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1 Examples

Complex Demography
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?

substructure
population growth

recent speciation
introgression?

recombination within loci
can we still detect selection?

2 Wright Fisher model and Kingman’s Coalescent

Basic assumptions of the Wright Fisher model

• non-overlapping generations

• constant population size

• panmictic

• neutral (i.e. no selection)

• no recombination

• N diploid individuals  population of 2N haploid alleles (in case of autosomal DNA)

Wright Fisher model
Each allele chooses an ancestor in the generation before.
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Samples are assumed to be taken purely randomly from the population.
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This induces a specific random distribution for the genealogies of the sampled alleles.
Generation
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Haploid population of size Ne
Average time until two ancestral lineages coalesce: Ne generations.
Scale time: (1 time unit) = (Ne generations) ⇒ pairwise coalescence rate = 1
µ := mutation rate per generation

θ := 2Ne · µ

is the expected number of mutations between 2 random individuals
Let Ne −→∞

The Kingman Coalescent

3



21 3
Zeit in 
Generationen

Zeit in 
N Generatioenkk−1........

2N/(k(k−1))

2N/(6*5)

2N/(5*4)

2N/(4*3)

2N/(3*2)

2N/(2*1)

2/(6*5) = 0,667

2/(k(k−1)) = 2/(7*6) = 0,0476

2/(4*5) = 0,1

2/(4*3) = 0,167

2/(3*2) = 0,333

2/(2*1) = 1

E(total length)

= 2 ·
k−1∑
i=1

1/i

typical coalescent trees for n = 8:

4
7
1
8
3
5
2
6

1
2
8
4
5
3
6
7

1
7
2
6
5
8
3
4

7
2
5
8
3
4
1
6

4
5
7
3
8
2
1
6

7
6
1
3
2
8
4
5

8
1
4
5
7
3
2
6

7
5
8
4
6
3
1
2

2
1
8
4
6
5
3
7

2
5
1
4
6
8
3
7

5
6
1
7
2
3
4
8

4
6
2
5
8
1
3
7

simulated coalescent tree with n = 500:
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3 Estimators for θ and Tajima’s π

Two estimators of θ
θπ (“Tajima’s π”) Average number of pairwise differences.

θW (“Watterson’s θ”) = number of mutations∑k−1
i=1 1/i

Both are unbiased estimators of θ, i.e. EθW = Eθπ = θ.
Example: Ward et al. (1991) sampled 360 bp sequences from mtDNA control region of n = 63 Nuu

Chah Nulth and observed 26 mutations.

θW =
26∑63
i=1 1/i

= 5.5123

This corresponds to 0.0153 Mutations per base and per 2 · Ne generations.Assuming a mutation rate
µ̂ ≈ 6.6 · 10−6 per generation per site this leads to an effective population size of

N̂e =
θW /360

2 · µ̂
≈ 1150 females

How precise is this estimation?

var(θW ) =
θ∑n

i=1 1/i
+ θ2 ·

∑n
i=1 1/i2

(
∑n
i=1 1/i)

2

Theorem 1 Any unbiased estimator of θ has variance at least

θ∑n−1
k=1

1
k+θ

.

(Here, we assume that the estimation is based on a single locus without recombination).
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For the Nuu Chah Nulth data we get:

θW = 5.5123

σθW = 3.42

Confidence range? (2σ-rule would leed to negative values...)
Conclusion: Ne could perhaps also be 200 or 3000 females.
How can we improve this estimate? Sample more individuals? How many individuals n would we

need to get σθW = 0.1 ·θ? From the formula for varθW follows that we need n ≈ 2 ·e100/θ. For θ = 5, this
is n ≈ 109. For θ = 1, this is n ≈ 1043. number of water molecules on earth≈ 1047 number of seconds
since big bang≈ 4.3 · 1017

Solution: sample many loci!

References

[Fel06] J. Felsenstein (2006) Accuracy of Coalescent Likelihood Estimates: Do We Need More Sites,
More Sequences, Or More Loci?Mol. Biol. Evol., 23.3: 691–700.

How to sample if

• one read is 600 bp long

• costs for developing a new locus is 40$

• costs for collecting a sample is 10 or 0.10$

• costs for a single read is 6$

• you can spend 1000$

• true θ is 1.8 (per locus)

Optimal sampling scheme: n = 7 or n = 8 , respectively, individuals and 11 loci.
With this sampling scheme we get:

σθW ≈ 0.2 · θ and σθπ ≈ 0.22 · θ

(all this is based on infinte-sites assumptions)

Tajima’s D
π π WWθ  > θ   : θ  < θ   :

D := θπ−θW
σ̂θπ−θW

substructure?
population
growth?
selection?
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4 Outline of methods

4.1 ML with Importance Sampling

The Likelihood

ψ = (ψi)i vector of model parameters

D sequence data

LD(ψ) = Prψ(D) =

∫
all Genealogies G

Prψ(D | G) · Pψ(dG).

Importance Sampling
Draw G1, . . . , Gk (approx.) i.i.d. with density Q and approximate∫

Prψ(D | G) Pψ(dG) ≈ 1

k

k∑
i=1

Prψ(D | Gi) · Pψ(Gi)

Q(Gi)
.

efficient for ψ with
Prψ(D | Gi) · Pψ(Gi) ≈ Q(Gi)

Methods differ in their choice of Q.

Griffiths & Tavaré (1994)
Q: Generate G backwards in time, greedy proportional to coalescence and mutation probabilities.

Choose between all allowed events.
Good for infinite sites models, inefficient if back-mutations are allowed.

4.2 MCMC for frequentists and Bayesians

Felsenstein, Kuhner, Yamato, Beerli,. . .
For some initial ψ0, sample Genealogies G approx. i.i.d. according to Prψ0(G | D) by Metropolis-

Hastings MCMC.
Coalescent is a natural prior for G!
Two flavours:

for frequentists: use G1, . . . , Gk for Importance Sampling

Optimize approx. Likelihood → ψ1

Iterate with ψ0 replaced by ψ1

for Baysians: Then sample ψ conditioned on Genealogies and iterate to do Gibbs-sampling from
Pr(ψ,G | D).

Problems of full-data methods

• usual runtime for one dataset: several weeks or months

• complex software, development takes years

• most programs not flexible, hard to write extensions
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4.3 Approximate Bayesian Computation (ABC)

Pritchard et al. (1999)
Approximate Bayesian Computation

1. Select summary statistics S = (Si)i and compute their values s = (si)i for given data set

2. Choose tolerance δ

3. repeat until k accepted ψ′:

• Simulate ψ′ from prior distribution of ψ

• Simulate genealogy G according to Prψ′(G).

• Simulate data and compute values s′ of S

• accept ψ′ if ‖s− s′‖ ≤ δ

Only possible if a few summary statistics suffice. We will later discuss refinements and extensions of
this approach.

Beaumont, Zhang, Balding (2002)

“[...] the MCMC-based method is consistently superior to the summary-statistics-based methods and
highlights that it is well worth making the effort to obtain full-data inferences if possible.”

“[...] there are advantages to the use of summary statistics, both in the ease of implementation and in
the time to obtain the results [...]”

“Further research is needed to find a more rigorous way for choosing summary statistics, including the
use of orthogonalization and ‘projection-pursuit’ methods”

5 Importance sampling for genealogies

D: data set of DNA sequences sampled from a population. In case of a structured population sampling
locations are known.

