Statistics for EES
 Linear regression and linear models

Dirk Metzler

http://evol.bio.lmu.de/_statgen
June 24, 2020
(1) Linear regression
(2) log-scaling the data
(3) Checking model assumptions
(4) Why it's called "regression"
(5) Multiple Regression
(6) Cross validation and AIC
(7) Extensions of linear models

Contents

(9) Linear regression

(2) log-scaling the data
(3) Checking model assumptions
(4) Why It's called' "regression"
(5) Multiple Regression

- Cross validation and AIC
(7) Extensions of linear models

图 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds

图 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds
- Important for ecological questions: metabolic rate.

圁 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds
- Important for ecological questions: metabolic rate.
- metabolic rate can only be measured in the lab

圁 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field. Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds
- Important for ecological questions: metabolic rate.
- metabolic rate can only be measured in the lab
- can we infer metabolic rate from heart beat frequency?
griffon vulture, 17.05.99, 16 degrees C

griffon vulture, 17.05.99, 16 degrees C

vulture
day heartbpm metabol minTemp maxTemp medtemp

1	$01.04 . / 02.04$.	70.28	11.51	-6	2	-2.0
2	$01.04 . / 02.04$.	66.13	11.07	-6	2	-2.0
3	$01.04 . / 02.04$.	58.32	10.56	-6	2	-2.0
4	$01.04 . / 02.04$.	58.63	10.62	-6	2	-2.0
5	$01.04 . / 02.04$.	58.05	9.52	-6	2	-2.0
6	$01.04 . / 02.04$.	66.37	7.19	-6	2	-2.0
7	$01.04 . / 02.04$.	62.43	8.78	-6	2	-2.0
8	$01.04 . / 02.04$.	65.83	8.24	-6	2	-2.0
9	$01.04 . / 02.04$.	47.90	7.47	-6	2	-2.0
10	$01.04 . / 02.04$.	51.29	7.83	-6	2	-2.0
11	$01.04 . / 02.04$.	57.20	9.18	-6	2	-2.0

(14 different days)

```
> model <- lm(metabol~heartbpm,data=vulture,
    subset=day=="17.05.")
> summary(model)
Call:
lm(formula = metabol ~ heartbpm, data = vulture, subset = day ==
    "17.05.")
Residuals:
    Min 1Q Median 3Q Max
-2.2026 -0.2555 0.1005 0.6393 1.1834
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.73522 0.84543 -9.149 5.60e-08 ***
heartbpm 0.27771 0.01207 23.016 2.98e-14 ***
Signif. codes: 0 *** \(0.001 * * 0.01 * 0.05\). 0.11 Residual standard error: 0.912 on 17 degrees of freedom
Multiple R-squared: 0.9689,Adjusted R-squared: 0.9671
F-statistic: 529.7 on 1 and 17 DF, p-value: 2.979e-14
```


define the regression line

$$
y=\hat{a}+\hat{b} \cdot x
$$

by minimizing the sum of squared residuals:

$$
(\hat{a}, \hat{b})=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2}
$$

this is based on the model assumption that values a, b exist, such that, for all data points $\left(x_{i}, y_{i}\right)$ we have

$$
y_{i}=a+b \cdot x_{i}+\varepsilon_{i}
$$

whereas all ε_{i} are independent and normally distributed with the same variance σ^{2}.

givend data:	
\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

givend data:			
\mathbf{Y}	\mathbf{X}		
y_{1}	x_{1}		
y_{2}	x_{2}		
y_{3}	x_{3}		
\vdots	\vdots		
y_{n}	x_{n}	\quad	Model: there are values
:---:			
a, b, σ^{2} such that			
$y_{1}=a+b \cdot x_{1}+\varepsilon_{1}$			
$y_{2}=a+b \cdot x_{2}+\varepsilon_{2}$			
$y_{3}=a+b \cdot x_{3}+\varepsilon_{3}$			
\vdots			
\vdots			
$y_{n}=a+b \cdot x_{n}+\varepsilon_{n}$			

givend data:	
\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

$$
\begin{aligned}
& \text { Model: there are values } \\
& a, b, \sigma^{2} \text { such that } \\
& y_{1}=a+b \cdot x_{1}+\varepsilon_{1} \\
& y_{2}=a+b \cdot x_{2}+\varepsilon_{2} \\
& y_{3}=a+b \cdot x_{3}+\varepsilon_{3} \\
& \vdots \\
& \vdots \\
& y_{n}=a+b \cdot x_{n}+\varepsilon_{n}
\end{aligned}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are independent $\sim \mathcal{N}\left(0, \sigma^{2}\right)$.

