A C T

C
A

A

C

`1 `1

`3

`2 `2

`4

`6
`5

Pr(Di|G)

= pC · PrC→A(`5) · PrC→C(`6) ·
PrA→A(`3) · PrA→A(`4) ·
PrA→A(`1) · PrA→T (`1) ·
PrC→C(`2) · PrC→T (`2)·

How to compute or define Prx→y(`)?

Jukes-Cantor model for DNA evolution

• All nucleotide frequencies are pA = pC = pG = pT = 0.25.

• “mutation events” happen at rate λ and let the site forget its current type and select a new one
randomly from {A,C,G,T}. (New one can be the same as old one.)

⇒
Prx→y(`) =

{
=

(
1− e−λ`

)
· 1

4 if x 6= y
= e−λ` +

(
1− e−λ`

)
· 1

4 if x = y

(More sophisticated sequence evolution models in the phylogenetics part of the lecture.)
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Felsenstein’s pruning algorithm
How to compute Pr(Di|G) if (as usual) the data do only contain the nucleotides for the tips of the

tree?

For any node k of the genealogy and any nucleotide (or amino acid) x define wk(x) to be the probability
that, given the nucleotide (or a.a.) in k is x, the tipps that stem from k get the nucleotides (or a.a.)
given in Di. Then

Pr(Di|G) =
∑

x∈{A,C,G,T}

px · wr(x),

where r is the root of the genealogy,and for any node k with child nodes i and j and corresponding
branch lengths `i and `j we get:

wk(x) =

 ∑
y∈{A,C,G,T}

Prx→y(`i) · wi(y)

 ·
 ∑
z∈{A,C,G,T}

Prx→y(`j) · wj(z)



Felsenstein’s pruning algorithm
If b is a tip of G, then wb(x) is 1 if x is the nucleotide at b in Di, and wb(x) is 0 otherwise.

With the recursion forwk(x) given above, we can compute wk(x) for all x and all k starting with the
tips and ending in the root r.

From the wr(.) we can compute Pr(Di|G).

Ancestral Recombination Graph

When recombination occurs, ancestral lineages for
the left and the right part of the sequence split up.
Each site has a tree-shaped ancestry, and these trees
have complex stochastic dependencies.
LAMARC can also sample Ancestral Recombination
Graphs instead of trees.

References

[1] I. J. Wilson, D. J. Balding (1998) Genealogical inference from microsatellite data. Genetics 150:
499-510

• assign data to inner nodes

• when choosing new parent node take mutation probs into account

• more intelligent proposals but larger state space

• may be superior for microsatellite data
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LAMARC Search Strategies

initial chains: several short chains to optimize driving values

final chain: longer chain to narrow the final interval

burn-in: discard e.g. first 5% of each chain

symptom of too few chains: parameters are still changing directionally

θ0

θ2
θ3

θ4

θ5
θ6

θ7

θ1

symptom of too short chains: parameters leap wildly from chain to chain

θ0

θ2
θ3

θ5

θ7

θ1

θ4

θ6

(MC)3=MCMCMC
=Metropolis-Coupled MCMC= MCMC with “heated chains”.
If βi ∈ (0, 1] is heat parameter for chain i, then chain i samples from distribution pβi : x 7→

pβi(x)·const, with β1 = 1.
The usual MH acceptance prob. for chain i is

min

{
1,
p(y)βi

p(x)βi
· Qy→x
Qx→y

}
.

Sometimes a swap between the current state xi of chain i and the current state xj of chain j is proposed.
The acceptance with probability

min

{
1,
p(xi)

βi

p(xj)βi
· p(xj)

βj

p(xi)βj

}
fulfills the requirements of both chaines (check this!).

Bayesian Lamarc
Aim: sample parameter values Θ (and Genealogies) according to the posterior probability distribution

Pr(Θ|D) (or Pr(Θ, G|D)) given the data D.

• needs priors Pr(Θ) for the parameters

• Gibbs sampling scheme: iterate uptdate of the Θ, given D and G, and update of G, given Θ and
D.

Gibbs samping
Assume we want to sample from a joint distribution Pr(A = a,B = b) of two random variables,

and for each pair of possible values (a, b) for (A,B) we have Markov chains with transition probabilities

P
(A=a)
b→b′ and P

(B=b)
a→a′ that converge against Pr(B = b|A = a) and Pr(A = a|B = b).

Then, any Markov chain with transition law

P(a,b)→(a′,b′) =



1
2P

(B=b)
a→a + 1

2P
(A=a)
b→b if a = a′ and b = b′

1
2P

(B=b)
a→a′ if a 6= a′ and b = b′

1
2P

(A=a)
b→b′ if a = a′ and b 6= b′

0 else
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Priors in Bayesian Lamarc
When new values for Θ are to be proposed,

• e.g. the new values of θ and the recombination rate are chosen according to a exponential prior
that is uniform on the log scaled interval [10−5, 10]and the

• growth rate g is chosen uniformly from [−500, 1000].

• For the MH acceptance step use a U that is uniform on [0, 1] and accept if

U <
Pr(G|Θproposal)

Pr(G|Θold)

1 every or 
every 2nd
generation

1 every 3rd
generation

4
2

0
0

0
0

 y
e

a
rs

 /
 2

8
0

0
0

 g
e

n
e

ra
ti

o
n

s

Won, Hey (2005)

Hey, Nielsen (2007)

5300

Chimps

Ancestral

Western Chimps
7600

Central Chimps

27900

give confidence ranges

8 IM, IMa, IMa2

References

[1] Nielsen, R. and J. Wakeley 2001. Distinguishing migration from isolation: a Markov chain Monte
Carlo approach.Genetics 158:885-896

[2] Hey, J., and R. Nielsen. 2004. Multilocus methods for estimating population sizes, migration rates
and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. per-
similis. Genetics 167:747-760

[3] Hey, J., and R. Nielsen. 2007. Integration within the Felsenstein equation for improved Markov
chain Monte Carlo methods in population genetics.PNAS 104:27852790.

[4] Hey J. 2010. Isolation with Migration Models for More Than Two Populations. Mol Biol Evol 27:
905-20

m1

m2

N1 N2

NA

time

t

mi: proportion of individuals of pop. i that are replaced by
immigrants

Ni: effective size of pop. i

NA: effective size of ancestral population

t: number of generations since the split

µ: mutation rate per generation

18



Asymptotics and rescaled parameters:

Ni → ∞ 2Nimi → Mi

N2/N1 → r 4N1µ → θ

NA/N1 → a t/(2N1) → τ

Θ = (θ, r, a, τ,M1,M2)

IM is an implementation of a Bayesian sampler with flat priors, e.g.

Mi ∼ Unif([0, 10]), τ ∼ Unif([0, 10])
log(r) ∼ Unif([−10, 10]), log(a) ∼ Unif([−10, 10])

Proposals G∗ for genealogy updates like in Lamarc with MH acceptance probability

min

{
1,

Pr(D|Θi, G
∗)

Pr(D|Θi, Gi)

}
,

where Gi is the current genealogy and Θi is the current vector of parameter values in MCMC step i.
Proposals for parameter updates: Given the current value λ of some parameter, the new value is

proposed from Unif[λ−∆, λ+ ∆]. MH acceptance probability:

min

{
1,
p(Gi|Θ∗)
p(Gi|Θi)

}
IM can handle datasets of unlinked loci (but NO intralocus-recombination!).
D = (D1, . . . , Dn), Di: data from locus i. G = (G1, . . . , Gn), Gi: genealogy of locus i (including

topology, branch lengths, migration times, coalescent times)

p(Θ|D) =
p(Θ)

Pr(D)
·
n∏
i=1

∫
Gi

Pr(Di|Gi,Θ) · p(Gi|Θ)dGi

additional parameters: locus-specific mutation scalars ui with constraint
∏
i ui = 1.

Updating (u1, . . . , un): choose i and j and propose

u∗i = x · ui and u∗j = uj/x,

where log(x) ∼ Unif(−δ, δ).
In IMa, some MCMC steps are replaced by faster numerical computation. We discuss this first in a

1-population model with sample size m.

• Let τk be the time while the number of lineages is k, measured in 1/µ generations.

• ⇒ coalescence rate is 2/θ

• ⇒ p(G|Θ) =
(

2
θ

)m−1 · exp(−2 · fm/θ),

• where fm :=
∑m
i=2 τi · i · (i− 1)

Assume a flat prior θ ∼ Unif(0, θmax).This implies

p(G) =

∫ θmax

0

p(θ) · p(G|θ)dθ =
2

θmaxf
m−2
m

· Γ(m− 2, 2fm/θmax),

where Γ(a, b) =
∫∞
b
xa−1e−xdx is the “incomplete Gamma-function”.

This implies

p(θ|G) =
p(G|θ) · p(θ)

p(G)
=

(2fm/θ)
m−2

exp (−2fm/θ)

θ · Γ(m− 2, 2fm/θmax)

Hence, given fm, the posterior probability can be computed and the expression above gives a smooth
curve.
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• works in a similar way for models with subpopulations with migration

• for the split time τ a standard MH step is required

• population growth not allowed in IMa (other than IM)

• “branch sliding” proposals for G: move randomly chosen branch a random distance. Current
migration events are removed and replaced by a Poisson number of migration events conditioned
on odd or even.

Likelihood Ratio Testing with IMa
Let

Θ̂0 = argmax p(Θ|D) in the general model

and
Θ̂r = argmax p(Θ|D) in a restricted model, e.g. without migration.

Since we use uniform priors for all parameters (some log-scaled), we get

p(Θ0|D)

p(Θr|D)
=

Pr(D|Θ0) · p(Θ0)

Pr(D|Θr) · p(Θr)
=
LD(Θ0)

LD(Θr)

Hence, Λ̂ = log
(
p̂(Θ0|D)
p̂(Θr|D)

)
is an approximation of the log likelihood-ratio and thus, 2Λ̂ is approximately

χ2
d-distributed under the null hypothesis of the restricted model, where d is the number of additional

parameters in the general model.However, this approximation is only appropriate for extremely large
datasets. IMa assesses the significance of Λ̂ by comparing it to values of Λ̂ from simulations based on
the null hypothesis (restricted model).

Bayes factors
Other authors use so-called Bayes factors to decide between two models M1 and M2:

BM1,M2
=

Pr(D|M1)

Pr(D|M2)
,

where

Pr(D|M) =

∫
p(D,Θ|M)dΘ

=

∫
Pr(D|M,Θ) · p(Θ|M)dΘ

≈

 1

m

m∑
j=1

1

Pr(D|Θj ,M)

−1

,

where Θ1, . . . ,Θm are the samples from an MCMC run.

Why harmonic mean estimator for Pr(D)?
Let θ1, . . . , θm be (approx.) independent samples according to p(θ|D). Then,

1 =

∫
p(θ)dθ ≈ 1

m

m∑
i=1

p(θi)

p(θi|D)
(importance sampling)

=
1

m

m∑
i=1

p(θi)
Pr(D|θi)·p(θi)

Pr(D)

(Bayes formula)

= Pr(D) · 1

m

m∑
i=1

1

Pr(D|θi)
.
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⇒
Pr(D) ≈ 1

1
m

∑m
i=1

1
Pr(D|θi)

Advantages of Bayes factors:

• can also support the restriced model while tests can only support the general model by statistically
rejecting the restricted one.

• can also compare non-nested models

Problems:

• Prior has influence even for large amount of data

• harmonic mean estimator can have infinite variance (more sophisticated methods exist)

• Tests and Bayesian model selection can lead to opposite results (Lindley’s paradox).

9 Approximate Bayesian Computation (ABC)

Problems of full-data methods:

• usual runtime for one dataset: several weeks or months

• complex software, development takes years

• most programs not flexible, hard to write extensions
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growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol.
16(12):1791–1798

[BZB02] M.A. Beaumont, W. Zhang, D.J. Balding (2002) Approximate Bayesian Computation in
Population Genetics. Genetics 162:2025–2035

[MMPT03] P. Marjoram, J. Molitor, V. Plagnol, S. Tavaré (2003) Markov chain Monte Carlo without
likelihoods. Proc. Natl. Acad. Sci. USA 100:15324–15328

[WCE09] D. Wegmann, C. Leuenberger, L. Excoffier (2009) Efficient approximate Bayesian computa-
tion coupled Markov chain Monte Carlo without likelihood. Genetics 182:1207

Pritchard et al. (1999)

• Compute MRCA of human Y chromosome in population models with growth.

• Find strong signal of population expansion in all populations.