Aim: Estimate parameters Θ := (θi,Mij)ij .
Maximum-Likelihood (ML) approach: Find the set of parameter values that maximizes the likelihood:

Θ̂ := arg max
Θ

PrΘ(D)

How to compute the likelihood?

LD(Θ) = PrΘ(D) =
∑
G

PrΘ(G) · PrΘ(D | G).

More precisely:

LD(Θ) = PrΘ(D) =

∫
all genealogies G

PrΘ(D | G) PΘ(G)dG

where PΘ(G) is the density of the (structured) coalscent distribution at the genealogy G.
What does this mean?
And what is dG?
Let’s first ask: What is the dx in ∫ 1

0

x2dx ?

dx is used in an ambigous way. This is sloppy but intuitive.
It means “a small environment around x”, but also the size of this environment.
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To explain this we be a little bit less sloppy for a few minutes and write dx for the environment and
dx for its size.

For some small n ∈ N and x ∈ R we can define dx = [x− 1
2n , x+ 1

2n ].Then, dx = 1/n.

We can approximate
∫ 1

0
x2dx by

∑
x∈{ 1

n ,
2
n ,...,

n
n}

x2 · 1

n
=

∑
x∈{ 1

n ,
2
n ,...,

n
n}

x2 · dx n→∞→
∫ 1

0

x2dx

dx is always meant to be “infinitesimally small”, i.e. dx→ 0

What is a probability density?
P (x) is the probability density of a random variable X in x if

Pr(X ∈ dx) ≈ P (x) · dx

and the “≈” becomes a “=” for “infinitesimally small” dx. This is again sloppy and intuitive.It actually
means that

lim
dx→0

Pr(X ∈ dx)

dx
= P (x)

It then follows that

Pr(X ∈ [a, b]) =

∫ b

a

P (x)dx.

Examples
The density of the exponential distribution with rate λ at x is

λe−λx.

The density of the normal distribution with mean value µ and standard deviation σ is

1

σ
√

2π
· e−

(x−µ)2

2σ2 .

Now for dG
Let dG be a small environment around the genealogy G. This means, dG consists of all genealogies

G′ that have the same topology as G and if τ1, . . . , τn are the points in time where coalescent events or
migrations of lineages or thelike occurr in G, and τ ′1, . . . , τ

′
n are the corresponding points in time for G′,

then
∀k≤n|τk − τ ′k| ≤ ε.

Thus, the volume dG of dG can be defined to be (2ε)n. The density PΘ(G) is then defined by

PrΘ(G′ ∈ dG) ≈ PΘ(G) · dG

where PrΘ(G′ ∈ dG) is the probability that a genealogy G′ that was generated according to the prob-
ability distribution of a structured coalecent with parameter values Θ results to be in the environment
dG of G, or, more precisely:

PrΘ(G′ ∈ dG)

dG

dG→0−→ PΘ(G)

The equation

LD(Θ) = PrΘ(D) =

∫
all genealogies

PrΘ(D | G) PΘ(G)dG

should now make some more sense to us. But how can we compute it? We use Importance Sampling.

How can we compute the integral
∫ b
a
h(x)dx of this function h?
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h

Approximation by a step function: If x1, . . . , xk are the means of the partition intervals and c = b−a
k

is their width, then ∫ b

a

h(x) dx ≈
k∑
i=1

c · h(xi) =
b− a
k

k∑
i=1

h(xi).

Maybe save some time by just taking a sample of k values h(x).∫ b

a

h(x) dx ≈ b− a
k

k∑
i=1

h(Xi) =
1

k

k∑
i=1

h(Xi)
1
b−a

.

f

Maybe we know a function f that approximates h

f

We can sample more from the relevant range but we have to correct this by the Importance-Sampling
formula: ∫

h(x) dx ≈ 1

k

k∑
i=1

h(Xi)

q(Xi)

where X1, . . . , Xk are independent samples from a distribution whose density q is proportional to f . The
closer f is to h, the better the approximation.
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Sketch of proof of the IS formula

∫ b

a

h(x)dx =

∫ b

a

h(x)

q(x)
· q(x)dx

= Eq
h(X)

q(X)

=
1

k
·
k∑
i=1

h(Xi)

q(Xi)
,

where Eq is the expectation value under the assumption that X has probability density q, and X1, . . . , Xk

are independently sampled with probability density q.
Importance Sampling for computing the likelihood of for a range of parameter values Θ: Generate

genealogies G1, . . . , Gk (more or less) independently according to a probability density Q(Gi). Then,

LD(Θ) =

∫
all genealogies G

Pr
Θ

(D|G) · PΘ(G)dG

≈ 1

k

k∑
i=1

PrΘ(D|Gi) · PΘ(Gi)

Q(Gi)
.

Method differ in their choice of Q and will be most efficient if

Q(G) ≈ Pr
Θ

(D|G) · PΘ(G).

6 Griffiths und Tavaré

References

[1] Griffiths und Tavaré (1994) Ancestral Inference in Population Genetics Statistical Science 9(3):
307-319. http://www.stats.ox.ac.uk/∼griff/software.html

Start with an initial guess Θ0. Define the history of a sample to be H = (H1, H2, . . . ,H`), where the
historical events Hk can be

1. lineages i and j coalesce

2. mutation on lineage i

3. lineage i from island a traces back to island b

and H1, H2, . . . ,H` goes from present to past.
For the Importance Sampling procedure, many histories H(1), H(2), . . . ,H(M) are generated. For

each history H(i) are sampled H
(i)
1 , H

(i)
2 , . . . step by step from the tips to the root of the tree. Given the

data, not all events are possible. E.g., lineages cannot coalesce if they are of different allelic type. If the
infinite-site mutation model is used (to make the Griffith-Tavaré scheme efficient), not all mutations are

allowed.
Let bij(θ0) be the probability of the jth event h = H

(i)
j in the ith sampled history H(i) and let

(aijk(θ0))k be the series of rates of all events that would have been allowed for this step. Then, the

11
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probability to choose h was bij(θ0)/
∑
k aijk(θ0). Thus,

∏
j bij(θ0)/

∑
k aijk(θ0) is the die importance-

sampling probability Qθ0(H(i)) of the entire history H(i). According to the importance-sampling formula
we get for all θ that are not too far from θ0:

L(D)(θ) ≈
1

M

M∑
i=1

∏
j

bij(θ) ·
∑
k aijk(θ0)∑

k aijk(θ) · bij(θ0)

• Advantage over MCMC: Histories are sampled really independent of each other.

• Disadvantage: For finite-sites models many different mutation events are allowed in each step,
which makes the method very inefficient. Stephens and Donnelly (2000) found a solution for this,
which we will discuss later in the semester.