givend data:	
\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

$$
\begin{aligned}
& \text { Model: there are values } \\
& \begin{aligned}
& a, b, \sigma^{2} \text { such that } \\
& y_{1}=a+b \cdot x_{1}+\varepsilon_{1} \\
& y_{2}=a+b \cdot x_{2}+\varepsilon_{2} \\
& y_{3}=a+b \cdot x_{3}+\varepsilon_{3} \\
& \vdots \vdots \\
& y_{n}=a+b \cdot x_{n}+\varepsilon_{n}
\end{aligned}
\end{aligned}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are independent $\sim \mathcal{N}\left(0, \sigma^{2}\right)$.
$\Rightarrow y_{1}, y_{2}, \ldots, y_{n}$ are independent $y_{i} \sim \mathcal{N}\left(a+b \cdot x_{i}, \sigma^{2}\right)$.

givend data:	
\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

$$
\begin{aligned}
& \text { Model: there are values } \\
& \begin{aligned}
a, b, \sigma^{2} & \text { such that } \\
y_{1} & =a+b \cdot x_{1}+\varepsilon_{1} \\
y_{2} & =a+b \cdot x_{2}+\varepsilon_{2} \\
y_{3} & =a+b \cdot x_{3}+\varepsilon_{3} \\
\vdots & \vdots \\
y_{n} & =a+b \cdot x_{n}+\varepsilon_{n}
\end{aligned}
\end{aligned}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are independent $\sim \mathcal{N}\left(0, \sigma^{2}\right)$.
$\Rightarrow y_{1}, y_{2}, \ldots, y_{n}$ are independent $y_{i} \sim \mathcal{N}\left(a+b \cdot x_{i}, \sigma^{2}\right)$.
a, b, σ^{2} are unknown, but not random.

We estimate a and b by computing

$$
(\hat{a}, \hat{b}):=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2} .
$$

We estimate a and b by computing

$$
(\hat{a}, \hat{b}):=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2} .
$$

Theorem

Compute \hat{a} and \hat{b} by

$$
\hat{b}=\frac{\sum_{i}\left(y_{i}-\bar{y}\right) \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i} y_{i} \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

and

$$
\hat{a}=\bar{y}-\hat{b} \cdot \bar{x} .
$$

We estimate a and b by computing

$$
(\hat{a}, \hat{b}):=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2} .
$$

Theorem

Compute \hat{a} and \hat{b} by

$$
\hat{b}=\frac{\sum_{i}\left(y_{i}-\bar{y}\right) \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i} y_{i} \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

and

$$
\hat{a}=\bar{y}-\hat{b} \cdot \bar{x}
$$

Please keep in mind:

The line $y=\hat{a}+\hat{b} \cdot x$ goes through the center of gravity of the cloud of points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.

Sketch of the proof of the theorem

Let $g(a, b)=\sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2}$. We optimize g, by setting the derivatives of g

$$
\begin{aligned}
& \frac{\partial g(a, b)}{\partial a}=\sum_{i} 2 \cdot\left(y_{i}-\left(a+b x_{i}\right)\right) \cdot(-1) \\
& \frac{\partial g(a, b)}{\partial b}=\sum_{i} 2 \cdot\left(y_{i}-\left(a+b x_{i}\right)\right) \cdot\left(-x_{i}\right)
\end{aligned}
$$