• Explanations: recent expansion from a small ancestral population in the last 120,000 years or
natural selection on the Y chromosome.

• data: 8 microsatellite loci from 445 humans

• Try various microsatellite mutation models

• Use summary statistics:

1. mean accross loci in the variance of repeat numbers

2. mean effective heterozygosity

3. number of distinct haplotypes
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Pritchard et al. (1999)
Approximate Bayesian Computation

1. Select summary statistics S = (Si)i and compute their values s = (si)i for given data set

2. Choose tolerance δ

3. repeat until k accepted parameter combinations Θ′:

(a) Simulate Θ′ from prior distribution of Θ

(b) Simulate genealogy G according to PrΘ′(G).

(c) Simulate data and compute values s′ of S

(d) accept Θ′ if ‖s− s′‖ ≤ δ

Only possible if a few summary statistics suffice. Otherwise acceptance will be rare.
Ideas of Beaumont, Zhang, Balding (2002):

• combine ABC with local regression:

Θ

S

s

Θtrue Θ

S

s

Simulate data for some parameter combinations Θ and compute corresponding s.

classical ABC samples for p(Θ|S = s) Θ

S

s

Θ

S

s

Θ

S

s

regression-ABC sample for p(Θ|S = s)Θ

S

s

• Accept in a wider range but put a smaller weight on s′ if |s− s′| is large.

s S

weight
1

0

classical ABC

s S

weight
1

0

ABC with

local regression
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Epanechnikov-Kernel

Kδ(t) =

{
c ·
(

1−
(
t
δ

)2)
/δ for t ≤ δ

0 for t > δ

where c is a the normalizing constant:

c = 1

/∫ δ

−δ

(
1−

(x
δ

)2
)
/δ dx
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Epanechnikov-Kernels with

δ = 1

and δ = 2

Beaumont, Zhang, Balding (2002)
Simulate pairs (Θ(i), s(i)) and fit local regression model, i.e. find α and β to minimize∑

i

(
Θ(i) − α− (s(i) − s)Tβ

)2

·Kδ(‖s(i) − s‖),

where ||v|| =
√∑

i v
2
i (or some other vector norm).

Consider
Θ

(i)
∗ = Θ(i) − (s(i) − s)T β̂

as random sample from Pr(Θ | S = s).
Posterior density estimation:

p̂(Θ0 | S = s) =

∑
iK∆(Θ

(i)
∗ −Θ0) ·Kδ(‖s− s(i)‖)∑
j Kδ(‖s− s(j)‖)

where ∆ = density estimation bandwidth.

Solution of the local regression problem

Solution for j-th parameter: (α̂, β̂1, . . . , β̂k) =
(
XTWX

)−1
XTWΘ(j), where

Θ(j) =


Θ

(j)
1

Θ
(j)
2
...

Θ
(j)
m

: Values of the j-th parameter from m simulations,

s = (s(1), . . . , s(k)): Vector of summary statistics for observed data,

si = (s
(1)
i , . . . , s

(k)
i ): Vector of summary statistics from i-th simulation,

X =


1 s

(1)
1 − s(1) · · · s

(k)
1 − s(k)

1 s
(1)
2 − s(1) · · · s

(k)
2 − s(k)

...
...

. . .
...

1 s
(1)
m − s(1) · · · s

(k)
m − s(k)

 and

W is diagonal matrix with diagonal entries Kδ(||s1 − s||), . . . ,Kδ(||sm − s||).
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Beaumont, Zhang, Balding (2002)
ABC with local regression

1. Select summary statistics S = (Si)i and compute their values s = (si)i for given data set

2. Choose tolerance δ and bandwidth ∆

3. repeat for i = 1, . . . ,m:

(a) Simulate Θ(i) from prior distribution of Θ

(b) Simulate genealogy G according to PrΘ(i)(G).

(c) Simulate data and compute values s(i) of S

4. (α̂, β̂) = arg minα,β
∑m
i=1

(
Θi − α− (si − s)Tβ

)2 ·Kδ(||si − s||)

5.
Θ

(i)
∗ := Θ(i) − (s(i) − s)T β̂

6. Approximate p(Θ|S = s) by ∑
iK∆(Θ

(i)
∗ −Θ) ·Kδ(‖s− s(i)‖)∑
j Kδ(‖s− s(j)‖)

Summary statistics used by Beaumont et al. (2002) for microsatellite data:

1. mean accross loci in the variance of repeat numbers

2. mean effective heterozygosity

3. number of distinct haplotypes

4. mean accross loci of kurtosis of repeat numbers

5. variance accross loci of variance of repeat numbers

6. mean accross loci of maximum allele-frequency

7. multivariate kurtosis

8. linkage disequilibrium (LD) measured with Hudson’s ∆2

Marjoram et al. (2003) MCMC without likelihoods
Aim: For given dataD with summary statistics S = s sample paramter vectors according to p(Θ | ||S−

s|| ≤ ε).

1. If current parameter estimation is Θ′, propose Θ∗ with probability QΘ′→Θ∗

2. Simulate data D∗ according to Θ∗ and compute their summary statistics s∗.

3. If ||s∗ − s|| > ε reject proposal, else accept with probability

min

{
1,
p(Θ∗) ·QΘ∗→Θ′

p(Θ′) ·QΘ′→Θ∗

}
.

4. repeat steps 1 to 4.
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Application example: Nuu Chah Nulth data, n=63 samples of HVR-I.

Estimate θ and time to the MRCA based on F84 substitution model.

Summary statistics: number of variable sites and number of haplotypes.

Simple approach: when updating parameters, generate entirely new tree.(will usually be rejected  
inefficient.)

Compromise: keep some information about the tree an modify it slightly for next step:

1. tree topology

2. times of coalescence events

3. number of mutations between two coalescents events

Beaumont, Zhang, Balding (2002)

“[...] the MCMC-based method is consistently superior to the summary-statistics-based methods and
highlights that it is well worth making the effort to obtain full-data inferences if possible.”

“[...] there are advantages to the use of summary statistics, both in the ease of implementation and in
the time to obtain the results [...]”

“Further research is needed to find a more rigorous way for choosing summary statistics, including the
use of orthogonalization and ‘projection-pursuit’ methods”

Wegmann et al. (2009)

Mandenka Yoruba Pygmy

3500 y

53,400 y

ABC estimations with microsatellite data.

Wegmann et al. (2009)

• combine MCMC-ABC with Beaumont et al.’s regression approach to sample from p(Θ|||S−s|| ≤ ε).

• apply Box-Cox transformation to each summary statistic with respect to the parameter of interest,
based on simulated data

• apply partial least squares (PLS) to find combinations of summary statistics that are informative
wrt the parameter of interest
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• leave-one-out cross validation to optimize number of PLS components used

Simulation studies show improvements compared to other ABC methods but IMa is still better.
Wegmann et al. “[..] would not recommend using an ABC approach if a full-likelihood method exists

[..]”.

Box-Cox transformation

X(λ) =


(X+c)λ−1

λ for λ 6= 0

ln(X + c) for λ = 0

Idea: fit λ and c such that the residuals of the regression model Y = α+βX look as normally distributed
as possible.

Comparison PCA vs. PLS
Let S be the covariance matrix of the vectors x1, . . . , xn (with xi = (xi1, . . . , xim)) that are normal-

ized, that is µxi = 0 and σxi = 1. Then, the principal component directions v1, . . . , vm satisfy:

vj = argmax
α

{
Var

(∑
i

xiαi

) ∣∣∣∣∣ ||α|| = 1,∀`<j vT` Sα = 0

}

The PLS directions ϕ1, . . . , ϕm satisfy:
ϕj = argmaxα

{
Cor2 (y,

∑
i xiαi) Var (

∑
i xiαi)

∣∣ ||α|| = 1,∀`<j : ϕT` Sα = 0
}

= argmaxα
{

Cov2 (y,
∑
i xiαi)

∣∣ ||α|| = 1,∀`<j : ϕT` Sα = 0
}

Note that the condition vT` Sα = 0 just means that the new vector
∑
j αj · xj ist orthogonal on the

previous ones
∑
k v`,kxk (for any ` < j).

To see this, note that from µxk = 0 = µxj follows

S(k,j) = Cov(xk, xj) =
1

m− 1

∑
i

(xki − µxk) · (xji − µxj ) =

∑
i xkixji
m− 1

and thus

vT` Sα =
∑
k,j

v`,k

∑
i xkixji
m− 1

· αj =
1

m− 1

〈∑
k

v`,kxk ,
∑
k

αjxj

〉
.

(Remember that the scalar product 〈v, w〉 =
∑
i viwi of two vectors v and w has the geometric interpre-

tation 〈v, w〉 = ||v|| · ||w|| · cos(γ), where γ is the angle between the vectors. Thus, 〈v, w〉 = 0 holds if
and only if v and w are orthogonal on each other.)

The scalar product will also be useful on the next slide, on which the algorithm to compute PLS is
shown.

The slope of a regression line with response variable y and explanatory variable x (both of length m)
can be expressed as

b = Cov(x, y)/σ2
x

and the intercept is a = µy − b · µx.

If y is centered and x is normalized such that µx = µy = 0 and σx = 1, we obtain the regression line

y = a+ bx = 0 +
Cov(x, y)

1
x =

∑
(xi − µx)(yi − µy)

m− 1
x

=

∑
xiyi

m− 1
x =

< x, y >

m− 1
x.
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partial least squares (PLS)
Aim: find combinations of explanatory variables x1, . . . , xm that have highest covariance with variable

y.

let y be centered and xj be normalized, i.e. µy = 0, µxj = 0, σxj = 1.

1. ((m− 1)-fold of) univariate regression coefficient: ϕj := 〈xj , y〉 :=
∑
i xjiyi ⇒ y ≈ 1

m−1 ·ϕj ·xj

2. first partial least squares direction: z1 :=
∑
j ϕj · xj

3. first regression coefficient: δ := 〈z1,y〉
〈z1,z1〉 ⇒ y ≈ δ · z1

4. now orthogonalize x1, x2, . . . , xm with respect to z1: x
(2)
j := xj − 〈z1,xj〉〈z1,z1〉 · z1

5. and compute the residuals: y(2) := y − δ · z1

repeat 1-5 with xj and y replaced by x
(2)
j and y(2).  z2, x

(3)
j , y(3)

iterate to get z1, z2, . . . , zm.

PLS for multiple response variables
Wegmann et al. (2009) PLS for multiple response variables (here: summary statistics), implemented

in the command plsr in the R package pls.

Several possible generalizations of PLS exist for multiple response variables y1, . . . , yq, e.g. SIMPLS:
For all i = 1, . . . ,m let ϕi be the vector α, for which zi := x1α1 + · · ·+ xnαn maximizes

q∑
j=1

Cov2(zi, yj)

subject to the conditions that ||α|| = 1 and that ∀k<i : 〈zi, zk〉 = 0.

References

[BS06] A.-L. Boulesteix, K. Strimmer (2006) Partial least squares: a versatile tool for the analysis of
high-dimensional genomic dataBriefings in Bioinformatics 8.1: 32–44

10 Jaatha

10.1 Motivation: Wild Tomatoes

Tomato Data
Solanum peruvianum, Canta, Peru

Solanum chilense, Moquegua, Peru

Complex Demography
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?

substructure
population growth

recent speciation
introgression?

recombination within loci
can we still detect selection?

Jaatha
JSFS associated approximation of the ancestry

Malayalam word for “past”.

Strategy: Compare data to data that has been simulated with various combinations of parameter
values.

Demographic Model

past

τ

present

sample 25

θ

sample 25

s · θ
m2

m1

growth rate

g = ln(s)/τ
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Summarizing the JSFS

0 n
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JSFS: n*m−2 classes
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Jaatha: 23 classes

JSFS =
Joint Site Frequency
Spectrum Comparison of summaries:
A. Tellier, P. Pfaffelhuber, B. Haubold,
L. Naduvilezhath, L. Rose, T. Städler,
W. Stephan, D. Metzler (2011) Estimating pa-
rameters of speciation models based on refined
summaries of the joint site frequency spectrum.
PLoS ONE 6(5): e18155.
doi:10.1371/journal.pone.0018155

m

τ

slog

log

log

How do the 23 summary statistics depend on
the parameters?
Linearize on each of the 8x8x8 cuboids.

Simple methods in continuous parameter space
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parameter space (3D cuboid)

s
u

m
m

a
ry

 s
ta

ti
s
ti
c
s
’ 
v
a

lu
e

s

8x8x8=512 sub−cuboidsquick method: average of cuboid centers weighted with Poisson model likelihood

and numerically optimize Poisson likelihood in 3D space

slow method: interpolate local regression in

How to get from E to Likelihoods?