7 Lamarc (and Migrate)

Rate parameters and time scales
For autosomal DNA:

per per 2Ni per 1/µ
generation generations generations

mutation rate µ θi
2 = 2Niµ 1

migration rate of

ancestral lineage from i mij γij = 2Nimij Mij =
mij
µ =

2γij
θi

tracing back to j
coalescence
on island i 1/(2Ni) 1 1

2Niµ
= 2

θi

Number of alleles on island i that choose their parent allele on island j:

2Ni ·mij = γij

Combining IS with MCMC

References

[1] M. Kuhner, J. Yamato, J. Felsenstein (1995) Estimating effective population size and mutation rate
from sequence data using Metropolis-Hasings sampling. Genetics 140: 1421–1430

[2] P. Beerli, J. Felsenstein (2001) Maximum likelihood estimation of a migration matrix and effective
population sizes in n subpopulations by using a coalescent approach.PNAS 98.8: 4563–4568

• MIGRATE-N http://popgen.sc.fsu.edu/Migrate/Migrate-n.html

• LAMARC http://evolution.genetics.washington.edu/lamarc/lamarc.html

LAMARC strategy

Begin with initial parameter guess Θ0 = (θ
(0)
1 , θ

(0)
2 , . . . ,M

(0)
12 ,M

(0)
12 ,M

(0)
23 , . . .), repeat the following

steps for i = 0, 1, 2, . . . ,m− 1

1. Metropolis-Hastings MCMC sampling of genealogies G1, G2, . . . , Gk (approx.) according to the
posterior density pΘi(G|D) given the data D. What is Hetropolis-Hastings MCMC?
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2. importance sampling:

LD (Θ)

LD (Θi)
≈ 1

k

k∑
j=1

pΘ (Gj)

pΘi (Gj)
=: FΘi(Θ)

Why is this justified as importance sampling?

3. Θi+1 := arg maxΘ FΘi(Θ)

and hope that Θm ≈ Θ̂ = arg maxΘ LD(Θ)

Justification of step 2

LD (Θ)

LD (Θi)
≈

1
k

∑k
j=1

PrΘ(D|Gj)·pΘ(Gj)
pΘi

(Gj |D)

PrΘj (D)
(importance sampling)

=
1

k

k∑
j=1

PrΘ (D|Gj) · pΘ (Gj)

pΘi (Gj |D) · PrΘi(D)

=
1

k

k∑
j=1

PrΘ (D|Gj) · pΘ (Gj)

pΘi (Gj , D)

=
1

k

k∑
j=1

PrΘ (D|Gj) · pΘ (Gj)

PrΘi (D|Gj) · pΘi (Gj)
=

1

k

k∑
j=1

pΘ (Gj)

pΘi (Gj)

The last equation follows from PrΘ (D|Gj) = PrΘi (D|Gj), which holds since the mutation rate is always
1 and thus the D is independent of Θ when G is given.

Markov-Chain Monte Carlo (MCMC)
MCMC: construct Markov chain X0, X1, X2, ... with stationary distribution Pr(G | D) and let it

converge.

Markov property:

∀i,x : Pr(Xi+1 = x|Xi) = Pr(Xi+1 = x|Xi, Xi−1, . . . , X0)

In words: The probabilty for the next state may depend on the current state but not additionally on the
past.

“Equilibrium” or “Stationary distribution” p:

∀i,x : p(x) =
∑
y

p(y) · Pr(Xi+1 = x|Xi = y)

In words: If you choose an element of the state space according to p and go one step, the probability
to be in x is p(x) not only in the first step but also in the second step and consequently in any further
step.When you are once in equilibrium, you’ll be forever.

Theorem 2 If X0, X1, X2 . . . is a aperiodic, irreducible Markov chain on a finite state space S with
equilibrium p, it will converge against the equilibrium p in the following sense:

∀x,y : Pr (Xn = x|X0 = y)
n→∞−→ p(x)

Irreducible means:
∀x,y∃i∀m : Pr(Xi+m = x|Xm = y) > 0

Aperiodic means:
∀x,y,m : gcd ({k ∈ N|Pr(Xk+m = x|Xm = y) > 0}) = 1,

where gcd means “greatest common divisor”.
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(let’s watch a Tcl/Tk simulation of a Markov chain)
“Equilibrium” or “Stationary distribution” p:

∀i,x : p(x) =
∑
y

p(y) · Pr(Xi+1 = x|Xi = y)

Stronger condition than equilibrium: reversibility (or “detailed balance”)

p(x) · Pr(Xi+1 = y|Xi = x) = p(y) · Pr(Xi+1 = x|Xi = y)

In words: If you start in equilibrium, and it is reversible, a move from x to y is as probable as a move
from y to x.

Alternative explanation: If you watch a movie of the process starting in a reversible equilibrium, the
probability of what you see does not change if you watch the movie backwards.

Given the probability distribution Pr(.|D), how can we construct a Markov chain that converges
against it?

One possibility: Metropolis-Hastings
Given current state Xi = x propose y with Prob. Q(x→ y)
Accept proposal Xi+1 := y with probability

min

{
1,
Q(y → x) · Pr(y | D)

Q(x→ y) · Pr(x | D)

}
otherwise Xi+1 := Xi

(All this also works with continuous state space, with some probabilities replaced by densities.)

Why Metropolis-Hastings works

Let’s assume that Q(y→x)·Pr(y | D)
Q(x→y)·Pr(x | D) ≤ 1. (Otherwise swap x and y in the following argument).Then,

if we start in x, the probability Pr(x→ y) to move to y (i.e. first propose and then accept this) is

Q(x→ y) · Q(y → x) · Pr(y | D)

Q(x→ y) · Pr(x | D)
= Q(y → x)

Pr(y | D)

Pr(x | D)

If we start in y, the probability Pr(y → x) to move to x is

Q(y → x) · 1,

since our assumption implies Q(x→y)·Pr(x | D)
Q(y→x)·Pr(y | D) ≥ 1.

This implies that the reversibility condition

Pr(x | D) · Pr(x→ y) = Pr(y | D) · Pr(y → x)

is fulfilled.This implies that Pr(. | D) is an equilibrium of the Markov chain that we have just constructed,
and the latter will converge against it.(let’s watch a simulation in R)

Applying Metropolis-Hastings

• You are never in equilibrium (your target distribution), but you can get close if you run enough
steps.

• You can take more than one sample from the same chain, but you should run enough steps between
the sampling steps to make the sampled objects only weakly dependent.

• Your initial state may be “far from equilibrium” (i.e. very improbable). So you should run the
chain long enough before you start sampling (“burn-in”).

14



Lamarc’s Metropolis-Hastings step
Target distribution density: pΘ(G|D), where Θ is the current set of parameter values, G is the

genealogy and D is the data.

Proposal chain: Remove a randomly picked branch and let the ancestral lineage of the isolated subtree
coalesce with the rest accoring to Θ.
⇒

Q(G′ → G)

Q(G→ G′)
=

pΘ(G)

pΘ(G′)

⇒ The MH acceptance probability is:

min

{
1,
Q(G′ → G) · pΘ(G′|D)

Q(G→ G′) · pΘ(G|D)

}
= min

{
1,
pΘ(G) · pΘ(G′, D)/Pr(D)

pΘ(G′) · pΘ(G,D)/Pr(D)

}
= min

{
1,
pΘ(G) · Pr(D|G′) · pΘ(G′)

pΘ(G′) · Pr(D|G) · pΘ(G)

}
= min

{
1,

Pr(D|G′)
Pr(D|G)

}
How to compute Pr(D|G)? Felsenstein’s pruning!