to 0 and obtain

$$
\begin{aligned}
& 0=\sum_{i}\left(y_{i}-\left(\hat{a}+\hat{b} x_{i}\right)\right) \cdot(-1) \\
& 0=\sum_{i}\left(y_{i}-\left(\hat{a}+\hat{b} x_{i}\right)\right) \cdot\left(-x_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0=\sum_{i}\left(y_{i}-\left(\hat{a}+\hat{b} x_{i}\right)\right) \\
& 0=\sum_{i}\left(y_{i}-\left(\hat{a}+\hat{b} x_{i}\right)\right) \cdot x_{i}
\end{aligned}
$$

gives us

$$
\begin{aligned}
& 0=\left(\sum_{i} y_{i}\right)-n \cdot \hat{a}-\hat{b} \cdot\left(\sum_{i} x_{i}\right) \\
& 0=\left(\sum_{i} y_{i} x_{i}\right)-\hat{a} \cdot\left(\sum_{i} x_{i}\right)-\hat{b} \cdot\left(\sum_{i} x_{i}^{2}\right)
\end{aligned}
$$

and the theorem follows by solving this for \hat{a} and \hat{b}.

Regression and Correlation

For the bias-corrected (that is, computed with $n-1$) standard deviations s_{x} and s_{y} and the bias-corrected sample covarinance

$$
\operatorname{cov}(x, y)=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)
$$

we obtain for the estimated slope of the regression line:

$$
\widehat{b}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\operatorname{cov}(x, y)}{s_{x}^{2}} .
$$

Regression and Correlation

For the bias-corrected (that is, computed with $n-1$) standard deviations s_{x} and s_{y} and the bias-corrected sample covarinance

$$
\operatorname{cov}(x, y)=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)
$$

we obtain for the estimated slope of the regression line:

$$
\widehat{b}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\operatorname{cov}(x, y)}{s_{x}^{2}} .
$$

For the sample correlation $\operatorname{cor}(x, y)=\operatorname{cov}(x, y) /\left(s_{x} \cdot s_{y}\right)$ we obtain

$$
\widehat{b}=\frac{\operatorname{cov}(x, y)}{s_{x}^{2}}=\frac{\operatorname{cor}(x, y) \cdot s_{x} \cdot s_{y}}{s_{x}^{2}}=\operatorname{cor}(x, y) \cdot \frac{s_{y}}{s_{x}} .
$$

Regression and Correlation

For the bias-corrected (that is, computed with $n-1$) standard deviations s_{x} and s_{y} and the bias-corrected sample covarinance

$$
\operatorname{cov}(x, y)=\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)
$$

we obtain for the estimated slope of the regression line:

$$
\widehat{b}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right) \cdot\left(y_{i}-\bar{y}\right)}{\frac{1}{n-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\operatorname{cov}(x, y)}{s_{x}^{2}} .
$$

For the sample correlation $\operatorname{cor}(x, y)=\operatorname{cov}(x, y) /\left(s_{x} \cdot s_{y}\right)$ we obtain

$$
\widehat{b}=\frac{\operatorname{cov}(x, y)}{s_{x}^{2}}=\frac{\operatorname{cor}(x, y) \cdot s_{x} \cdot s_{y}}{s_{x}^{2}}=\operatorname{cor}(x, y) \cdot \frac{s_{y}}{s_{x}} .
$$

In particular, \widehat{b} is equal to the correlation if and only if $s_{x}=s_{y}$.
vulture
day heartbpm metabol minTemp maxTemp medtemp

1	$01.04 . / 02.04$.	70.28	11.51	-6	2	-2.0
2	$01.04 . / 02.04$.	66.13	11.07	-6	2	-2.0
3	$01.04 . / 02.04$.	58.32	10.56	-6	2	-2.0
4	$01.04 . / 02.04$.	58.63	10.62	-6	2	-2.0
5	$01.04 . / 02.04$.	58.05	9.52	-6	2	-2.0
6	$01.04 . / 02.04$.	66.37	7.19	-6	2	-2.0
7	$01.04 . / 02.04$.	62.43	8.78	-6	2	-2.0
8	$01.04 . / 02.04$.	65.83	8.24	-6	2	-2.0
9	$01.04 . / 02.04$.	47.90	7.47	-6	2	-2.0
10	$01.04 . / 02.04$.	51.29	7.83	-6	2	-2.0
11	$01.04 . / 02.04$.	57.20	9.18	-6	2	-2.0