Composite Likelihood Approach ⇒ 23 summary statistics are independently Poisson distributed.

This means, if s1, s2, . . . , s23 are the observed summary statistics and λ1, λ2, . . . , λ23 their expecta-
tions, the composite likelihood is

λs11 · e−λ1

s1!
· λ

s2
2 · e−λ2

s2!
· · · λ

s23
23 · e−λ23

s23!

Runtime
Given model with 4 parameters and sample sizes for two populations, simulate data and fit local

linear models. 3-5 days

Analyse dataset with quick method: 1-3 seconds

Analyse dataset with slow method: 15 minutes

Compromise “J-Med”: <15 seconds

L. Naduvilezhath, L. Rose, D. Metzler (2011) Jaatha: A Fast Composite Likelihood Approach to
Estimate Demographic parameters. Molecular Ecology, 20(13): 2709–2723

10.2 Some results for wild tomatoes

Demographic Models

present

Constant Model Growth Model Fraction−Growth Model

τ

θq · θθ θ q · θm m m

(1 + q)θ 2θ 1.05θ

q · θ
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Demographic Models
m

θθ

τ

noMig Model FixedTau Model

present

τ= 0.36

q · θ

s · θ

(1 + s) · θ

q · θ

s · θ

(1 + s) · θ

Tomato data: parameter estimations and bootstrap confidence intervals
7 loci, varying from 0.8 to 1.9 kb in size, sampled 23 individuals (i.e. 46 sequences) per species

Parameter Constant Growth Fraction-Growth noMig fixedTau

θ̂1 9.41 10.30 12.56 13.34 12.22
(7.14-12.59) (8.29-13.02) (9.61-16.38) (10.29-17.35) (9.37-15.09)

q̂ 1.83 4.24 4.29 8.67 4.94
(1.23-2.69) (2.58-6.95) (2.71-6.38) (5.34-15.00) (3.28-7.85)

m̂ 0.36 0.36 0.73 0 0.55
(0.06-4.89) (0.09-2.34) (0.39-1.27) (0.22-1.03)

τ̂ 0.41 0.37 0.79 0.14 0.36
(0.05-1.82) (0.11-0.93) (0.37-1.63) (0.10-0.23)

ŝ q̂ 1 0.05 0.44 0.33
(0.18-0.98) (0.11-1.10)

log-likelihood -189.51 -119.70 -101.58 -133.06 -93.96

Growth model: Tomato estimates vs. simulation study
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parametric bootstrap

• Simulated data according to NoMig model with ML parameter values

• Estimated parameters from simulated data with other models

• Only few (≈ 5 out of 1000) estimated migration rates were as high as for tomato data
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• log likelihood-ratios “Mig-NoMig” < 25 (most < 0) for simulated data, > 30 for tomato data with
models “fraction-growth” and “growth”

Jaatha vs. ∂a∂i

References

[1] R.N. Gutenkunst, R.D. Hernandez, S.H. Williamson, C.D. Bustamante (2009) Inferring the joint
demographic history of multiple populations from multidimensional SNP frequency data PLoS
Genetics

• also a composite likelihood approach

• computes expected JSFS by diffusion approximation

• uses full JSFS

• is slower than Jaatha but should estimate much more accurately

100 datasets with 100 loci
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100 datasets with 7 loci
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Jaatha vs. ∂a∂i vs. IM

Simulation Study

• Growth model, equally-sized founder populations

• 100 loci, no recombination within loci

• θ ∈ [5, 20] (per locus)

• size ratio q ∈ [0.05, 20]

• divergence time τ ∈ [0.01, 20]

• migration rate m ∈ [0.05, 5]

• IM runs for 10 datasets, stopped after 5 weeks

5 10 15 20

5
10

15
20

Theta1

true value

es
tim

at
ed

 v
al

ue

●●

●
●

●

●

●

●

●

●

●

IM
IMreps
IM not conv
dadi
J−Med

0.05 0.20 1.00 5.000.
05

0.
20

1.
00

5.
00

Size ratio

true value

es
tim

at
ed

 v
al

ue

●

●

●

●

●

●

●

●

●

●

●

IM
IMreps
IM not conv
dadi
J−Med

34



0.01 0.10 1.00 10.000.
01

0.
10

1.
00

10
.0

0
Divergence time

true value

es
tim

at
ed

 v
al

ue ●

●

●

●

●

●

●

●

●

●

●

IM
IMreps
IM not conv
dadi
J−Med

0.005 0.050 0.500 5.000

0.
00

5
0.

05
0

0.
50

0
5.

00
0

Migration rate

true value

es
tim

at
ed

 v
al

ue ●

●

● ●

●

●

●

●

●
●

●

IM
IMreps
IM not conv
dadi
J−Med

10.3 Jaatha 2.0

Jaatha 2.0

• R package

• Also for more than 4 parameters

• Training data are simulated when needed

Lisha A. Mathew, Paul R. Staab, Laura E. Rose, Dirk Metzler (2013) Why to account for finite sites
in population genetic studies and how to do this with Jaatha 2.0. Ecology and Evolution

P
a
r
a
m

e
te

r
 2

Parameter 1

P
a
r
a
m

e
te

r
 2

Parameter 1

Simulations with 7 or 200 loci
First experiment with infinite-sites model, demographic parameters inspired by tomato data:
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m
θ θ

θ

θ

q

s

(1+s) 

present

τ

θ = 12.22 (per locus)
τ = 0.36
m = 0.55
q = 4.94
s = 0.33

Recombination rate between 5 and 20 per locus; 25 sampled sequences per population and locus

Simulation Results with 7 loci
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Simulation Results with 200 loci
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• 100 loci

• θ, q, τ , m, α estimated simultaneously

• ti/tv ratio fixed and assumed to be known

• 7 extra summary stats for double hits and
separate counts of ti and tv within and be-
tween pops

7 demographic parameters,
only 7 loci

• τ0 very small, suggesting ongoing gene flow

• estimation quite imprecise

• infinite-sites estimation substantially different from finite-sites estimations

• However, gene flow is significant (simulation-based composite-likelihood ratio test)
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dashed line: infinite-sites

estimate grey line: finite-sites estimate grey dots: simulation with 7 loci cirles: simulation with 200 loci
triangles: τm estimated ≥ 15
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10.4 Application to NGS data of Arabidopsis thaliana

NGS data

• 1.1 million SNPs (after filtering out ambiguous)

• 12 individuals from Spain, 12 from Italy, 5 from Novosibirsk (outgroup)

Model assumptions

• split of southern European populations, constant migration, constant sizes

• Finite-sites, estimate ti/tv

• separately for first or second codon position or UTR (FS), third codon position (Th), and non-
coding (NC).

τ m α θsite
complete data set 0.16 3.45 2.87 3.54 · 10−3

1st or 2nd codon pos or UTR 0.12 2.81 4.83 2.73 · 10−3

3rd codon pos 0.19 3.31 1.53 3.70 · 10−3

non-coding 0.18 3.33 2.26 4.31 · 10−3

Parameter estimates for A. thaliana using FSM. Jaatha’s estimates using the HKY model for the mutation rate θ, time

τ of the split of both demes, the subsequent migration rate m between populations, and the rate heterogeneity parameter α. The

parameter τ is scaled in 2Ne generations, m is twice the number of immigrants to each deme per generation, and θ is 2Ne times

the mutation rate per base.
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Significance of population structure: for 100 simulated panmictic populations τ was always estimated
smaller.

10.5 Microsatellites

Jaatha for microsatellites?
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10.6 Estimating JSFS expectations

Fitting only the middle area

Source: Tellier et al. (2011)

• Keep border as it is

• Use a learning method that depends on the position and the parameters in the middle area

Smooth GLM fit of JSFS
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10.7 Conclusions

Conclusions

• intra-locus recombination difficult to handle rigorosly but allows for composite-likelihood approxi-
mations

• more loci needed for getting reasonable estimates

• small datasets require different methods and different sets of summary statistics than large datasets

• not always appropriate to use time-consuming methods for small datasets

• very large datasets can also be analysed with simple methods if not too many parameters to be
estimated

• improving choice of summary statistics or smooth estimators for JSFS may be more important
than numerics
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Next steps

• improve methods to optimize sets of summary statistics or other estimators for for data arrays

• efficient simulator for approximate ancestral recombination graph

• generate Next-Generation Sequencing (NGS) data (with Laura Rose)

• built-in error correction for NGS data

• meta-parameter models for genome-scale data

• find sets of summary statistics to detect balancing selection

11 The program STRUCTURE

examples
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11.1 no admixture, no sampling locations

Structure: A program for model-based clustering of genotypes (Microsatellites, SNPS, AFLPs, . . . )

N diploid individuals, L loci, K (sub)populations

unknown which individuals belong to which population, even if sampling locations are known, i.e.
subpopulations may not correspond to sampling locations.
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known is the genotype of individual each i at locus `:

X = (x
(i,1)
` , x

(i,2)
` )i≤N,`≤L

unknown are the populations from which individual i originates:

Z = (z(i))i≤N

and the frequencies of allele j at locus ` in population k:

P = (pk`j)k≤K,`≤L,j≤J`

Assumption 1: each population is in Hardy-Weinberg equilibrium

Assumption 2: linkage equilibrium between loci

Bayesian approach: approximate sample from

Pr(Z,P | X) ∝ Pr(Z) · Pr(P ) · Pr(X | Z,P )

Priors for origin population of individual i:

Pr(z(i) = k) = 1/K

Dirichlet prior for allele frequencies in each population:

pk` ∼ D(λ1, λ2, . . . , λJ`) with λ1 = λ2 = · · · = λJ` = 1

(uniform distribution on all distributions)

Pr(X|Z,P ) :

Pr(x
(i,a)
` = j) = pz(i)`j

Dirichlet distribution
If Y ∼ D(α1, . . . , αk) then

Pr(Y = (y1, . . . , yk)) = c(α)·
k∏
i=1

yαi−1
i

if all yi ≥ 0 and
∑
i yi = 1, else

0.

E(Y ) =
(α1, . . . , αk)∑

i αi
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Important property of Dirichlet distributions
Let N = (n1, . . . , nK) multinomially distributed with (unknown) probabilities P = (p1, . . . , pK), i.e.

Pr(N = (n1, . . . , nm)) =
(n1 + n2 + · · ·+ nk)!

n1! · n2! · · ·nk!

k∏
i=1

pnii .

If the prior distribution of P is D(λ1, . . . , λk), then the posterior distribution of P given N = (n1, . . . , nk)
is

D(λ1 + n1, . . . , λk + nk).

(Exercise!)
MCMC method for sampling from Pr(Z,P |X): Start with Z(0) (e.g. sampled from prior) and iterate

2 steps for m = 1, 2, 3, . . . :
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1. Sample P (m) from Pr(P |X,Z(m−1))

pk`.|X,Z ∼ D(λ1 + nk/`, . . . , λJ` + nk/J`),

where nk/j = #
{

(i, a)|x(i,a)
` = j and z(i) = k

}
. (using the important property of the Dirichlet

distribution.)

2. Sample Z(m) from Pr(Z|X,Z(m−1), P (m))

Pr(z(i) = k|X,P ) =
Pr(x(i)|P, z(i) = k)∑K

k′=1 Pr(x(i)|P, z(i) = k′)
,

using Pr(x(i)|P, z(i) = k) =
∏L
`=1 pk`x(i,1)

`

· p
k`x

(i,2)
`

.

11.2 with admixture

admixture: present individuals stem from k populations that were admixed recently.

Q :
(
q

(j)
k

)
j≤N,k≤K

= proportion of individual j’s genome originating from population k

Z :
(
z

(i,a)
`

)
= population of origin of allele copy x

(i,a)
`

Pr
(
x

(i,a)
` = j

∣∣∣Z,P,Q) = p
(i,a)
z`,lj

, Pr
(
z

(i,a)
` = k

∣∣∣P,Q) = q
(i)
k

Prior on Q:

q(i) =
(
q

(i)
1 , . . . , q

(i)
k

)
∼ D(α, . . . , α),

where α is also random with prior α ∼ unif([0, αmax]).
Note:

α = 0 ⇔ no admixture

α→∞ ⇔ all completely admixed

1
1

2
2

3
3

4
4

6
6

[.5cm] Interpretation of bars

without admixture: probabilities of subpopulations to be the origin of individual

with admixture: relative contributions of subpopulations to the genome of the individual

MCMC for case of admixture
Start with initial P (0), Q(0), Z(0) and α(0) and iterate for m = 1, 2, . . . :

1. Sample P (m) and Q(m) from Pr(P,Q|X,Z(m−1)) :

update p
(i,a)
z`,`j

based on the number of ` copies of type j that come from population k

nklj =
{

(i, a)|x(i,a)
` = j and z

(i,a)
` = k

}
and sample q(i)|X,Z according to

D
(
α+ #

{
(`, a) : z

(i,a)
` = 1

}
, . . . , α+ #

{
(`, a) : z

(i,a)
` = K

})
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2. Sample Z(m) from Pr(Z|X,P (m), Q(m)) according to:

Pr
(
z

(i,a)
` = k

∣∣∣X,P) =
q

(i)
k · pk`x(i,a)

`∑K
h=1 q

(i)
h · ph`x(i,a)

`

3. Metroplis Hastings step α(m−1)  α(m):

propose α′ ∼ N (α, some σ2), reject immediately if α′ < 0, else perform MH step.