We assume that all sites evolve independent of each other. ⇒

Pr(D|G) =
∏
i

Pr(Di|G),

where Di is the i-th column in the alignment.
How to compute Pr(Di|G)? For any nucleotides (or amino acids) x, y let px be the frequency of x

and Prx→y(`) be the probability that a child node has type y, given that the parent node had type x
and the branch between the two nodes has length `. Let’s first assume that Di knows the nucleotides
at the inner nodes of G:

A T A C T

C
A

A

C

`1 `1

`3

`2 `2

`4

`6
`5

Pr(Di|G)

= pC · PrC→A(`5) · PrC→C(`6) ·
PrA→A(`3) · PrA→A(`4) ·
PrA→A(`1) · PrA→T (`1) ·
PrC→C(`2) · PrC→T (`2)·

How to compute or define Prx→y(`)?

Jukes-Cantor model for DNA evolution

• All nucleotide frequencies are pA = pC = pG = pT = 0.25.

• “mutation events” happen at rate λ and let the site forget its current type and select a new one
randomly from {A,C,G,T}. (New one can be the same as old one.)

⇒
Prx→y(`) =

{
=

(
1− e−λ`

)
· 1

4 if x 6= y
= e−λ` +

(
1− e−λ`

)
· 1

4 if x = y

(More sophisticated sequence evolution models in the phylogenetics part of the lecture.)
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Felsenstein’s pruning algorithm
How to compute Pr(Di|G) if (as usual) the data do only contain the nucleotides for the tips of the

tree?

For any node k of the genealogy and any nucleotide (or amino acid) x define wk(x) to be the probability
that, given the nucleotide (or a.a.) in k is x, the tipps that stem from k get the nucleotides (or a.a.)
given in Di. Then

Pr(Di|G) =
∑

x∈{A,C,G,T}

px · wr(x),

where r is the root of the genealogy,and for any node k with child nodes i and j and corresponding
branch lengths `i and `j we get:

wk(x) =

 ∑
y∈{A,C,G,T}

Prx→y(`i) · wi(y)

 ·
 ∑
z∈{A,C,G,T}

Prx→y(`j) · wj(z)



Felsenstein’s pruning algorithm
If b is a tip of G, then wb(x) is 1 if x is the nucleotide at b in Di, and wb(x) is 0 otherwise.

With the recursion forwk(x) given above, we can compute wk(x) for all x and all k starting with the
tips and ending in the root r.

From the wr(.) we can compute Pr(Di|G).

Ancestral Recombination Graph

When recombination occurs, ancestral lineages for
the left and the right part of the sequence split up.
Each site has a tree-shaped ancestry, and these trees
have complex stochastic dependencies.
LAMARC can also sample Ancestral Recombination
Graphs instead of trees.

References

[1] I. J. Wilson, D. J. Balding (1998) Genealogical inference from microsatellite data. Genetics 150:
499-510

• assign data to inner nodes

• when choosing new parent node take mutation probs into account

• more intelligent proposals but larger state space

• may be superior for microsatellite data

LAMARC Search Strategies

initial chains: several short chains to optimize driving values

final chain: longer chain to narrow the final interval

burn-in: discard e.g. first 5% of each chain
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symptom of too few chains: parameters are still changing directionally

θ0

θ2
θ3

θ4

θ5
θ6

θ7

θ1

symptom of too short chains: parameters leap wildly from chain to chain

θ0

θ2
θ3

θ5

θ7

θ1

θ4

θ6

(MC)3=MCMCMC
=Metropolis-Coupled MCMC= MCMC with “heated chains”.
If βi ∈ (0, 1] is heat parameter for chain i, then chain i samples from distribution pβi : x 7→

pβi(x)·const, with β1 = 1.
The usual MH acceptance prob. for chain i is

min

{
1,
p(y)βi

p(x)βi
· Qy→x
Qx→y

}
.

Sometimes a swap between the current state xi of chain i and the current state xj of chain j is proposed.
The acceptance with probability

min

{
1,
p(xi)

βi

p(xj)βi
· p(xj)

βj

p(xi)βj

}
fulfills the requirements of both chaines (check this!).

Bayesian Lamarc
Aim: sample parameter values Θ (and Genealogies) according to the posterior probability distribution

Pr(Θ|D) (or Pr(Θ, G|D)) given the data D.

• needs priors Pr(Θ) for the parameters

• Gibbs sampling scheme: iterate uptdate of the Θ, given D and G, and update of G, given Θ and
D.

Gibbs samping
Assume we want to sample from a joint distribution Pr(A = a,B = b) of two random variables,

and for each pair of possible values (a, b) for (A,B) we have Markov chains with transition probabilities

P
(A=a)
b→b′ and P

(B=b)
a→a′ that converge against Pr(B = b|A = a) and Pr(A = a|B = b).

Then, any Markov chain with transition law

P(a,b)→(a′,b′) =



1
2P

(B=b)
a→a + 1

2P
(A=a)
b→b if a = a′ and b = b′

1
2P

(B=b)
a→a′ if a 6= a′ and b = b′

1
2P

(A=a)
b→b′ if a = a′ and b 6= b′

0 else
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Priors in Bayesian Lamarc
When new values for Θ are to be proposed,

• e.g. the new values of θ and the recombination rate are chosen according to a exponential prior
that is uniform on the log scaled interval [10−5, 10]and the

• growth rate g is chosen uniformly from [−500, 1000].

• For the MH acceptance step use a U that is uniform on [0, 1] and accept if

U <
Pr(G|Θproposal)

Pr(G|Θold)

8 IM, IMa, IMa2

References

[1] Nielsen, R. and J. Wakeley 2001. Distinguishing migration from isolation: a Markov chain Monte
Carlo approach.Genetics 158:885-896

[2] Hey, J., and R. Nielsen. 2004. Multilocus methods for estimating population sizes, migration rates
and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. per-
similis. Genetics 167:747-760

[3] Hey, J., and R. Nielsen. 2007. Integration within the Felsenstein equation for improved Markov
chain Monte Carlo methods in population genetics.PNAS 104:27852790.

[4] Hey J. 2010. Isolation with Migration Models for More Than Two Populations. Mol Biol Evol 27:
905-20

m1

m2

N1 N2

NA

time

t

mi: proportion of individuals of pop. i that are replaced by
immigrants

Ni: effective size of pop. i

NA: effective size of ancestral population

t: number of generations since the split

µ: mutation rate per generation

Asymptotics and rescaled parameters:

Ni → ∞ 2Nimi → Mi

N2/N1 → r 4N1µ → θ

NA/N1 → a t/(2N1) → τ

Θ = (θ, r, a, τ,M1,M2)

IM is an implemetion of a Bayesian sampler with flat priors, e.g.

Mi ∼ Unif([0, 10]), T ∼ Unif([0, 10])
log(r) ∼ Unif([−10, 10]), log(a) ∼ Unif([−10, 10])

Proposals G∗ for genealogy updates like in Lamarc with MH acceptance probability

min

{
1,

Pr(D|Θi, G
∗)

Pr(D|Θi, Gi)

}
,

18



where Gi is the current genealogy and Θi is the current vector of parameter values in MCMC step i.
Proposals for parameter updates: Given the current value λ of some parameter, the new value is

proposed from Unif[λ−∆, λ+ ∆]. MH acceptance probability:

min

{
1,
p(Gi|Θ∗)
p(Gi|Θi)

}

IM can handle datasets of unlinked loci (but NO intralocus-recombination!).
D = (D1, . . . , Dn), Di: data from locus i. G = (G1, . . . , Gn), Gi: genealogy of locus i (including

topology, branch lengths, migration times, coalescent times)

p(Θ|D) =
p(Θ)

Pr(D)
·
n∏
i=1

∫
Gi

Pr(Di|Gi,Θ) · p(Gi|Θ)dGi

additional parameters: locus-specific mutation scalars ui with constraint
∏
i ui = 1.