(14 different days)

```
> model <- lm(metabol~heartbpm,data=vulture,
    subset=day=="17.05.")
> summary(model)
Call:
lm(formula = metabol ~ heartbpm, data = vulture,
    subset = day == "17.05.")
Residuals:
        Min 1Q Median 3Q Max
-2.2026 -0.2555 0.1005 0.6393 1.1834
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.73522 0.84543 -9.149 5.60e-08 ***
heartbpm 0.27771 0.01207 23.016 2.98e-14 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.912 on 17 degrees of freedom
Multiple R-squared: 0.9689,Adjusted R-squared: 0.9671
F-statistic: 529.7 on 1 and 17 DF, p-value: 2.979e-14
```

Model:

$$
Y=a+b \cdot X+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Model:

$$
Y=a+b \cdot X+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

How to compute the significance of a relationship between the explanatory trait X and the target variable Y ?

Model:

$$
Y=a+b \cdot X+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

How to compute the significance of a relationship between the explanatory trait X and the target variable Y ?

In other words: How can we test the null hypothesis $b=0$?

Model:

$$
Y=a+b \cdot X+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

How to compute the significance of a relationship between the explanatory trait X and the target variable Y ?

In other words: How can we test the null hypothesis $b=0$?
We have estimated b by $\hat{b} \neq 0$. Could the true b be 0 ?

Model:

$$
Y=a+b \cdot X+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

How to compute the significance of a relationship between the explanatory trait X and the target variable Y ?

In other words: How can we test the null hypothesis $b=0$?
We have estimated b by $\hat{b} \neq 0$. Could the true b be 0 ?
How large is the standard error of \hat{b} ?

$$
y_{i}=a+b \cdot x_{i}+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

not random: $a, b, x_{i}, \sigma^{2} \quad$ random: ε, y_{i}

$$
\operatorname{var}\left(y_{i}\right)=\operatorname{var}\left(a+b \cdot x_{i}+\varepsilon\right)=\operatorname{var}(\varepsilon)=\sigma^{2}
$$

and $y_{1}, y_{2}, \ldots, y_{n}$ are stochastically independent.

$$
y_{i}=a+b \cdot x_{i}+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

not random: $a, b, x_{i}, \sigma^{2} \quad$ random: ε, y_{i}

$$
\operatorname{var}\left(y_{i}\right)=\operatorname{var}\left(a+b \cdot x_{i}+\varepsilon\right)=\operatorname{var}(\varepsilon)=\sigma^{2}
$$

and $y_{1}, y_{2}, \ldots, y_{n}$ are stochastically independent.

$$
\hat{b}=\frac{\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

$$
y_{i}=a+b \cdot x_{i}+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

not random: $a, b, x_{i}, \sigma^{2} \quad$ random: ε, y_{i}

$$
\operatorname{var}\left(y_{i}\right)=\operatorname{var}\left(a+b \cdot x_{i}+\varepsilon\right)=\operatorname{var}(\varepsilon)=\sigma^{2}
$$

and $y_{1}, y_{2}, \ldots, y_{n}$ are stochastically independent.

$$
\begin{gathered}
\hat{b}=\frac{\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
\operatorname{var}(\hat{b})=\operatorname{var}\left(\frac{\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right)=\frac{\operatorname{var}\left(\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)\right)}{\left(\sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}
\end{gathered}
$$

$$
y_{i}=a+b \cdot x_{i}+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

not random: $a, b, x_{i}, \sigma^{2} \quad$ random: ε, y_{i}

$$
\operatorname{var}\left(y_{i}\right)=\operatorname{var}\left(a+b \cdot x_{i}+\varepsilon\right)=\operatorname{var}(\varepsilon)=\sigma^{2}
$$

and $y_{1}, y_{2}, \ldots, y_{n}$ are stochastically independent.