Inference for Z,P,Q from MCMC samples
for example for Q it seems obvious to estimate

E(qi|X) ≈ 1

M

M∑
m=1

q
(m)
i ,

but the theoretical posterior mean is

E(qi|X) =

(
1

K
, . . . ,

1

K

)
due to symmetries in the model (numbering of populations exchangeable).

 use modes of
(
q

(1)
i , . . . , q

(M)
i

)
i

instead of means or use Noah Rosenberg’s software CLUMPP to

evaluate STRUCTURE output.

Inference for the number K of populations

Pr(K|X) ∝ Pr(X|K) · Pr(K)

can be approximated using the harmonic mean estimator

Pr(X|K) ≈M

/
M∑
i=1

1

Pr
(
X
∣∣K,Z(i), P (i), Q(i), α(i)

) ,
but the harmonic mean estimator is know to be imprecise.

Instead, we hope that −2 logL( ̂Z,P,Q, α|X) is approximately normally distributed and estimate

Pr(X|K) ≈ e−µ̂/2−σ̂
2/8

with µ̂ = 1
M

∑M
i=1−2 log Pr

(
X|Z(i), P (i), Q(i), α(i)

)
and σ̂2 = 1

M

∑M
i=1

(
−2 log Pr

(
X|Z(i), P (i), Q(i), α(i)

)
− µ̂

)2
Pritchard et al. write about this approximation:

“In fact the assumption underlying [this] are dubious at best, and we do not claim (or believe) that
our procedure provides a quantitatively accurate estimate of the posterior distribution of K. We see it
merely as an ad hoc guide to which models are most consistent to the data, with the main justification
being that it seems to give reasonable answers in practice.”

and:

“The inferred value of K may not always have a clear biological interpretation.”

and about the multiple-modes problem:

“[The] Gibbs-sampler did not manage to move between two modes in any of the runs”
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Data examples
Bird example: Without using informations on sampling locations, STRUCTURE gave clear clusters

corresponding to sampling locations, up to a few exceptions. Neighbor-Joining results did not show clear
clusters when labels were removed.

http://www.genetics.org/content/155/2/945/F4.large.jpg

http://www.genetics.org/content/155/2/945/F3.expansion.html

Human data: Found K ≥ 2 corresponding to African and European oringin of samples. Evidence for
K > 2 may indicate substructure.

11.3 taking sampling locations into account

First attempt: populations correspond to sampling locations with a few migrants in the last few gener-
ations.

g(i): sampling location of individual i

ν: probability that i is immigrant or offspring of an immigrant in the last G generations, where G is
not too large.

⇒ q
(i)
g(i) = 1 with probability 1− ν and for t ≤ G:

q
(i)
g(i) = 1− 2−t and q

(i)
j = 2−t with probability 2tν

(k−1)
∑G
T=0 2T

(neglecting the possibility of more than

one migranting ancestor in the last G generations.)

in MCMC: sampling of q(i) is conditioned on X and P , and not on X and Z.
Falush et al. (2003) allow for LD between loci. Advantages:

1. detection of admixture further back into past

2. inference of population of origin of chromosomal regions

3. more accurate estimate of statistical uncertainty when linked loci are used

Sources of LD:

mixture LD: variation in ancestry among sampled individuals (Prichard et al.)

admixture LD: correlation of ancestry along each chromosome causes additional LD between linked
markers (Falush et al.)

background LD: within population decaying on a much shorter scale, e.g. tens of kb in humans. (not
yet in STRUCTURE)

Approach of Falush et al. (2003):

• breakpoints occur as Poisson process at rate r

• uniform prior on log(r)

• use HMM to sample from conditional distribution of Z

• data allowed to be unphased

more options: correlated allele frequencies between populations accordingt to star-shaped phylogeny of
populations with drift rates F1, . . . , FK and ancestral allele frequency distribution pA ∼ D(λ1, . . . , λJ`).

pk`.|pA ∼ D
(
pA`1

1− F1

F1
, . . . , pA`K

1− FK
FK

)
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(be careful with this model!)
Approach of Hubisz et al. (2009): Allow uncertainty in the information about sampling location

r ∼ unif([0, rmax]) (informativeness of sampling location)

q(i) ∼ D (αh1
, . . . , αhK ) , if individual i comes from location h

αhk ∼ Γ
(
r · αglob

k , 1/r
)
, (which entails that the mean is α

glob
k )

α
glob
k ∼ unif(0, αmax)

Hubisz et al.: “However, we would still encourage users to run the original models as well, and to
check that substantial differences between the results from the new and the old models seem biologically
sensible.”

When STRUCTURE has problems

• number of clusters not well-defined when allele frequencies vary slowly accross the landscape

• inbreeding or relatedness between individuals

In this case, the software INSTRUCT may help, cf.

References
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ence of Population Structure and Inbreeding Rates from Multi-Locus Genotype Data.
Genetics (online)

11.4 Faster alternatives to STRUCTURE for large datasets

11.4.1 ADMIXTURE

ADMIXTURE

• is based on the same modeling approach as STRUCTURE

• (faster) ML optimization instead of Bayesian sampling

References

[GWB07] D.H. Alexander, J. Novembre, K. Lange (2009) Fast Model-Based Estimation of Ancestry in
Unrelated IndividualsGenome Res. 19: 1655–1664

optimization strategy: similar to Newton’s method

Problem: Huge Hesse matrix (2nd derivatives) as there are many parameters.

Q: qik is proportion of individual i genome coming from population k

F : fk` is the frequency of allele 1 of locus ` in population k (assuming two alleles per locus).

⇒ Many second derivatives
∂2

∂qik∂fk`
.

Also the constraints 0 ≤ fkj ≤ 1, qik > 0,
∑
k qik = 1 make optimization a bit tricky.

ADMIXTURE uses Block Relaxation Algorithm
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• like Newton method uses first two derivatives

• To optimize L(Q,F ) iterate

– update Q for fixed F

– update F for fixed Q

• no mixed 2nd derivatives ∂2L
∂qik∂fk′`

needed

• need ∂2L
∂qik∂qi′k′

only if i = i′.

• need ∂2L
∂fk`∂fk′`′

only if ` = `′.

• optimization problems are convex.

11.4.2 fastSTRUCTURE

fastSTRUCTURE

References

[1] A. Raj, M. Stephens, J.K. Pritchard (2013) Variational Inference of Population Structure in Large
SNP Datasetspreprint available on bioRχiv

Variational Distributions: tractable family of distributions to approximate posterior.

Variational Bayesian Inference: Instead of sampling from posterior, optimize parameters of varia-
tional distributions

Kullback-Leibler Divergence: (=relative entropy)

DKL(q||p) = Eq log
q(X)

p(X)
=

∫
x

q(x) log
q(x)

p(x)
dx

Approach: Find variational distribution q that minimizes DKL(q||p) to posterior p.

Unrealistic assumption to make variational distributions q tractable: Z, P , and Q are independent.
Their joint variational distribution density is the product of multinomial probabilities for Z, Dirichlet

densities for Q, and beta densities for P .
The parameters of these distributions are optimized.
Also here, the optimization of the parameters of one of distribution, keeping the others fixed, is a

convex optimization problem.

12 Phasing genotypes and other applications of Li&Stephens’
PAC approach

12.1 Classical methods for phasing

Why phasing?
Many sequence datasets from diploid (polyploid) organisms are unphased. For example, it is known

that some individual has an A and a T at one locus, and a G and a C at another locus on the same
chromosome, but not wheter the A is on the same haplotype (chromosome copy) as the C or as the G.

Estimating this (“phasing the data”) can be important, e.g. because Linkage Disequilibrium (LD) is
informative about

• population structure
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• epistatis

• selective sweeps

• whether a gene locus is associated with a trait of interest or just phsically linked to a relevant locus

Clark’s Algorithm

• parsimonious approach to minimize the total number of haplotype classes observed in the sample

• greedy algorithm

• starting with individuals that are homozygous at all loci or at all up to one

• successively searches individuals that can be phased such that one or both haplotypes is identical
to already inferred one.

• final result depends on input order

12.1.1 Excoffier and Slatkin’s EM algorithm

References

[ES95] L. Excoffier, M. Slatkin (1995) Maximum-Likelihood estimation of molecular hyplotype frequen-
cies in a diploid population. Mol. Biol. Evol. 12(5): 921–927

“phenotype”: multilocus genotype with unknown phase, e.g.

genotype=
–0—1—0—1–
–0—0—1—1–

⇒ phenotype=[0, 0], [0, 1], [0, 1], [1, 1] (unordered pair) (unordered

pairs)

Pi: phenotype probability
ni: absolute frequency of phenotype i in sample, n =

∑
i ni

Pr(sample|P1, P2, . . . , Pm) =
n!

n1! · n2! · · ·nm!
· Pn1

1 · P
n2
2 · · ·Pnmm

one aim:
estimate population frequencies p1, p2, . . . of haplotype classes h1, h2, . . . .

Expectation Maximization (EM) algorithm
Iterate E step and M step:

E step Use current estimates of p1, p2, . . . to compute expected frequencies fk` of all genotypes (k, `)
(with k ≤ `) in the sample, given the sampled phenotypes. For this, let Ik`,j be the indicator
function that [k, `] leads to phenotype j (i.e. Ikl,j = 1 in this case and 0 otherwise), and δk` be the
indicator function of k = `. Then

Pj =
∑
k

∑
`

pkpl · Ik`,j

and
fk` =

∑
j

Ik`,j ·
nj
n
· pkp`
Pj
· (2− δk`) .

M step Use expected genotype frequencies in sample to estimate haplotype class probabilities pi (=fre-
quencies in population).

pi = fii +
1

2
·

(
i−1∑
k=1

fki +

...∑
k=i+1

fik

)

Excoffier and Slatkin use Fisher Information to estimate variance of the estimators, and use estimated
pi to infer haplotypes.
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12.1.2 Excursus: EM algorithm

EM algorithm in general

References

[DLR77] Dempster, A.P., Laird. N.M., Rubin, D.B. (1977) Maximum-Likelihood from incomplete data
via the EM algorithm.Journal of the Royal Statistical Society Series B 39 (1): 1–38

X observed data

U unobserved data

θ parameter to be estimated

` log likelihood
`(θ;x, u) = logPθ(X = x, U = u)

P Probability or probability density

`(θ;u | x) := logPθ(U = u | X = x)

⇒ `(θ;x, u) = `(θ;u | x) + `(θ;x)

U unobserved ⇒ `(θ;x, U) is a random variable

Qθ′(θ) := Eθ′ (`(θ;x, U)|x)

=
∑
u

Pθ′(u|x) · `(θ;x, u)(
or

∫
Pθ′(u|x) · `(θ;x, u) du

)
Cθ′(θ) = Eθ′ (`(θ;U |x)|x)

`(θ) := `(θ;x) = Qθ′(θ)− Cθ′(θ)

To estimate θ iterate the following steps:

E step with current estimate θ′ compute the function Qθ′ : θ 7→ Qθ′(θ)

M step
θnew := arg max

θ
Qθ′(θ)

Iterate E step with θ′ replaced by θnew.

Note that from
`(θ) = Qθ′(θ)− Cθ′(θ)

follows that
Qθ′(θ

new) ≥ Qθ′(θ′)
implies

`(θnew)− `(θ′) ≥ Cθ′(θ
′)− Cθ′(θnew)

=

∫
Pθ′(U = u|x) · log

Pθ′(U = u|x)

Pθnew(U = u|x)
du ≥ 0

Note that the integral is a Kullback-Leibler Divergence and therefore allways ≥ 0, and = 0 only if
the two distributions are equal.