Updating (u1, . . . , un): choose i and j and propose

u∗i = x · ui and u∗j = uj/x,

where log(x) ∼ Unif(−δ, δ).
In IMa, some MCMC steps are replaced by faster numerical computation. We discuss this first in a

1-population model with sample size m.

• Let τk be the time while the number of lineages is k, measured in 1/µ generations.

• ⇒ coalescence rate is 2/θ

• ⇒ p(G|Θ) =
(

2
θ

)m−1 · exp(−2 · fm/θ),

• where fm :=
∑m
i=2 τi · i · (i− 1)

Assume a flat prior θ ∼ Unif(0, θmax).This implies

p(G) =

∫ θmax

0

p(θ) · p(G|θ)dθ =
2

θmaxf
m−2
m

· Γ(m− 2, 2fm/θmax),

where Γ(a, b) =
∫∞
b
xa−1e−xdx is the “incomplete Gamma-function”.

This implies

p(θ|G) =
p(G|θ) · p(θ)

p(G)
=

(2fm/θ)
m−2

exp (−2fm/θ)

θ · Γ(m− 2, 2fm/θmax)

Hence, given fm, the posterior probability can be computed and the expression above gives a smooth
curve.

• works in a similar way for models with subpopulations with migration

• for the split time τ a standard MH step is required

• population growth not allowed in IMa (other than IM)

• “branch sliding” proposals for G: move randomly chosen branch a random distance. Current
migration events are removed and replaced by a Poisson number of migration events conditioned
on odd or even.
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Likelihood Ratio Testing with IMa
Let

Θ̂0 = argmax p(Θ|D) in the general model

and
Θ̂r = argmax p(Θ|D) in a restricted model, e.g. without migration.

Since we use uniform priors for all parameters (some log-scaled), we get

p(Θ0|D)

p(Θr|D)
=

Pr(D|Θ0) · p(Θ0)

Pr(D|Θr) · p(Θr)
=
LD(Θ0)

LD(Θr)

Hence, Λ̂ = log
(
p̂(Θ0|D)
p̂(Θr|D)

)
is an approximation of the log likelihood-ratio and thus, 2Λ̂ is approximately

χ2
d-distributed under the null hypothesis of the restricted model, where d is the number of additional

parameters in the general model.However, this approximation is only appropriate for extremely large
datasets. IMa assesses the significance of Λ̂ by comparing it to values of Λ̂ from simulations based on
the null hypothesis (restricted model).

Bayes factors
Other authors use so-called Bayes factors to decide between two models M1 and M2:

BM1,M2 =
Pr(D|M1)

Pr(D|M2)
,

where

Pr(D|M) =

∫
p(D,Θ|M)dΘ

=

∫
Pr(D|M,Θ) · p(Θ|M)dΘ

≈

 1

m

m∑
j=1

1

Pr(D|Θj ,M)

−1

,

where Θ1, . . . ,Θm are the samples from an MCMC run.

Why harmonic mean estimator for Pr(D)?
Let θ1, . . . , θm be (approx.) independent samples according to p(θ|D). Then,

1 =

∫
p(θ)dθ ≈ 1

m

m∑
i=1

p(θi)

p(θi|D)
(importance sampling)

=
1

m

m∑
i=1

p(θi)
Pr(D|θi)·p(θi)

Pr(D)

(Bayes formula)

= Pr(D) · 1

m

m∑
i=1

1

Pr(D|θi)
.

⇒
Pr(D) ≈ 1

1
m

∑m
i=1

1
Pr(D|θi)

Advantages of Bayes factors:

• can also support the restriced model while tests can only support the general model by statistically
rejecting the restricted one.

• can also compare non-nested models
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Problems:

• Prior has influence even for large amount of data

• harmonic mean estimator can have infinite variance (more sophisticated methods exist)

• Tests and Bayesian model selection can lead to opposite results (Lindley’s paradox).

9 Approximate Bayesian Computation (ABC)

Problems of full-data methods:

• usual runtime for one dataset: several weeks or months

• complex software, development takes years

• most programs not flexible, hard to write extensions

References

[PSPL+99] J.K. Pritchard, M.T. Seielstad, A. Perez-Lezaun and M. W. Feldman (1999) Population
growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol.
16(12):1791–1798

[BZB02] M.A. Beaumont, W. Zhang, D.J. Balding (2002) Approximate Bayesian Computation in
Population Genetics. Genetics 162:2025–2035

[MMPT03] P. Marjoram, J. Molitor, V. Plagnol, S. Tavaré (2003) Markov chain Monte Carlo without
likelihoods. Proc. Natl. Acad. Sci. USA 100:15324–15328

[WCE09] D. Wegmann, C. Leuenberger, L. Excoffier (2009) Efficient approximate Bayesian computa-
tion coupled Markov chain Monte Carlo without likelihood. Genetics 182:1207

Pritchard et al. (1999)

• Compute MRCA of human Y chromosome in population models with growth.

• Find strong signal of population expansion in all populations.

• Explanations: recent expansion from a small ancestral population in the last 120,000 years or
natural selection on the Y chromosome.

• data: 8 microsatellite loci from 445 humans

• Try various microsatellite mutation models

• Use summary statistics:

1. mean accross loci in the variance of repeat numbers

2. mean effective heterozygosity

3. number of distinct haplotypes
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Pritchard et al. (1999)
Approximate Bayesian Computation

1. Select summary statistics S = (Si)i and compute their values s = (si)i for given data set

2. Choose tolerance δ

3. repeat until k accepted parameter combinations Θ′:

(a) Simulate Θ′ from prior distribution of Θ

(b) Simulate genealogy G according to PrΘ′(G).

(c) Simulate data and compute values s′ of S

(d) accept Θ′ if ‖s− s′‖ ≤ δ

Only possible if a few summary statistics suffice. Otherwise acceptance will be rare.
Ideas of Beaumont, Zhang, Balding (2002):

• combine ABC with local regression:

Θ

S

s

Θtrue Θ

S

s

Simulate data for some parameter combinations Θ and compute corresponding s.

classical ABC samples for p(Θ|S = s) Θ

S

s

Θ

S

s

Θ

S

s

regression-ABC sample for p(Θ|S = s)Θ

S

s

• Accept in a wider range but put a smaller weight on s′ if |s− s′| is large.

s S

weight
1

0

classical ABC

s S

weight
1

0

ABC with

local regression
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Epanechnikov-Kernel

Kδ(t) =

{
c ·
(

1−
(
t
δ

)2)
/δ for t ≤ δ

0 for t > δ

where c is a the normalizing constant:

c = 1

/∫ δ

−δ

(
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δ

)2
)
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0.
0

0.
5

1.
0

1.
5

−100:100/20

sa
pp

ly
(−

10
0:

10
0/

20
, e

pa
)

Epanechnikov-Kernels with

δ = 1

and δ = 2

Beaumont, Zhang, Balding (2002)
Simulate pairs (Θ(i), s(i)) and fit local regression model, i.e. find α and β to minimize∑

i

(
Θ(i) − α− (s(i) − s)Tβ

)2

·Kδ(‖s(i) − s‖),

where ||v|| =
√∑

i v
2
i (or some other vector norm).