$$
\begin{gathered}
\hat{b}=\frac{\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
\operatorname{var}(\hat{b})=\operatorname{var}\left(\frac{\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right)=\frac{\operatorname{var}\left(\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)\right)}{\left(\sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}} \\
=\frac{\sum_{i} \operatorname{var}\left(y_{i}\right)\left(x_{i}-\bar{x}\right)^{2}}{\left(\sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}=\sigma^{2} \cdot \frac{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{\left(\sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}
\end{gathered}
$$

$$
y_{i}=a+b \cdot x_{i}+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

not random: $a, b, x_{i}, \sigma^{2} \quad$ random: ε, y_{i}

$$
\operatorname{var}\left(y_{i}\right)=\operatorname{var}\left(a+b \cdot x_{i}+\varepsilon\right)=\operatorname{var}(\varepsilon)=\sigma^{2}
$$

and $y_{1}, y_{2}, \ldots, y_{n}$ are stochastically independent.

$$
\begin{gathered}
\hat{b}=\frac{\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
\operatorname{var}(\hat{b})=\operatorname{var}\left(\frac{\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right)=\frac{\operatorname{var}\left(\sum_{i} y_{i}\left(x_{i}-\bar{x}\right)\right)}{\left(\sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}} \\
=\frac{\sum_{i} \operatorname{var}\left(y_{i}\right)\left(x_{i}-\bar{x}\right)^{2}}{\left(\sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}=\sigma^{2} \cdot \frac{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{\left(\sum_{i}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}} \\
=\sigma^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
\end{gathered}
$$

In fact \hat{b} is normally distributed with mean b and

$$
\operatorname{var}(\hat{b})=\sigma^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

In fact \hat{b} is normally distributed with mean b and

$$
\operatorname{var}(\hat{b})=\sigma^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Problem: We do not know σ^{2}.

In fact \hat{b} is normally distributed with mean b and

$$
\operatorname{var}(\hat{b})=\sigma^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Problem: We do not know σ^{2}. We estimate σ^{2} by considering the residual variance:

$$
s^{2}:=\frac{\sum_{i}\left(y_{i}-\hat{a}-\hat{b} \cdot x_{i}\right)^{2}}{n-2}
$$

In fact \hat{b} is normally distributed with mean b and

$$
\operatorname{var}(\hat{b})=\sigma^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Problem: We do not know σ^{2}.
We estimate σ^{2} by considering the residual variance:

$$
s^{2}:=\frac{\sum_{i}\left(y_{i}-\hat{a}-\hat{b} \cdot x_{i}\right)^{2}}{n-2}
$$

Note that we divide by $n-2$. The reason for this is that two model parameters a and b have been estimated, which means that two degrees of freedom got lost.

$$
\operatorname{var}(\hat{b})=\sigma^{2} / \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

Estimate σ^{2} by

$$
s^{2}=\frac{\sum_{i}\left(y_{i}-\hat{a}-\hat{b} \cdot x_{i}\right)^{2}}{n-2}
$$

Then

$$
\frac{\hat{b}-b}{s / \sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}
$$

is Student- t-distributed with $n-2$ degrees of freedom and we can apply the t-test to test the null hypothesis $b=0$.

Contents

(1) Linear regression

(2) log-scaling the data
(3) Checking model assumptions

4 Why it's called "regression"
(2) Multiple Regression

6 Cross validation and AIC
(7) Extensions of linear models

Data example: typical body weight [kg] and and brain weight [g] of 62 mammals species

 (and 3 dinosaurs)
typische Werte bei 62 Wirbeltierarten

typische Werte bei 65 Wirbeltierarten

typische Werte bei 65 Wirbeltierarten


```
> modell <- lm(brain.weight.g~weight.kg.,subset=extinct=="no")
> summary(modell)
Call:
lm(formula = brain.weight.g ~ weight.kg., subset = extinct ==
    "no")
Residuals:
    Min 1Q Median 3Q Max
-809.95 -87.43 -78.55 -31.17 2051.05
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 89.91213 43.58134 2.063 0.0434 *
weight.kg. 0.96664 0.04769 20.269 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . \(0.1 \quad 1\) Residual standard error: 334.8 on 60 degrees of freedom Multiple R-squared: 0.8726,Adjusted R-squared: 0.8704
F-statistic: 410.8 on 1 and 60 DF, p-value: < 2.2e-16
```


qqnorm(modell\$residuals)

Normal Q-Q Plot

plot(modell\$fitted.values,modell\$residuals)

plot(modell\$fitted.values,modell\$residuals,log='x')

plot(modell\$model\$weight.kg.,modell\$residuals)

plot(modell\$model\$weight.kg., modell\$residuals,log='x')

We see that the residuals' variance depends on the fitted values (or the body weight): "heteroscadiscity"

We see that the residuals' variance depends on the fitted values (or the body weight): "heteroscadiscity"
The model assumes homoscedascity, i.e. the random deviations must be (almost) independent of the explaining traits (body weight) and the fitted values.