Therefore, an EM step will never decrease the likelihood (which is not true, e.g., for Newton opti-
mization steps).

Why is Excoffier and Slatkin’s EM algorithm a special case of this?
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x “phenotypes”

U genotypes

θ haplotype frequencies p1, p2, . . .

Eθ′(`(θ;x, U)|x) =?

If the phenotypes x are in accordance with the genotypes u, then

`(θ;x, u) = log(Pθ(u))

= log

(
n!

n1! · nm!

)
+
∑
i

log

(
2pu(i,1)pu(i,2) ·

(
1

2

)δu(i,1),u(i,2)

)

Qθ′(θ) = Eθ′(`(θ;x, U)|x)

= log

(
n!

n1! · nm!

)
+

∑
i

Eθ′
(

log

(
2pU(i,1)pU(i,2) ·

(
1

2

)δU(i,1),U(i,2)

)∣∣∣∣∣xi
)

The conditional expectation in the last line is, by definition,

∑
[k,`]∈Pi

Pθ′(U = [k, `]|xi) · log

(
2pkp` ·

(
1

2

)δk`)

Where the sum is taken over the set Pi of all (unordered) haplotype pairs [k, `] that are in accordance
with phenotype i.

With

Pθ′(U = [k, l]|xi) =
2p′kp

′
` · 0.5δk,`∑

[k′,`′]∈Pi 2p′k′p
′
`′ · 0.5

δk′,`′
,

where θ′ = (p′1, p
′
2, ...).

Putting it all together and rearranging the sums, we obtain

Qθ′(θ) =
∑
k

n∑
i=1

p′k
∑
` Ik`,ip

′
`∑

k′
∑
`′ Ik′`′,ip

′
k′p
′
`′

log pk + const.

where const is a term that does not depend on any pk. Thus, Qθ′(θ) is optimized by setting

pk ∝
n∑
i=1

∑
` Ik`,ip

′
kp
′
l∑

k′
∑
`′ Ik′`′,ip

′
k′p
′
`′

because, in general, the distribution p1, p2, . . . that maximizes
∑
i ni log pi is pi = ni/

∑
nj . This follows

from the information inequality ∑
pi log pi >

∑
pi log qi,

which is equivalent to ∑
pi log

pi
qi
> 0

(always assuming that distributions p and q are not equal).
Note that, indeed,

pk ∝
n∑
i=1

∑
` Ikl,ip

′
kp
′
l∑

k′
∑
`′ Ik′l′,ip

′
k′p
′
l′

is the same as the M step in Excoffier and Slatkin’s EM algorithm.
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12.1.3 Basic algorithms in PHASE

References

[SSD01] M. Stephens, Smith, P. Donnelly (2001) A New Statistical Method for Haplotype Reconstruction
from Population Data The American Journal of Human Genetics 68(4)

G = (G1, . . . , Gn) observed genotypes of n individuals

Hi = (hi1, hi2) unknown (unordered) haplotypes of individual i

Gibbs samping with target distribution Pr(H|G): Start with initial guess for H and iterate the following
steps.

• choose individual i purely randomly from all ambiguous individuals

• sample updated Hi from Pr(Hi|G,H−i), where H−i is H without Hi.

Problem: Pr(Hi|G,H−i) depends on genetic and demographic models, e.g. on priors of haplotype
frequencies

Pr(Hi|G,H−i) ∝ Pr(Hi|H−i) ∝ Pr(hi1|H−i) · Pr(hi2|H−i, hi1)

Pr(hi1|H−i) is only easy in parent-independent mutation model, which is usually unrealistic.

Stephens, Smith and Donnelly (2001) discuss two possible approximations, a “naive” one and their
preferred one.

The naive Gibbs sampler
assumes parent-independent mutation

Pr(h|H) =
rh + θvh
r + θ

rh number of haplotypes of type h in H

r total number of haplotypes in H

vh in case of mutation this is the probability that it leads to vh

θ population-scaled mutation rate

If individual i has k heterozygous loci, 2k−1 different haplotypes h are possible. If this may be to
many, just set vh = 1/M , where M is the number of possible haplotypes.

The naive algorithm

1. pick individual i uniformly, let k be its number of heterogeneous loci; let {h1, . . . , hm} be the other
individuals’ haplotypes.

2. for j = 1, . . . ,m do
if Hi could be (hj , h

′) then
if h′ is some hk ∈ {h1, . . . , hm} then

pj =
(
rj + θ

M

) (
rk + θ

M

)
−
(
θ
M

)2
else
pj = rj

θ
M

end if
else
pj = 0

end if
end for

3. With prob
2k( θ

M )
2∑

j pj+2k( θ
M )

2 reconstruct Hi completely at random.

Else: Choose Hi = (hj , h
′) with probability pj/

∑
k pk.
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The basic standard algorithm in PHASE
The basic standard algorithm in PHASE uses an approximation proposed by Stephens and Donnelly

(2000):

Pr(h|H) ≈
∑
α

∞∑
s=0

rα
r

(
θ

r + θ

)s
r

r + θ
(P s)αh

rα number of haplotypes of type α in H

r total number of haplotypes in H

θ population-scaled mutation rate (see next slide)

P transition matrix between types, given a mutation happens

s number of mutations

The basic standard algorithm in PHASE

• For polymorphic sites, assume only one mutation happened and set

θ =
1

log 2n

• Problem: For sequence data, P will be huge. In this case use Gaussian quadrature explained in
next section.

• For microsatellite data assume a stepwise mutation model with 50 alleles and set

θj =
1

2

(
1

1 +H
− 1

)
,

where H is the observed heterozygousity at that locus.

The basic standard algorithm in PHASE
Start with initial phasing and iterate the following steps

1. Choose individual i uniformly

2. Select subset S of (e.g. 5) ambiguous loci i

3. Phase the loci in S in individual i conditioned on the current phase of all other loci and of all loci
in the other individuals.

References

[SD03] M. Stephens, P. Donnelly (2003) A comparison of Bayesian Methods for Haplotype Reconstruc-
tion from Population Genotype Data Am. J. Hum. Genet. 73: 1162–1169

introduce a few improvements:

• in each step the genomes of all individuals are subdivided into blocks of the same number of loci
(6,7, or 8, with probs. 0.3, 0.3, 0.4). Then, a block is chosen for all individuals in random order
the loci of this block are updated (conditioned on all other individual and on all other loci in the
focal individual).

• in a certain fraction of individuals, it is allowed that only one haplotype is a copy of another
haplotype in the data. This fraction is reduced down to 0 during the MCMC procedure.

• After the blockwise MCMC, haplotype fraquencies are estimated for each block and blocks are
iteratively ligated with adjacent blocks into larger blocks.

The phasing methods discussed so far are not based on explicit models for recombination. This is
done (and added to PHASE) in
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References

[SS05] Stephens, Scheet (2005) Accounting for Decay of Linkage Disequilibrium in Haplotype Inference
and Missing-Data ImputationAm. J. Hum. Genet. 76:449–462

We will discuss this later as an application of Li and Stephen’s PAC methods.

12.2 Li&Stephens’ PAC approach

12.2.1 Excursus: Stephens and Donnelly’s Importance Sampling

References

[SD00] M. Stephens, P. Donnelly (2000) Inference in molecular population genetics J. R. Statist. Soc. B
62(4):605–655

improved Griffiths und Tavaré’s Importance sampling scheme for the case of the classical (unstruc-
tured) coalescent.

A history H is a sequence (H−m, H−(m−1), . . . ,H0), where

H−i is the unorded list of types of the uncestral lineages, i events (mutations and coalescent events)
before present. Thus,

H0 is the sampled data.

Hi−1 = Hi − α+ β stands for a mutation from α to β (back into past; note that i < 0), and

Hi−1 = Hi − α for a coalescence of two lineages of type α.

Pαβ probability that an α that is hit by a mutation becomes a β.

nα number of lineages in Hi−1 of type α,

n =
∑
α nα,

Pr
θ

(Hi | Hi−1) =


nα
n ·

θ
n−1+θPαβ if Hi = Hi−1 − α+ β

nα
n ·

n−1
n−1+θ if Hi = Hi−1 + α

0 otherwise

πθ(.): distribution of genotype vector An in a sample of size n. Note that An is an ordered list.
nα: number of α in H0

πθ(An | H) = πθ(An | H0) =

{
(
∏
α nα!) /n! if H0 compatible withAn

0 otherwise

If histories H(1),H(2), . . . ,H(M) are generated independently according to the proposal distribution
Qθ0(.), the importance sampling formula implies:

L(θ) ≈ 1

M

M∑
i=1

πθ(An | H(i)) · Pθ(H
(i))

Qθ0(H(i))

E.g. with the proposal distribution QGTθ of Griffiths and Tavaré, for given H0 the histories H−1, H−2, . . .
are generated by a Markov chain with qθ(Hi−1 | Hi) ∝ pθ(Hi | Hi−1).

Let M be the class of proposal distributions, for which H−1, H−2, . . . is Markovian with start in H0

and

supp{qθ(. | Hi)} := {Hi−1 : qθ(Hi−1 | Hi) > 0}
= {Hi−1 : pθ(Hi | Hi−1) > 0}.
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Optimal would be Q∗θ(H) = Pθ(H | An), because

πθ(An | H)
Pθ(H)

Q∗θ(H)
=
Pθ(H ∩An)

Pθ(H | An)
= πθ(An) = L(θ)

Theorem 3 Let πθ(α | An) = πθ((An,α))
πθ(An) be the conditioned probability that the n + 1-st allele sampled

from the population is of type α, given that the first n types are given by An. The optimal proposal
distribution Q∗θ belongs to M and is defined by

q∗θ(Hi−1 | Hi) =


θ·nα

n·(n−1+θ)
π(β | Hi−α)
π(α | Hi−α)Pβα für Hi−1 = Hi − α+ β

nα·(nα−1)
n·(n−1+θ)

1
π(α | Hi−α) für Hi−1 = Hi − α

Proof
Consider the case Hi−1 = Hi − α+ β
Let ak(t) be the type of lineage k at time t. Assume δ > 0 and let Ym be the event that in the last δ

time units a mutation from ak(t− δ) = β to ak(t) = α occurred.
We obtain:

Pr{Ym ∩Ak(t− δ) = (α1, . . . , αk−1, β) | Ak(t) = (α1, . . . , αk−1, α)}

=
π(α1, . . . , αk−1, β) · δ · θ · Pβα/2

π(α1, . . . , αk−1, α)
+ o(δ)

= δ · π(β | Ak − α)

2π(α | Ak − α)
· Pβα + o(δ)

This implies the result if we let δ go to 0, multiply by nα (as instead of αk any other α could be affected,
and Hi is unordered) and divide by the total rate.

The proof for Hi−1 = Hi − α is analogous. �

But:
In general, π(α | An) are hard to compute and we cannot use Q∗θ.

Ansatz: If π(α | An) cannot be calculated, approximate it and use the approximations in the
formulas in the theorem.

Definition 1

π̂(β | An) :=
∑
α∈E

∞∑
m=0

nα
n

(
θ

n+ θ

)m
· n

n+ θ
(Pm)αβ .

This probability distribution can be approximated as follows: Choose a purely randomly individual
from An and mutate it according to P geometrically often with parameter θ

n+θ .

properties of π̂:

(a) For parent-independent mutation: π̂(. | An) = π(. | An).

(b) For reversible P with n = 1: π̂(. | An) = π(. | An).

(c) The distribution π̂(. | An) fulfills

π̂(β | An) =
∑
α

nα
n
M

(n)
αβ (∗)

for suitable M (n). Thus, it can be simulated by drawing a random lineage and draw the type
according to a distribution that depends only on n and on the type of the drawn lineage. (In the
case of π̂ holds M (n) = (1− λn)(I − λnP )−1 with λn = θ

n+θ .)
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more properties of π̂:

(d) π̂ is the distribution that fulfills (∗) and (b) and

π̂(β | An) =
∑
α

π̂(α | An) · π̂(β | (An, α)) (∗∗)

This means: Given the first three n, the n+ 1st has the same distribution as the n+ 2nd.