Consider
Θ

(i)
∗ = Θ(i) − (s(i) − s)T β̂

as random sample from Pr(Θ | S = s).
Posterior density estimation:

p̂(Θ0 | S = s) =

∑
iK∆(Θ

(i)
∗ −Θ0) ·Kδ(‖s− s(i)‖)∑
j Kδ(‖s− s(j)‖)

where ∆ = density estimation bandwidth.

Solution of the local regression problem

Solution for j-th parameter: (α̂, β̂1, . . . , β̂k) =
(
XTWX

)−1
XTWΘ(j), where

Θ(j) =


Θ

(j)
1

Θ
(j)
2
...

Θ
(j)
m

: Values of the j-th parameter from m simulations,

s = (s(1), . . . , s(k)): Vector of summary statistics for observed data,

si = (s
(1)
i , . . . , s

(k)
i ): Vector of summary statistics from i-th simulation,

X =


1 s

(1)
1 − s(1) · · · s

(k)
1 − s(k)

1 s
(1)
2 − s(1) · · · s

(k)
2 − s(k)

...
...

. . .
...

1 s
(1)
m − s(1) · · · s

(k)
m − s(k)

 and

W is diagonal matrix with diagonal entries Kδ(||s1 − s||), . . . ,Kδ(||sm − s||).
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Beaumont, Zhang, Balding (2002)
ABC with local regression

1. Select summary statistics S = (Si)i and compute their values s = (si)i for given data set

2. Choose tolerance δ and bandwidth ∆

3. repeat for i = 1, . . . ,m:

(a) Simulate Θ(i) from prior distribution of Θ

(b) Simulate genealogy G according to PrΘ(i)(G).

(c) Simulate data and compute values s(i) of S

4. (α̂, β̂) = arg minα,β
∑m
i=1

(
Θi − α− (si − s)Tβ

)2 ·Kδ(||si − s||)

5.

Θ
(i)
∗ := Θ(i) − (s(i) − s)T β̂

6. Approximate p(Θ|S = s) by ∑
iK∆(Θ

(i)
∗ −Θ) ·Kδ(‖s− s(i)‖)∑
j Kδ(‖s− s(j)‖)

Summary statistics used by Beaumont et al. (2002) for microsatellite data:

1. mean accross loci in the variance of repeat numbers

2. mean effective heterozygosity

3. number of distinct haplotypes

4. mean accross loci of kurtosis of repeat numbers

5. variance accross loci of variance of repeat numbers

6. mean accross loci of maximum allele-frequency

7. multivariate kurtosis

8. linkage disequilibrium (LD) measured with Hudson’s ∆2

Marjoram et al. (2003) MCMC without likelihoods
Aim: For given dataD with summary statistics S = s sample paramter vectors according to p(Θ | ||S−

s|| ≤ ε).

1. If current parameter estimation is Θ′, propose Θ∗ with probability QΘ′→Θ∗

2. Simulate data D∗ according to Θ∗ and compute their summary statistics s∗.

3. If ||s∗ − s|| > ε reject proposal, else accept with probability

min

{
1,
p(Θ∗) ·QΘ∗→Θ′

p(Θ′) ·QΘ′→Θ∗

}
.

4. repeat steps 1 to 4.
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Application example: Nuu Chah Nulth data, n=63 samples of HVR-I.

Estimate θ and time to the MRCA based on F84 substitution model.

Summary statistics: number of variable sites and number of haplotypes.

Simple approach: when updating parameters, generate entirely new tree.(will usually be rejected  
inefficient.)

Compromise: keep some information about the tree an modify it slightly for next step:

1. tree topology

2. times of coalescence events

3. number of mutations between two coalescents events

Beaumont, Zhang, Balding (2002)

“[...] the MCMC-based method is consistently superior to the summary-statistics-based methods and
highlights that it is well worth making the effort to obtain full-data inferences if possible.”

“[...] there are advantages to the use of summary statistics, both in the ease of implementation and in
the time to obtain the results [...]”

“Further research is needed to find a more rigorous way for choosing summary statistics, including the
use of orthogonalization and ‘projection-pursuit’ methods”

Wegmann et al. (2009)

• combine MCMC-ABC with Beaumont et al.’s regression approach to sample from p(Θ|||S−s|| ≤ ε).

• apply Box-Cox transformation to each summary statistic with respect to the parameter of interest,
based on simulated data

• apply partial least squares (PLS) to find combinations of summary statistics that are informative
wrt the parameter of interest

• leave-one-out cross validation to optimize number of PLS components used

Simulation studies show improvements compared to other ABC methods but IMa is still better.
Wegmann et al. “[..] would not recommend using an ABC approach if a full-likelihood method exists

[..]”.

Box-Cox transformation

X(λ) =


(X+c)λ−1

λ for λ 6= 0

ln(X + c) for λ = 0

Idea: fit λ and c such that the residuals of the regression model Y = α+βX look as normally distributed
as possible.

partial least squares (PLS)
Aim: find combinations of explanatory variables x1, . . . , xm that have highest correlation with variable

y.

let y be centered and xj be normalized, i.e. µy = 0, µxj = 0, σxj = 1.

1. (n-fold of) univariate regression coefficient: ϕj := 〈xj , y〉 :=
∑
i xjiyi

⇒ y ≈ ϕj · xj
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2. first partial least squares direction: z1 :=
∑
j ϕj · xj

3. first regression coefficient: δ := 〈z1,y〉
〈z1,z1〉

⇒ y ≈ δ · z1

4. now orthogonalize x1, x2, . . . , xm with respect to z1: x
(2)
j := xj − 〈z1,xj〉〈z1,z1〉 · z1

5. and compute the residuals: y(2) := y − δ · z1

repeat 1-5 with xj and y replaced by x
(2)
j and y(2).  z2, x

(3)
j , y(3)

iterate to get z1, z2, . . . , zm.