We see that the residuals' variance depends on the fitted values (or the body weight): "heteroscadiscity"
The model assumes homoscedascity, i.e. the random deviations must be (almost) independent of the explaining traits (body weight) and the fitted values. variance-stabilizing transformation:
can be rescale body- and brain size to make deviations independent of variables

Actually not so surprising: An elephant's brain of typically 5 kg can easily be 500 g lighter or heavier from individual to individual. This can not happen for a mouse brain of typically 5 g . The latter will rather also vary by 10%, i.e. 0.5 g . Thus, the variance is not additive but rather multiplicative:

$$
\text { brain mass }=(\text { expected brain mass }) \cdot \text { random }
$$

We can convert this into something with additive randomness by taking the log:

$$
\log (\text { brain mass })=\log (\text { expected brain mass })+\log (\text { random })
$$

```
> logmodell <- lm(log(brain.weight.g) ~log(weight.kg.),subset=extinct=="no")
> summary(logmodell)
Call:
lm(formula = log(brain.weight.g) ~ log(weight.kg.), subset = extinct ==
    "no")
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-1.68908 & -0.51262 & -0.05016 & 0.46023 & 1.97997
\end{tabular}
Coefficients:
Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
\begin{tabular}{lllll} 
(Intercept) & 2.11067 & 0.09794 & 21.55 & \(<2 \mathrm{e}-16 * * *\) \\
log(weight.kg.) & 0.74985 & 0.02888 & 25.97 & \(<2 \mathrm{e}-16 * * *\)
\end{tabular}
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11 Residual standard error: 0.7052 on 60 degrees of freedom Multiple R-squared: 0.9183,Adjusted R-squared: 0.9169
F-statistic: 674.3 on 1 and 60 DF, p-value: < \(2.2 \mathrm{e}-16\)
```


qqnorm(modell\$residuals)

Normal Q-Q Plot

plot(logmodell\$fitted.values,logmodell\$residuals)

plot(logmodell\$fitted.values,logmodell\$residuals,log='x')

plot(weight.kg.[extinct=='no'],logmodell\$residuals)

plot(weight.kg.[extinct='no'],logmodell\$residuals,log='x')

Contents

(1) Linear regression

2 log-scalling the data
(3) Checking model assumptions
(4) Why it's called "regression"
(5) Multiple Regression

- Cross validation and AIC
(7) Extensions of linear models

Is the model appropriate for the data?, e.g

$$
y_{i}=a+b \cdot x_{i}+\varepsilon \quad \text { with } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Is the model appropriate for the data?, e.g

$$
y_{i}=a+b \cdot x_{i}+\varepsilon \quad \text { with } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

If the model fits, the residuals

$$
r_{i}=y_{i}-\left(\widehat{a}+\widehat{b} \cdot x_{i}\right)
$$

approximate the $\varepsilon_{i}=y_{i}-\left(a+b \cdot x_{i}\right)$

Is the model appropriate for the data?, e.g

$$
y_{i}=a+b \cdot x_{i}+\varepsilon \quad \text { with } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

If the model fits, the residuals

$$
r_{i}=y_{i}-\left(\hat{a}+\widehat{b} \cdot x_{i}\right)
$$

approximate the $\varepsilon_{i}=y_{i}-\left(a+b \cdot x_{i}\right)$
and therefore must

- look normally distributed and
- must not have obvious dependencies with X or $\widehat{a}+\widehat{b} \cdot X$.