(e) π̂(. | An) is the stationary distribution of a Markov chain with transition matrix

Tαβ = θ
n+θPαβ + nα

n+θ

Proofs

(a) For parent-independent mutation Pαβ = Pβ holds P = Pm and thus:

π(β | An) =
nβ + θPβ
n+ θ

= π̂(β | An)

(b) Let X and Y be the types of the leaves, R the type of the root, m1 the number of mutations between
R und X and m2 that of the mutation between R and Y . Then:

Pr(Y = β | R = γ) = (Pm2)γβ

Pr(R = β | X = α) = (Pm1)αβ

Pr(Y = β | X = α) = (Pm1+m2)αβ

The total number of mutations between X and Y is geometrically distributed with parameter θ
1+θ

(c)

π̂(β | An) =
∑
α

∞∑
m=0

nα
n

(
θ

n+ θ

)m
n

n+ θ
(Pm)αβ

=
∑
α

∞∑
m=0

nα
n

(1− λn) [(λnP )m]αβ

=
∑
α

nα
n

(1− λn)
[
(I − λnP )−1

]
αβ

The last equation follws from the geometric sum formula of matrices.∑∞
m=0M

m = (I −M)−1.

proof of (d)

Let π̃(β | An) =
∑
α
nα
n M

(n)
αβ for some M (.)

.. fulfilling (∗∗):
(
nα

n
,
nβ

n
, . . . ,

nγ

n

)
·M(n)

αβ = π̃(β | An)

=
∑
α

π̃(α | An)π̃(β | (An, α))

=
∑
α

∑
γ

nγ

n
M

(n)
γα ·

∑
ξ

nξ + δαξ

n+ 1
M

(n+1)
ξβ

=
∑
γ

∑
ξ

(
nγ

n

nξ

(n+ 1)
M

(n+1)
ξβ +

nγ

n · (n+ 1)
M

(n)
γξ M

(n+1)
ξβ

)
(denn ∀γ :

∑
α

M
(n)
γα = 1)

=
1

n+ 1

[(
nα

n
, . . . ,

nγ

n

)
·
(
nM

(n+1)
+M

(n)
M

(n+1)
)]
β
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proof of (d) continued
As this holds for all vectors nα

n , . . . ,
nγ
n , we conclude:

(n+ 1)M (n) = n ·M (n+1) +M (n) ·M (n+1)

From this recursion and the initial value M (1) = (1 − λ1)(I − λ1P )−1 set by (b), follows M (n) =
(1− λn)(I − λnP )−1. This implies π̃ = π̂.

�

For the more complicated proof of (e), see Stephens und Donnelly (2000).
We define the proposal distribution QSDθ with q̂ like Q∗θ with q by replacing π by the approximation

π̂.

Theorem 4 ∑
H

q̂θ(H | Hi) = 1

and q̂θ(. | Hi) can be simulated as follows:

1. Choose a purely random α ∈ Hi.

2. For all β compute π̂(β | Hi − α)

3.

Hi−1 :=

{
Hi − α+ β with probability ∝ θπ̂(β | Hi − α) · Pβα
Hi − α with probability ∝ nα − 1

Thus, π̂(β | Hi − α) must be computed only for a few pairs (α, β). First sample α and then decide
whether it mutated to beta β or coalesces with another α. It is efficient to compute π̂(β | Hi − α) and
to simulte QSDθ .

Proof:
The probability that a mutation of a type α is involved, is

pm(α) =
1

n(n− 1 + θ)

∑
β

θ

2
nα
π̂(β | Hi − α)

π̂(α | Hi − α)
Pβα.

The probability that two lineages of type α coalesce, is:

pc(α) =
nα(nα − 1)

n(n− 1 + θ)
· 1

π̂(α | Hi − α)

This implies pm(α) + pc(α) = 1. �

What to do with sequence data???
For nucleotide (or protein) sequences of length ` there are 4` (or 20`) different possible genotypes

α = (α1, . . . , α`), and the transition matrix (Pαβ)αβ could be very large.

θ/2: mutation rate per site.

For π̂(. | An) draw a geometrically number m of mutations with parameter `θ
n+`θ and spread them

randomly on the sites.
Equivalent: draw exp(1)-distributed time t and then for each site i a Poisson(tθ/n) distributed number

mi of mutations. This implies

π̂(β | An) =
∑
α∈An)

nα
n

∫
exp(−t)F (θ,t,n)

α1β1
· · ·F (θ,t,n)

α`β`
dt
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with

F
(θ,t,n)
αiβi

=

∞∑
m=0

(θt/n)
m

m!
exp(−θt/n)(Pm)αiβi .

Stephens and Donnelly suggest to approximate the integral with Gauß quadrature (siehe Press et al.
(1992)) to obtain

π̂(β | An) =
∑
α∈An)

s∑
i=1

nα
n
wiF

(θ,ti,n)
α1β1

· · ·F (θ,ti,n)
α`β`

for certain s, wi and ti. The F
(θ,t,n)
αiβi

=
∑∞
m=0 . . . can be approximated by finite sums.

12.2.2 Estimating LD and recombination hotspots

Problems of models to estimate local recombination rates:

LAMARC etc. (ARG-based): not feasible for larger parts of the genome

Summary-statistics-based: lose too much information

some composite-likelihood methods: Hudson (2001), Fearnhead, Donnelly (2002), McVean (2002)
assume fixed recombination rate along the genome

References

[1] P. Fearnhead, P. Donnelly (2001) Estimating Recombination Rates From Population Genetic
DataGenetics 159: 1299–1318

Aim: Approximate the joint likelihood surface for the recombination rate and the mutation rate.

Model assumption: panmictic population, constant size N

θ = 4Nµ

µ Mutation rate per generation and chromosome

ρ = 4Nr

r Recombination rate per generation and chromosome

Two different mutation modes:

• infinite-sites model

• at each site finitely many types with transition matrix Pαβ

G set of all ancestral histories (containing all mutations) that are consistent with the data D, such that
∀G∈G Pr(D|G) = 1

Importance Sampling: If G1, . . . , Gm are sampled independently according to some density q with
G ⊆ supp(q), then

L(ρ, θ) ≈
∫
G
P (G|θ, ρ)dG ≈ 1

M

M∑
i=1

P (Gi|ρ, θ)
q(Gi)

What is a good proposal distribution q?

idea: Extend method of Stephens, Donnelly (2000) by recombination

H set of already sampled haplotypes
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α potential type of j + 1st sampled haplotype

p(α|H) will, like in Stephens, Donnelly (2000), be approximated to be used in importance sampling
scheme

important: To use approximation q in importance sampling it must be possible to sample according
to q(.|H) and to compute q(α|H) for given α.

We specify q(α|H) by showing how to sample from it:

initialization: Let x1, . . . , xs be the segregating sites in the j chromosomes in H.

recombination: For i = 1, . . . , s− 1 there is a recombination event in the middle between xi and xi+1

in α with probability

ai :=
(xi+1 − xi)ρ

(xi+1 − xi)ρ+ j
.

Let k be the number of recombinations and r = {r1, . . . , rk+1} the resulting fragments.

imputation: For nonancestral sites in H impute types according to their frequency at that site in H.

mutations: Each ri is simulated (independently of any rj) according to Stephens, Donnelly’s (2000)
approximation π̂ for sequence data.

To compute q(α|H) for the correction in the Importance Sampling formula, we need to sum over all
possible combinations of recombinations, imputations, and mutations that would lead to α.

This is done by dynamic programming: compute iteratively

qi(α) probility that simulated type will coincide with α at first i loci.

qi(α|s, t) as above, but conditioned that ith locus is a mutated copy of the ith locus inHs with Poisson(θt)
mutations.

For this, the following approximation is used:

qi(α) ≈
k∑

m=1

j∑
b=1

wmqi(α|b, tm/j)/j,

where w1, . . . , wk and t1, . . . , tk are the weights and points from the Gauß quadrature
∫∞

0
e−tf(t)dt ≈∑k

m=1 wmf(tm).
To compute qi(α|s, t) from previously computed qi−1(α|s, t) and qi−1(α) first compute the transition

matrix for time t:
Q(t) = exp (θt(P − I)/s) ,

where P as before is the transition matrix given that a mutation happens.

If Hs is ancestral at locus i and has type β there, set

R := Qβ,αi(t),

and otherwise
R := (πiQ(t))αi ,

where πi is the vector of proportions of types in H at position i. Then:

qi(α|s, t) = [(1− ai−1) · qi−1(α|s, t) + ai−1 · qi−1(α)] ·R.

Using these regression formulas in a dynamic-programming approach, q(α|H) can be computed and
used to compute the proposal probability.

In the Importance Sampling step, the proposal probability is compared to the original ARG prob-
ability (ARG=ancestral recombination graph) and corrected accordingly to approximate the likelihood
function for ρ and θ in the ARG model.

Li and Stephens’ PAC approach, in contrast, replace the ARG model by a simpler model.
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Li & Stephens’ approach to analyze patterns of LD

References

[LS03] Na Li, Matthew Stephens (2003) Modeling Linkage Disequilibrium and Identifying Recombination
Hotspots Using Single-Nucleotide Polymorphism DataGenetics 165

ideas:

• relate LD directly to underlying recombination process

• Sometimes, block-like LD structure is reported. True or artifact of LD mapping? Allow for both.

• consider all loci simultaneously, not pairwise

• should be compuationally tractable even for complete chromosomes

Li & Stephens’ PAC approach

h1, h2, . . . , hn: haplotypes sampled from panmictic population with constant size and random mating

ρ: recombination parameter (may be a vector if recombination rate varies within the region of interest)

Product of Approximate Conditionals (PAC)

Pr(h1, . . . , hn|ρ) = Pr(h1) · Pr(h2|h1, ρ) · ... · Pr(hn|h1, . . . , hn−1, ρ)

approximate Pr(hk|h1, . . . , hk−1, ρ) by simpler q(hk|h1, . . . , hk−1, ρ).
Properties of Pr(hk|h1, . . . , hk−1, ρ)

1. hk is more likely to match another haplotype if the latter is frequent among h1, h2, . . . , hk−1

2. the probability of seeing a novel haplotype decreases as k increases

3. the probability of seeing a novel haplotype increases with θ = 4Neµ.

4. if a new haplotype does not exactly match any previous one, it will differ from one of those only
by a small number of mutations.

5. effect of recombination: the next haplotype will be composed by segments which are similar to
segments in previously sampled haplotypes. These segments tend to be longer if recombination
rates are low.

Assume the sampled haplotypes h1, h2, . . . , hn are typed at S biallelic loci (e.g. SNPs).

q(h1) =

(
1

2

)S
For the definition of q(hk+1|h1, h2, . . . , hk) let Xi := j if at the i-th locus, the closest relative of hk+1

among h1, . . . , hk is hj .

di distance between loci i and i+ 1

ci recombination rate between loci i and i+ 1 per site and per generation

ρi = 4Neci

The simplifying assuption is then that X1, Xs, . . . , XS is a Markov chain on {1, . . . , k} with Pr(X1 =
j) = 1/k and

Pr(Xi+1 = j|Xi = `) =

{
(1− e−ρidi/k)/k if j 6= `

e−ρidi/k + (1− e−ρidi/k)/k if j = `
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Mutations
For SNP data we assume that each locus is hit by one mutation, such that

θ̃ := 1

/
n−1∑
m=1

1

m

is assumed to be the corrected rate of mutations per SNP site. Note that this does not exclude double
hits (just some bias if double hits are frequent.)

Then, with probability k

k+θ̃
the copy has the same type as the original

and with probability θ̃

(k+θ̃)
the haplotype has the other of the two possible alleles.

Compute q(hk+1|h1, . . . , hk) by HMM forward algo:

hk+1,≤j := (hk+1,1, . . . , hk+1,j) := types of the first j sites in hk+1

αj(x) := Pr(hk+1,≤j , Xj = x|h1, . . . , hk)

(note that with mutations any X1, . . . , XS can emit hk.)
Then,

q(hk+1|h1, . . . , hk) =

k∑
x=1

αS(x).

“dynamic programming”: we can compute all αj(x) by the recursion

αj+1(x) = Pr(hk+1,j+1|Xj+1 = x, h1, . . . , hk) ·
k∑

x′=1

αj(x
′) ·

Pr(Xj+1 = x|Xj = x′)

= Pr(hk+1,j+1|Xj+1 = x, h1, . . . , hk) ·(
e−ρjdj/k · αj(x) +

(
1− e−ρjdj/k

)
· 1

k

k∑
x′=1

αj(x
′)

)

Bias correction
Simulations show that estimations of ρ based on q are biased.

For bias-correction replace ρj in the computation of Pr(Xj+1 = x′|Xj = x) by

ρj · ea+b log10 ρj ,

where a and b are fitted to simulated data, taking the numbers of haplotypes and segregating sites into
account.