Comparison PCA vs. PLS
Let S be the covariance matrix of the vectors xi. Then, the principal component directions v1, . . . , vm

satisfy:

vj = argmax
α

{
Var

(∑
i

xiαi

) ∣∣∣∣∣ ||α|| = 1,∀`<jvT` Sα = 0

}
The PLS directions ϕ1, . . . , ϕm satisfy:

ϕj = argmaxα
{

Corr2 (y,
∑
i xiαi) Var (

∑
i xiαi)

∣∣ ||α|| = 1,∀`<jϕT` Sα = 0
}

10 The program STRUCTURE
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10.1 no admixture, no sampling locations

Structure: A program for model-based clustering of genotypes (Microsatellites, SNPS, AFLPs, . . . )

N diploid individuals, L loci, K (sub)populations

unknown which individuals belong to which population, even if sampling locations are known, i.e.
subpopulations may not correspond to sampling locations.

known is the genotype of individual each i at locus `:

X = (x
(i,1)
` , x

(i,2)
` )i≤N,`≤L

unknown are the populations from which individual i originates:

Z = (z(i))i≤N

and the frequencies of allele j at locus ` in population k:

P = (pk`j)k≤K,`≤L,j≤J`
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Assumption 1: each population is in Hardy-Weinberg equilibrium

Assumption 2: linkage equilibrium between loci

Bayesian approach: approximate sample from

Pr(Z,P | X) ∝ Pr(Z) · Pr(P ) · Pr(X | Z,P )

Priors for origin population of individual i:

Pr(z(i) = k) = 1/K

Dirichlet prior for allele frequencies in each population:

pk` ∼ D(λ1, λ2, . . . , λJ`) with λ1 = λ2 = . . . = λJ` = 1

(uniform distribution on all distributions)

Pr(X|Z,P ) :

Pr(x
(i,a)
` = j) = pz(i)`j

Dirichlet distribution
If Y ∼ D(α1, . . . , αk) then

Pr(Y = (y1, . . . , yk)) = c(α)·
k∏
i=1

yαi−1
i

if all yi ≥ 0 and
∑
i yi = 1, else

0.

E(Y ) =
(α1, . . . , αk)∑

i αi
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Important property of Dirichlet distributions
Let N = (n1, . . . , nK) multinomially distributed with (unknown) probabilities P = (p1, . . . , pK), i.e.

Pr(N = (n1, . . . , nm)) =
(n1 + n2 + · · ·+ nk)!

n1! · n2! · · ·nk!

k∏
i=1

pnii .

If the prior distribution of P is D(λ1, . . . , λk), then the posterior distribution of P given N = (n1, . . . , nk)
is

D(λ1 + n1, . . . , λk + nk).

(Exercise!)
MCMC method for sampling from Pr(Z,P |X): Start with Z(0) (e.g. sampled from prior) and iterate

2 steps for m = 1, 2, 3, . . .:

1. Sample P (m) from Pr(P |X,Z(m−1))

pk`.|X,Z ∼ D(λ1 + nk/`, . . . , λJ` + nk/J`),

where nk/j = #
{

(i, a)|x(i,a)
` = j and z(j) = k

}
. (using the important property of the Dirichlet

distribution.)

2. Sample Z(m) from Pr(Z|X,Z(m−1), P (m))

Pr(z(j) = k|X,P ) =
Pr(x(j)|P, z(j) = k)∑K
k′=1 Pr(x(j)|P, z(j) = k′

,

using Pr(x(j)|P, z(j) = k) =
∏L
`=1 pk`x(j,1)

`

· p
k`x

(j,2)
`

.

10.2 with admixture

admixture: present individuals stem from k populations that were admixed recently.

Q :
(
q

(j)
k

)
j≤N,k≤K

= proportion of individual j’s genome that origins from population k

Z :
(
z

(i,a)
`

)
= population of origin of allele copy x

(i,a)
`
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Pr
(
x

(i,a)
` = j

∣∣∣Z,P,Q) = p
(i,a)
z`,lj

, Pr
(
z

(i,a)
` = k

∣∣∣P,Q) = q
(i)
k

Prior on Q:

q(i) =
(
q

(i)
1 , . . . , q

(i)
k

)
∼ D(α, . . . , α),

where α is also random with prior α ∼ unif([0, αmax]).
Note:

α = 0 ⇔ no admixture

α→∞ ⇔ all completely admixed

MCMC for case of admixture
Start with initial P (0), Q(0), Z(0) and α(0) and iterate for m = 1, 2, . . .:

1. Sample P (m) and Q(m) from Pr(P,Q|X,Z(m−1)) :

update p
(
z`,`j

i, a) based on the number of ` copies of type j that come from population k

nklj =
{

(i, a)|x(i,a)
` = j and z

(i,a)
` = k

}
and sample q(i)|X,Z according to

D
(
α+ #

{
(`, a) : z

(i,a)
` = 1

}
, . . . , α+ #

{
(`, a) : z

(i,a)
` = K

})
2. Sample Z(m) from Pr(Z|X,P (m), Q(m)) according to:

Pr
(
z

(i,a)
` = k

∣∣∣X,P) =
q

(i)
k · pk`x(i,a)

`∑K
h=1 q

(i)
h · ph`x(i,a)

`

3. Metroplis Hastings step α(m−1)  α(m):

propose α′ ∼ N (α, some σ2), reject immediately if α′ < 0, else perform MH step.

Inference for Z,P,Q from MCMC samples
for example for Q it seems obvious to estimate

E(qi|X) ≈ 1

M

M∑
m=1

q
(m)
i ,

but the theoretical posterior mean is

E(qi|X) =

(
1

K
, . . . ,

1

K

)
due to symmetries in the model (numbering of populations exchangeable).

 use modes of
(
q

(1)
i , . . . , q

(M)
i

)
i

instead of means or use Noah Rosenberg’s software CLUMPP to

evaluate STRUCTURE output.
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Inference for the number K of populations

Pr(K|X) ∝ Pr(X|K) · Pr(K)

can be approximated using the harmonic mean estimator

Pr(X|K) ≈M

/
M∑
i=1

1

Pr
(
X
∣∣K,Z(i), P (i), Q(i), α(i)

) ,
but the harmonic mean estimator is know to be imprecise.

Instead, we hope that −2 logL( ̂Z,P,Q, α|X) is approximately normally distributed and estimate

Pr(X|K) ≈ e−µ̂/2−σ̂
2/8

with µ̂ = 1
M

∑M
i=1−2 log Pr

(
X|Z(i), P (i), Q(i), α(i)

)
and σ̂2 = 1

M

∑M
i=1

(
−2 log Pr

(
X|Z(i), P (i), Q(i), α(i)

)
− µ̂

)2
Pritchard et al. write about this approximation:

“In fact the assumption underlying [this] are dubious at best, and we do not claim (or believe) that
our procedure provides a quantitatively accurate estimate of the posterior distribution of K. We see it
merely as an ad hoc guide to which models are most consistent to the data, with the main justification
being that it seems to give reasonable answers in practice.”

and:

“The inferred value of K may not always have a clear biological interpretation.”

and about the multiple-modes problem:

“[The] Gibbs-sampler did not manage to move between two modes in any of the runs”

Data examples
Bird example: Without using informations on sampling locations, STRUCTURE gave clear clusters

corresponding to sampling locations, up to a few exceptions. Neighbor-Joining results did not show clear
clusters when labels were removed.

Human data: Found K ≥ 2 corresponding to African and European oringin of samples. Evidence for
K > 2 may indicate substructure.

10.3 taking sampling locations into account

First attempt: populations correspond to sampling locations with a few migrants in the last few gener-
ations.

g(i): sampling location of individual i

ν: probability that i is immigrant or offspring of an immigrant in the last G generations, where G is
not too large.