Example: is the relation between X and Y sufficiently well described by the linear equation $Y_{i}=a+b \cdot X_{i}+\varepsilon_{i}$?


```
> mod <- lm(Y ~ X)
> summary(mod)
```

Call:
$\operatorname{lm}($ formula $=Y \sim X)$

Residuals:

Min	$1 Q$	Median	3Q	Max
-0.49984	-0.26727	-0.13472	0.01344	1.82718

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	-0.61118	0.33295	-1.836	0.077	.
X	1.65055	0.06472	25.505	$<2 \mathrm{e}-16 \quad * * *$	

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. 0.11
> plot(X,residuals(mod))


```
> plot(X,residuals(mod))
```


Obviously, the residuals tend to be larger for very large and very small values of X than for mean values of X. That should not be!

Idea: Instead fit a section of a parabola instead of aline to $\left(x_{i}, y_{i}\right)$, i.e. a model of the form

$$
Y_{i}=a+b \cdot X_{i}+c \cdot X_{i}^{2}+\varepsilon_{i} .
$$

Idea: Instead fit a section of a parabola instead of aline to $\left(x_{i}, y_{i}\right)$, i.e. a model of the form

$$
Y_{i}=a+b \cdot X_{i}+c \cdot X_{i}^{2}+\varepsilon_{i} .
$$

Is this still a linear model?

Idea: Instead fit a section of a parabola instead of aline to $\left(x_{i}, y_{i}\right)$, i.e. a model of the form

$$
Y_{i}=a+b \cdot X_{i}+c \cdot X_{i}^{2}+\varepsilon_{i} .
$$

Is this still a linear model? Yes: Let $Z=X^{2}$, then Y is linear in X and Z.

Idea: Instead fit a section of a parabola instead of aline to $\left(x_{i}, y_{i}\right)$, i.e. a model of the form

$$
Y_{i}=a+b \cdot X_{i}+c \cdot X_{i}^{2}+\varepsilon_{i} .
$$

Is this still a linear model? Yes: Let $Z=X^{2}$, then Y is linear in X and Z. In R:

```
> Z <- X^2
> mod2 <- mod <- lm(Y ~ X+Z)
```

```
> summary(mod2)
```

Call:
lm (formula $=Y \sim X+Z$)
Residuals:

Min	1Q	Median	3Q	Max
-0.321122	-0.060329	0.007706	0.075337	0.181965

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	2.933154	0.158825	18.468	$<2 e-16 * * *$
X	0.150857	0.061921	2.436	$0.0217 *$
Z	0.144156	0.005809	24.817	$<2 e-16 * * *$

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. $0.1 \quad 1$

For this model there is no obvious dependence between X and the residuals: plot(X, residuals(mod2))

Is the assumption of normality in the model $Y_{i}=a+b \cdot X_{i}+\varepsilon_{i}$ in accordance with the data?

Is the assumption of normality in the model $Y_{i}=a+b \cdot X_{i}+\varepsilon_{i}$ in accordance with the data?

Are the residuals $r_{i}=Y_{i}-\left(\hat{a}+\widehat{b} \cdot X_{i}\right)$ more or less normally distributed?

Is the assumption of normality in the model $Y_{i}=a+b \cdot X_{i}+\varepsilon_{i}$ in accordance with the data?

Are the residuals $r_{i}=Y_{i}-\left(\widehat{a}+\widehat{b} \cdot X_{i}\right)$ more or less normally distributed?
Graphical Methods: compare the theoretical quantiles of the standard normal distribution $\mathcal{N}(0,1)$ with those of the residuals.

Is the assumption of normality in the model $Y_{i}=a+b \cdot X_{i}+\varepsilon_{i}$ in accordance with the data?

Are the residuals $r_{i}=Y_{i}-\left(\widehat{a}+\widehat{b} \cdot X_{i}\right)$ more or less normally distributed?
Graphical Methods: compare the theoretical quantiles of the standard normal distribution $\mathcal{N}(0,1)$ with those of the residuals.
Background: If we plot the quantiles of $\mathcal{N}\left(\mu, \sigma^{2}\right)$ against those of $\mathcal{N}(0,1)$, we obtain a line $y(x)=\mu+\sigma \cdot x$.