Models for ρ considered by Li and Stephens

1. constant ρ

2. single-hotspot model

3. all recombination rates ρ1, ρ2, . . . , ρS−1 may differ

Software by Matthew Stephens using PAC: Hotspotter, PHASE
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12.2.3 PAC in PHASE

References

[SS05] Matthew Stephens, Paul Scheet (2005) Accounting for Decay in Lincage Disequilibrium and
Missing-Data ImputationAm. J. Hum. Genet. 76:449–462

• Use information about order and distance between marker positions

• recombination rates may vary and are estimated

• applicable also when LD is “blocklike”

• imputation of missing data

n number of individuals

L number of loci

G = (G1, . . . , Gn) genotypes; observed up to missing loci

H = (H1, . . . ,Hn) haplotypes; to be reconstructed

H−i = (H1, . . . ,Hi−1, Hi+1, . . . ,Hn)

ρ = (ρ1, . . . , ρL−1) recombination rates between loci

ρ` =
4Nec`
d`

c` recombination probability per generation between loci ` and `+ 1; to be estimated

d` known distance between loci ` and `+ 1

strategy of PAC approach in PHASE
Start with initial H and ρ the following steps many times:

1. for each i update Hi by sampling from Pr(Hi|Gi, H−i, ρ)

2. propose change of ρ and accept or reject with Metropolis-Hastings (MH) step

3. update ordering ν of individuals with MH step for order-dependent PAC probabilities

Needed in these steps:

Pr(Hi = (h, h′)|H−i, ρ) ∝ (2− δhh′) · p(h′|H−i, ρ) · p(h|H−i, h′, ρ)

(where p(h|H−i, h′, ρ) will be approximated by p(h|H−i, ρ))
Simplifying assumption in the computation of p(h|h1, . . . , hk, ρ):

• when a locus in h is copied from some hi only two possible coalescence times are allowed (t1 =
0.586/k, t2 = 3.414/k) and taken with probabilities w1 = 0.854 and w2 = 0.146. This is a Gauß
quadrature approximation of the exponential distribution.

• if X` is the number of the allele from which locus ` in h is copied and T` the corresponding
coalescence time, then (X1, T1), (X2, T2), . . . is a Markov chain with Pr(X1 = x, T1 = tr) = wr/k
and transition probabilities Pr(X`+1 = x′, T`+1 = tr′ |X` = x, T` = tr) =

(1− e−ρldl/k) · wr/k + δxx′δrr′e
−ρldl/k.

Thus, HMM algorithms can be applied again.
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•
Pr(hk+1 = a|X` = x, T` = t, h1, . . . , hk, ρ) =

∑
m

(θt)m

m!
e−θt(Pm)hx,`a

Proposals for step 1 are halplotypes that are composed by blocks as described in Stephens and
Donnelly (2003), leading to a list of promising haplotypes compatible with Gi.

For these haplotypes probabilities are computed with forward algorithm and one of them is chosen
randomly according to the computed probabilities.

For imputation of missing types, probabilities are computed with forward-backward algorithm and
types are sampled accordingly.

performance studies
haplotype inference:

dataset1 40 X chromosomes from unrelated males, paired into 20 pseudo-individuals, 8 regions of 87–
327 kb and 45–165 segregating sites

dataset2 autosomal data from 129 children with known phase (as parents were also genotyped),

result PHASE with recombination PAC model best overall and for most regions.

imputing missing data:

data 50 genes sequenced for 24 humans of African descent and 23 of European descent, 15–230 segre-
gating sites per gene.

simulation remove 5% of the data (in addition to 4.6% that was actually missing), either single alleles
or the genotypes.

result PHASE with recombination PAC model always best

References

[CB+04] Crawford, Bhagale, Li, Hellenthal, Rieder, Nickerson, Stephens (2004) Evidence for substantial
fine-scale variation in recombination rates across the human genomenature genetics

[CB+04] Myers, Freeman, Auton, Donelly, McVean (2008) A common sequence motif associated with
recombination hot spots and genome instability in humansnature genetics

12.2.4 Population splitting and recombination

References

[DPC09] D. Davison, J.K. Pritchard, G. Coop (2009) An approximate likelihood for genetic data under a
model with recombination and population splitting.Theoretical Population Biology 75:331-345

• two populations split G generations ago, F = G/(2N).

• no ongoing geneflow

• for simplicity: assume that both populations and the ancestral population have size N

• Copying occurs in daughter population (S = d) and in ancestral population (S = a)
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Again, the PAC approach is used and we have to approximate the probability of a haplotype hk1+k2+1

given already sampled haplotype h1, . . . , hk1+k2
, of which k1 were sampled on island 1 and k2 on island

2.
Let zi ∈ {1, 2} indicate the island where hi was sampled, z∗ := zk1+k2+1, and X` indicates the hi

that is the closest relative to hk1+k2+1 at site `.

to be specified:

1. prior prob of hidden copying states (S`, X`) at a single site `.

2. probability of new allelic state conditioned on the state of the copied allele and the level S`.

3. Transition probabilities between the hidden copying state at adjacent states (in case of linked loci).

Point 1: Pr(X` = i|S` = d), unlinked case
In the case of unlinked sites, we obtain first consider the case of unlinked sites,

Pr(X` = i|S` = d) =

{ 1
kz∗

if z∗ = zi
0 else

where kz∗ is the no. of lineages sampled

from pop. z∗ so far

Pr(X` = i|S` = a) = E
(

Jzi
J1 + J2

)
· 1

kzi
,

Where Ji is the number of ancestral lineages that enter the ancestral pop. from pop. i. To compute the
expectation first compute for all ji < ki the probabilities that ki lineages coalesce down to ji lineages in
G generations. These values are also needed to compute Pr(S` = d).

Point 2: Mutation probability; unlinked case
Simplification: For time Tcoal of coalescence use expectation

ts = E(Tcoal|S, k1, k2, F )

Then:

u(hk1+k2+1|hi, s) = Pr(hk1+k2+1|S` = s,X` = i, k1, k2, F )

=

{
1− e−θts if hk1+k2+1 6= hi
e−θts if hk1+k2+1 = hi

,

where θ is corrected for using only polymorphic sites as in Li&Stephens.

Thus, we approximate Pr(hk1+k2+1|h1, . . . , hk1+k2
) by

∑
s∈{a,d}

p(S = s) ·
k1+k2∑
i=1

u(hk1+k2+1|hi, s) · p(X = i|S = s)

now for the case of (loosly) linked loci

• Now (S1, X1), . . . , (SL, XL) are not independent.

• Simplify applying Markov model, such that HMM algorithms are applicable

• Computing transition probabilities

p(S`+1 = s′, X`+1 = i′|S` = s,X` = i)

= p(S`+1 = s′|S` = s) · p(X`+1 = i′|S`+1 = s′) + δii′δss′ · p(NR|S`),
where NR stands for “no recombination” is tricky, several simplifying approximation are applied,
e.g.:
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• if A is the event that a recombination happens on the new lineage in the daughter population, then

p(S`+1 = d|S` = a) = p(A) · p(S = d|A) (1)

≈
(
1− e−ρ`F

)
· p(S = d) (2)

• Simulation study

– works well in case of unlinked loci

– estimates of F biased for version with linked loci

– not well understood where this bias comes from, but suggest a bias correction

• Discuss how method could be extended to models with gene flow

12.2.5 Diversifying selection and recombination

References

[WM06] D.J. Wilson, G. McVean (2006) Estimating diversifying selection and functional constraints in
the presence of recombination Genetics 172:1411–1425

Apply Bayesian variant of PAC to infer from population genetic data which regions are under diver-
sifying selection and which are under purifying selection.

ω = dN/dS fraction of rates of nonsynonymous vs. synonymous mutations

diversifying selection corrsponds to large ω and

purifying selection to small ω.

Software: omegaMap http://www.danielwilson.me.uk/omegaMap.html

NY98 Codon mutation model
Nielsen and Yang (1998)
Mutation rate qij = πj · µij , where i and j are codons, i 6= j or one of then is an insertion/deletion

(indel), πj is the frequency of j and

µij =



1 for synonymous transversion
κ for synonymous transition
ω for nonsynonymous transversion
ωκ for nonsynonymous transition
ωφ if exactly one of i and j is an indel
0 otherwise

(original NY98 is without indels)
Model for ω along the gene:
There are B transition points s1, . . . , sB , such that ∀j : ω is constantly ωj between sj and sj+1.

pω Probabilty of transition point between two codons.

ωj are independent of each other and have prior exp(λ)

Similar model for change of recombination rate ρ; independent of ω configuration.

H haplotypes sampled from population

Θ model parameters, including all ωj and ρj and change points.

MCMC sample parameter values according to

P (Θ|H) ∝ P (H|Θ) · P (Θ)

PAC with HMM forward algorithm is applied to approximate P (H|Θ) via PAC approximations of

p(Hk+1|H1, H2, . . . ,Hk,Θ)
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MCMC moves
To propose e.g. µ′ as a replacement of current µ, choose U ∼unif(−1, 1), und set µ′ = µ exp(U).
Accept or reject with MH step.

Same for κ, ωj , ρj .

MCMC step to shift block change point.

Reversible Jump steps to update blocks:

• split block

• merge block

λ, φ, pω, pρ are specified by user to specify prior.

Application example
79 alleles of porB locus of Neisseria meningitidis

permutation test shows significant correlation of LD and distance between sites. ⇒ Phylogenetic
methods not appropriate.

Found four sections in the gene where high ω values are probable, indicating diversifying selection,
whereas almost everywhere else, ω < 1, indicating purifying selection.

Indeed, regions with large ω are loops exposed to immune system of host, such that diversifying
selection is plausible, and other regions form beta sheet barrel, which explains functional constraints.
(nice picture in paper!)

Model without recombination leads to different results, but

Model Criticism via posterior predictive P -value shows that model without recombination fits the
data poorly. This means, if D is some statistic of the data and DH′ is the statistic for a dataset
H ′ simulated under the PAC model used for inference, then the

posterior predictive P -value is:

p =

∫
P (DH′ ≥ DH |Θ, H)P (Θ|H)dΘ ≈ 1

M

M∑
i=1

I(DH′i
≥ DH)

Wilson and McVean perform simulation studies for several conditions to assess how well their method
works.

This is very important for heuristic approaches like PAC because it is otherwise not clear how accurate
these methods are even if sampling from some approximate posterior approximate confidence intervals
are computed.

12.3 Phasing large genomic datasets

12.3.1 fastPHASE

References
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ulation Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase
Am. J. Hum. Genet. 78:629–644
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If n haplotyps are to be reconstructed (that is, from n/2 sampled individual) at M marker positions,
than the complexity of HMM algorithms in PHASE is O(n2M).

fastPHASE reduces this to O(nM).

Instead of sampling sections of haplotypes from copies of other haplotypes, all section are sampled
from K clusters, similar to STRUCTURE.

First consider clustering method of haplotypes, where cluster just is a set of closely related haplotypes.

Then extend for phasing with in Hardy-Weinberg Equilibrium (HWE) within clusters.
First: consider local clustering method for haplotypes.

Given h = (h1, . . . , hn) haplotypes with M biallelic {0, 1} (can be relaxed) marker positions.

zim ∈ {1, . . . ,K} origin of him, (marker position m in hi). zi = (zi, . . . , ziM ) modeled as a Markov
chain with

p(zi1 = k) = αk1

and pm(k → k′) :=

p(zim = k′|zi(m−1) = k, α, r) =
(
1− e−rmdm

)
· αk′m + δkk′ · e−rmdm ,

where dm is the distance between markersm−1 andm, and the recombination parateters r = (r2, . . . , rM )
as well as α = (αkm) are to be estimated.

Now for the emission probabilities:

p(hi|zi, q) =

M∏
m=1

p(him|zim, q) =

M∏
m=1

qhimzimm · (1− qzimm)
1−him ,

where qkm is the frequency of allele 1 at marker m in cluster k.

Again, we obtain an HMM, parameter estimation can be done with EM, assigments of haplotype
sections to culsters e.g. with Viterbi-Algorithm or Bayesian sampling tracing back contributions in the
forward algorithm.

Now assume that unphased genotypes g = (g1, . . . , gn) are given, gim ∈ {0, 1, 2} is the genotype at
marker m in individual i. Now assume HWE in each cluster. Let z̃im be the unordered pair of clustes of

origin of gim:
p(z̃i1 = {k1, k2}) = (2− δk1k2

)αk1
αk2

and assume that z̃i = (z̃i1, . . . , z̃iM ) is a Markov chain with transition probabilities pm({k1, k2} →
{k′1, k′2}) =

pm(k1 → k′1) · pm(k2 → k′2) +
(
1− δk1k2

δk′1k′2
)
· pm(k1 → k′2) · pm(k2 → k′1).