⇒ q
(i)
g(i) = 1 with probability 1− ν and for t ≤ G:

q
(i)
g(i) = 1− 2−t and q

(i)
j = 2−t with probability 2tν

(k−1)
∑G
T=0 2T

(neglecting the possibility of more than

one migranting ancestor in the last G generations.)

in MCMC: sampling of q(i) is conditioned on X and P , and not on X and Z.
Falush et al. (2003) allow for LD between loci. Advantages:

1. detection of admixture further back into past
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2. inference of population of origin of chromosomal regions

3. more accurate estimate od statistical incertainty when linked loci are used

Sources of LD:

mixture LD: variation in ancstry among sampled individuals (Prichard et al.)

admixture LD: correlation of ancestry along each chromosome causes additional LD between linked
markers (Falush et al.)

background LD: within population decaying on a much shorter scale, e.g. tens of kb in humans. (not
yet in STRUCTURE)

Approach of Falush et al. (2003):

• breakpoints occur as Poisson process at rate r

• uniform prior on log(r)

• use HMM to sample from conditional distribution of Z

• data allowed to be unphased

more options: corelated allele frequencies between populations accordingt to star-shaped phylogeny of
populations with drift rates F1, . . . , FK and ancestral allele frequency distribution pA ∼ D(λ1, . . . , λJ`).

pk`.|pA ∼ D
(
pA`1

1− F1

F1
, . . . , pA`K

1− FK
FK

)

(be careful with this model!)
Approach of Hubisz et al. (2009): Allow uncertainty in the information about sampling location

r ∼ unif([0, rmax]) (informativeness of sampling location)

q(i) ∼ D (αh1
, . . . , αhK ) , if individual i comes from location h

αhk ∼ Γ
(
r · αglob

k , 1/r
)
, (which entails that the mean is α

glob
k )

α
glob
k ∼ unif(0, αmax)

Hubisz et al.: “However, we would still encourage users to run the original models as well, and to
check that substantial differences between the results from the new and the old models seem biologically
sensible.”

When STRUCTURE has problems

• number of clusters not well-defined when allele frequencies vary slowly accross the landscape

• inbreeding or relatedness between individuals

In this case, the software INSTRUCT may help, cf.

References
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11 The PAC method

11.1 LD and recombination hotspots

Problems of models to estimate local recombination rates:

LAMARC etc. (ARG-based): not feasible for larger parts of the genome

Summary-statistics-based: lose too much information

some composite-likelihood methods: Hudson (2001), Fearnhead, Donnelly (2002), McVean (2002)
assume fixed recombination rate along the genome

Li & Stephens’ approach to analyze patterns of LD

References

[LS03] Na Li, Matthew Stephens (2003) Modeling Linkage Disequilibrium and Identifying Recombination
Hotspots Using Single-Nucleotide Polymorphism DataGenetics 165

ideas:

• relate LD directly to underlying recombination process

• Sometimes, block-like LD structure is reported. True or artifact of LD mapping? Allow for both.

• consider all loci simultaneously, not pairwise

• should be compuationally tractable even for complete chromosomes

Li& Stephens’ PAC approach

h1, h2, . . . , hn: haplotypes sampled from panmictic population with constant size and random mating

ρ: recombination parameter (may be a vector if recombination rate varies within the region of interest)

Product of Approximate Conditionals (PAC)

Pr(h1, . . . , hn|ρ) = Pr(h1) · Pr(h2|h1, ρ) · ... · Pr(hn|h1, . . . , hn−1, ρ)

approximate Pr(hk|h1, . . . , hk−1, ρ) by simpler q(hk|h1, . . . , hk−1, ρ).
Properties of Pr(hk|h1, . . . , hk−1, ρ)

1. hk is more likely to match another haplotype if the latter is frequent among h1, h2, . . . , hk−1

2. the probability of seeing a novel haplotype decreases as k increases

3. the probability of seeing a novel haplotype increases with θ = 4Neµ.

4. if a new haplotype does not exactly match any previous one, it will differ from one of those only
by a small number of mutations.

5. effect of recombination: the next haplotype will be composed by segments which are similar to
segments in previously sampled haplotypes. These segments tend to be longer if recombination
rates are low.

Assume the sampled haplotypes h1, h2, . . . , hn are typed at S biallelic loci (e.g. SNPs).

q(h1) =

(
1

2

)S
For the definition of q(hk+1|h1, h2, . . . , hk) let Xi := j if at the i-th locus, the closest relative of hk+1

among h1, . . . , hk is hj .
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di distance between loci i and i+ 1

ci recombination rate between loci i and i+ 1 per site an per generation

ρi = 4Neci

The simplifying assuption is then that X1, Xs, . . . , XS is a Markov chain on {1, . . . , k} with Pr(X1 =
j) = 1/k and

Pr(Xi+1 = j|Xi = `) =

{
(1− e−ρidi/k)/k if j 6= `

e−ρidi/k + (1− e−ρidi/k)/k if j = `

Mutations
For SNP data we assume that each locus is hit by one mutation, such that

θ̃ := 1

/
n−1∑
m=1

1

m

is assumed to be the corrected rate of mutations per SNP site. Note that this does not exclude double
hits (just some bias if double hits are frequent.)

Then, with probability k

k+θ̃
+ θ̃

2(k+θ̃)
the copy has the same type as the original

and with probability θ̃

2(k+θ̃)
the haplotype has the other of the two possible alleles.

Compute q(hk+1|h1, . . . , hk) by HMM forward algo:

hk+1,≤j := (hk+1,1, . . . , hk+1,j) := types of the first j sites in hk+1

αj(x) := Pr(hk+1,lej , Xj = x|h1, . . . , hk)

(note that with mutations any X1, . . . , XS can emit hk.)
Then,

q(hk+1|h1, . . . , hk) =

k∑
x=1

αS(x).

“dynamic programming”: we can compute all αj(x) by the recursion

αj+1(x) = Pr(hk+1,j+1|Xj+1 = x, h1, . . . , hk) ·
k∑

x′=1

αj(x
′) ·

Pr(Xj+1 = x|Xj = x′)

= Pr(hk+1,j+1|Xj+1 = x, h1, . . . , hk) ·(
e−ρjdj/k · αj(x) +

(
1− e−ρjdj/k

)
· 1

k

k∑
x′=1

αj(x
′)

)

Bias correction
Simulations show that estimations of ρ based on q are biased.

For bias-correction replace ρj in the computation of Pr(Xj+1 = x′|Xj = x) by

ρj · ea+b log10 ρj ,

where a and b are fitted to simulated data, taking the numbers of haplotypes and segregating sites into
account.

Models for ρ considered by Li and Stephens
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1. constant ρ

2. single-hotspot model

3. all recombination rates ρ1, ρ2, . . . , ρS−1 may differ

Software by Matthew Stephens using PAC: Hotspotter, PHASE

11.2 Population splitting and recombination

References
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• two populations split G generations ago

• no ongoing geneflow

• for simplicity: assume that both populations and the ancestral population have size N

• Copying occurs in daughter population (S = d) and in ancestral population (S = a)

to be specified:

1. prob of hidden copying states (S`, X`) at a single site `.

unlinked case:

Pr(X` = i|S` = d) =

{ 1
kz∗

if z∗ = zi
0 else

where kz∗ is the no. of lineages sampled

from pop. z∗ so far

Pr(X` = i|S` = a) = E
(

Jzi
J1 + J2

)
· 1

kzi
,

Where Jzi is the number of ancestral lineages that enter the ancestral pop. from pop. zi

2. probability of new allelic state conditioned on the state of the copied allele and the level S`.

3. Transition probabilities between the hidden copying state at adjacent states

In case of loosely linked data: combine with HMM methods.

11.3 Diversifying selection and recombination
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