Emission probabilities:

p(gim|z̃im = {k1, k2}, q) =

 (1− qk1m)(1− qk2m) if gim = 0
qk2m(1− qk1m) + qk1m(1− qk2m) if gim = 1

qk1mqk2m if gim = 2

Difference to approach of Falush et al. (2003) implemented in STRUCTURE: Here, α varies between

marker positions but not between individuals. In Falush et al. it is vice versa (for the parameter there
called q). That is, here, α controls the frequency of the common haplotypes, not the contribution of the
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different clusters to an individual’s genome.
HWE assumption is violated if the population is substructured. Applications of fastPHASE for

data imputation or phasing may be robust against such violations. Moreover, extension of model is

possible, assuming that individuals are sampled from known subpopulations and the parameters r and
α vary between the subpopulations.

Parameter estimation with EM: Found that 20 independent starts with 25 iterations each is enough.

K =?: How many clusters to choose? Cross validation: Mask 15% of the genotypes, impute the
genotyes with fastPHASE with various K between 4 and 12. Choose the K for which the genotypes a
correct as often as possible (was K = 8 for data used in Scheet and Stephens, 2006). But also suggest
to run with various K and compare results rather than relying on a single value of K.

12.3.2 Phasing with Beagle software package

References

[BB07] S.R. Browning and B.L. Browning (2007) Rapid and Accurate Haplotype Phasing and Missing-
Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering
Am. J. Hum. Genet. 81:1084–1097

For an initial guess of the haplotypes first construct a directed acyclic graph (DAG), in which

• each edge has a level m corresponding to marker position m

• and a lable corresponding to an allele occuring at marker position m,

• and for each of the occuring haplotypes hi = (hi1, . . . , hiM ) there is path from the start node to
the end node such that the lables of the edges are hi1, . . . , hiM .

• (If a node has ingoing edges of level m than all its outgoin edges are of level m+ 1, and vice versa.)

Method of graph construction described in paper by S.R. Browning (2006)
Then construct an HMM whose possible states at step m are ordered pairs of DAG edges of the same

level m. Transition probabilities:

P ((e1, e2)→ (e3, e4)) = P (e1 → e3) · P (e2 → e4),

where

P (ei, ej) =
]{haplotypes whose path contains e2 and ej}

]{haplotypes whose path contains ei}

Emission probability: 1 if genotype at marker position m is compatible with labels of edges belonging
to state, otherwise 0.

Now use “diploid HMM” to sample for each individual several haplotypes (in Beagle software 4
haplotype pairs per individual). Pool these haplotypes to construct DAG for next iteration. For

sampling use forward algorithm restricted on states corrsponding to states of the focal individual, and
random tracebacks, with probabilities always proportional to current state. In last iterations use Viterbi

paths instead of random paths.
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12.3.3 IMPUTE version 2

References

[HDM09] B.N. Howie, P. Donnelly, J. Marchini (2009) A Flexible and Accurate Genotype Imputation
Method for the Next Generation of Genome-Wide Association StudiesPLoS Genetics 5(6)

Similar to PAC-approach in PHASE, but is made for situation when reference haplotype data is
available. Reference haplotypes and unphased genotypes are used together in phasing update step. For

runtime efficiency untyped SNPs are imputed in haplotype HMM framwork rather than in diploid HMM.

For accelaration restrict set of possible haplotypes in each iteration to those that are similar to existing
ones.

12.3.4 MaCH

References

[LW+10] Y. Li, C.J. Willer, J. Ding, P. Scheet, G.R. Abscasis (2010) MaCH: Using Sequence and
Genotype Data to Estimate Haplotypes and Unobserved GenotypesGenet. Epidemiol. 24(8):
816–834

Similar to fastPHASE, but uses a larger number of haplotype templates instead of few haplotype
groupings. In emission probabilities use error parameter εj that can depend on position j and covers

sequencing error, gene conversion,. . .

12.3.5 polyHAP

References

[SW+08] S.Y. Su, J. White, D.J. Balding, L. J. M. Coin (2008) Inference of haplotypic phase and
missing genotypes in polyploid organisms and variable copy number genomic regions BMC
Bioinformatics 9:513

Similar HMM approach like fastPHASE but for polyploid data. Computationally very demanding

because states are unordered lists stating how many alleles have been sampled from how many clusters.
Thus, many possible transitions between hidden states are considered.

13 Simulating the genetic footprints of selection

We have already discussed one genetic signal of selection: dN/dS. We will now consider the effect of

selection and adaptation on genealogies. We will discuss how these effects can be simulated, because

1. this is a way to specify the theoretical model and

2. if we know how to simulate data, we can apply ABC and similar methods for statistical inference
of model parameters.

Possible scenarios for the case of positive selection (directional selection):
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1. A beneficial mutation appears once, spreads in the population and will eventually be fixed

2. there is a balance between mutation and selection

3. selection pressure changes in time and a certain allele is favored for a while and increases in
frequency during that time

Other forms of selection:

background selection , also called negative selection

balancing selection can lead to maintance of two alleles over a long period of time

diversifying selection : new types appear by mutation and have an advantage until the reach a certain
frequency

etc.

Basic model of positive selection: Each individual i of the N population of size N has a fitness wi,
which is the expected number of kids. The N surviving offspring of the next generation are sampled
from the kids of all individuals. Thus, the expected number of surviving offspring of i is wi/

∑N
j=1 wj .

Let’s assume a simple scenario: haploid population with one type A of fitness 1 + s and one type a of
fitness 1.

Moran model
Assume a population of 2N gametes. An alternative to the Wright-Fisher model is the Model of

Moran(1958): Each gamete has a rate of 1 to generate one offspring and replace one randomly chosen
gamete. For N → ∞ and time scaled in units of N (not 2N !) generations, the genalogy of a sample

from the Moran model converges to the standard Kingman coalescent. Add selection to Moran model:

Type A replaces produces offspring at rate 1 and type a at rate (1− s). This approximates the diploid

case with fitness 1 of AA, 1− s of Aa, and (1− s)2 ≈ 1− 2s of aa. (Note that capital letter A does not
indicate dominance.)

Transition rates of number of allele A gametes in Moran model with selection:

i→ i+ 1 at rate
(2N − i) · i

2N

i→ i− 1 at rate
(2N − i) · i

2N
· (1− s)

More facts about Moran model with selection:

Fixation probability: If we start with i gametes of type A, the fixation probability of A is

1− (1− s)i

1− (1− s)2N
≈ 1− e−is

1− e−2Ns

Fixation time: Assume that type A starts with one gamete. Conditioned on the fixation of A, the
expectation value of the fixation time is in the limit of large populations is asymptotically

2

s
logN

For proofs see:
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In mathematical population genetics two cases are considered:

weak selection: as N →∞, s→ 0 such that Ns→ s̃ <∞.

strong selection: as N → ∞, s is stays constant, with the consequence that the fixation time of the
advantageous allele is 0 on the time scale of N generations.

13.1 Ancestral Selection Graphs

References

[NK97] C. Neuhauser, S.M. Krone (1997) Ancestral processes with selection Theor. Pop- Biol. 51:210–
237

[KN97] S.M. Krone, C. Neuhauser (1997) The genealogy of samples in models with selection Genetics
145:519–534

Ancestral Selection Graph (ASG)
Weak selection: 2Ns → s̃ as population size 2N → ∞. Each pair of ancestral lineages coalesces at

rate 1. At rate θ/2 lineage of type a mutates into A and vice versa. Each lineage x is hit by “arrow” at

rate s̃. Arrow was shot by random indivdual y from population. If (further in the past) x was of type
a and y of type A, replace (in future direction) x by type A. To find out whether this applies, trace
lineages back into past. At latest when all lineages are coalesced, types of all lineages are determined.

This happens almost surely after finite time because number j of lineages to trace back jumps to j + 1
at rate s̃ · j only but jumps to j − 1 at rate j · (j − 1)/2.

ASG for frequency-dependent selection with advantage of rare alleles

References

[N99] C. Neuhauser (1999) The ancestral graph and gene genealogy under frequency-dependent selection
Theoretical Population Biology 56:203–214

When lineage x is hit by “replacement arrow” from y, it shoots a “check arrow” to some random

individual z from the population. It copies the type of y if and only if the type of z is different than
that of y. Thus, lineages of x, y, and z have to be traced back. But again all lineages will coalesce in

finite time because rate of adding lineages is linear whereas rate of coalescence is quadratic in number of
lineages. In structured population one can also assume that the arrows are shot locally to model that

selection depends on local frequencies.
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13.2 Simulating selective sweeps and other kinds of strong selection

In the case of strong selection, coalescent based simulation faces the problem that in time span of length
0 advantageous type becomes fixed, and backward in time all lineages would coalesce at that time. In

case of the ancestral recombination graph (ARG) there is even no time for recombination. However,

if we model a locus that is far from selected locus, recombination rate is also high and in mathematical
models we could also let it go to ∞ such that lineages can escape the selective sweep. In the simulation

programm MSMS, however, the approach is to first simulate the locus under selection for finite N , and
then the ARG around (or next to) it conditioned on the frequency trajectory of the selected allele.

References

[EH10] G. Ewing, J. Hermisson (2010) MSMS: a coalescent simulation program including recombination,
demographic structure and selection at a single locusBioinformatics 26(16): 2064–2065

Strategy: First simulate the site under selection forward in time with discrete generations and finite
N . Then generate the ARG backwards in time conditioned on the simulated development of allele
frequencies. Allows to specify when selection starts and when it ends (or some condition, e.g. fixation).

MSMS model for selected locus
Works for fitness function of haploids or diploids.

Selection can depend on deme.

Fitness of genotypes aa, aA and AA on deme i:
(1 + saai ), (1 + saAi ), and (1 + sAAi )
Also balancing selection possible by choosing saai < saAi > sAAi

mij : fraction of island j immigrants on island i

mii := 1−
∑
j 6=imij .

xi : relative frequency of A on island i

µ : mutation rate a→ A

ν : mutation rate A→ a

ηAi :=
∑
j

mijxj
(
1 + (1− xj)saA + xjs

AA
)

ηai :=
∑
j

mij(1− xj)
(
1 + xjs

aA + (1− xj)saa
)

x′i :=
(1− ν)ηAi + µηai

ηAi + ηai

Then, the number of copies of A on island i in the next generation is drawn from binomial distribution
with parameters (2Ni, x

′
i). For ARG backwards simulations, continuous time is assumed. For this, each

generation from the forward simulation is replaced by suitable time span.
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MSMS simulation strategy for ARG
Simulate migration, coalescence, mutation and recombination. As far as possible use that the time to

the first event (back in time) of several possible events with exponential waiting time is also exponentially
distributed with rate being the sum of the single rates. But take into account that rates vary in time

due to population size changes and changes of allele frequencies at locus under selection. Lineages can

coalesce only if they have the same type A or a at the selected locus.

E.g. if there are k lineages of type A on island i, the total coalescence rate of these lineages is

k · (k − 1)

2Nixi

as long as type A has frequency xi on island i.
Migration and Mutation rate must be corrected for allele frequencies simulated afore. If mij is the

fraction of island i inhabitants that immigrated from island j, then the fraction of immigrants from j of
type A is xjmij . Thus, the fraction of immigrants among the type A inhabitants of island i is xjmij/xi.

Similarly, lineages of type A are traced back to be mutated from lineages of type a on island i at rate
µ · (1− xi)/xi.

Simulating the ARG, given the locus under selection
During the backwards simulation, all lineages have sequences with “active” and “inactive” sections.

Active means that a mutation in such a region would lead to a polymorphic site in the sampled sequences.
In the beginning, all sites are active. If recombination happes, the lineage is split into two, and in one
everything left of the recombination site is deactivated, and in the other one everything right of the
recombination point is deactivated. If two lineages coalesce, the active regions in the resulting lineage is
the union of all active regions in the two coalescing lineages, with one exception: If a region is active in
only one lineage, it is deactivated. When a recombination happens in an inactive range, its exact location
is irrelevant (like mutations in these regions), again with one exception: If the locus under selection is
in the inactive region, it matters whether recombination happened left or right of it.

We must alway keep track of the type a or A of each lineage at the selected locus, even if this locus
is outside the range for which we simulate the ARG. In particular, when recombination leads to a split

of a lineage, one lineage keeps the locus under selection (which one is clear from the position of the
recombination point). The type of the other lineage is of type A or a with probabilities xi or 1 − xi,
respectively.

New versions of msms (or future versions?) can also simulate the case of more than one locus under
selection.
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