Is the assumption of normality in the model $Y_{i}=a+b \cdot X_{i}+\varepsilon_{i}$ in accordance with the data?
Are the residuals $r_{i}=Y_{i}-\left(\widehat{a}+\widehat{b} \cdot X_{i}\right)$ more or less normally distributed?
Graphical Methods: compare the theoretical quantiles of the standard normal distribution $\mathcal{N}(0,1)$ with those of the residuals.

Background: If we plot the quantiles of $\mathcal{N}\left(\mu, \sigma^{2}\right)$ against those of $\mathcal{N}(0,1)$, we obtain a line $y(x)=\mu+\sigma \cdot x$. (Reason: If X is standard-normally distributed and $Y=a+b \cdot X$, then Y is normally distributed with mean a and variance b^{2}.)

Before we fit the model with $\operatorname{lm}()$ we first have to check whether the model assumptions are fulfilled.

Before we fit the model with $\operatorname{lm}()$ we first have to check whether the model assumptions are fulfilled.

Before we fit the model with $\operatorname{lm}()$ we first have to check whether the model assumptions are fulfilled.
To check the assumptions underlying a linear model we need the residuals.

Before we fit the model with $\operatorname{lm}()$ we first have to check whether the model assumptions are fulfilled.
To check the assumptions underlying a linear model we need the residuals. To compute the residuals we first have to fit the model (in R with $\operatorname{lm}()$).

Before we fit the model with $\operatorname{lm}()$ we first have to check whether the model assumptions are fulfilled.
To check the assumptions underlying a linear model we need the residuals. To compute the residuals we first have to fit the model (in R with $\operatorname{lm}()$). After that we can check the model assumptions and decide whether we stay with this model or still have to modify it.

```
p<- seq(from=0.01,to=0.99,by=0.01)
plot(qnorm(p,mean=0,sd=1),qnorm(p,mean=1,sd=0.5),
pch=16, cex=0.5)
abline(v=0,h=0)
```


If we plot the empirical quantiles of a sample from a normal distribution against the theoretical quantiles of a standard normal distribution, the values are not precisely on the line but are scattered around a line.

If we plot the empirical quantiles of a sample from a normal distribution against the theoretical quantiles of a standard normal distribution, the values are not precisely on the line but are scattered around a line.

If no systematic deviations from an imaginary line are recognizable: Normal distribution assumption is acceptable

If we plot the empirical quantiles of a sample from a normal distribution against the theoretical quantiles of a standard normal distribution, the values are not precisely on the line but are scattered around a line.

If no systematic deviations from an imaginary line are recognizable: Normal distribution assumption is acceptable

If systematic deviations from an imaginary line are obvious: Assumption of normality may be problematic. It may be necessary to rescale variables or to take additional explanatory variables into account.

Contents

(1) Linear regression
(2) log-scaling the data
(3) Checking model assumptions
(4) Why it's called "regression"
(5) Multiple Regression

6 Cross validation and AIC
(7) Extensions of linear models

Origin of the word "Regression"

Sir Francis Galton (1822-1911): Regression toward the mean.

Origin of the word "Regression"

Sir Francis Galton (1822-1911): Regression toward the mean.
Tall fathers tend to have sons that are slightly smaller than the fathers. Sons of small fathers are on average larger than their fathers.

Koerpergroessen

Some of what you should be able to explain

- Model assumptions underlying linear regression
- Equation
- What is random, what is fixed?
- approach: minimize sum of squared residuals
- optimal solution for slope and intercept
- slope vs. correlation
- t-test for the slope (standard error, test statistic and df)
- scaling the data: when, why, how?
- qqnorm plots
- theory
- how to use them to judge model assumptions

Contents

(1) Linear regression
(2) log-scaling the data
(3) Checking model assumptions
(4) Why it's called "regression"
(5) Multiple Regression
6 Cross validation and AIC
(7) Extensions of linear models

Multiple Regression

Multiple Regression

Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$.

Multiple Regression

Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$. Observations:

$$
\begin{aligned}
& Y_{1}, \\
& Y_{2} X_{11}, X_{21}, \ldots, X_{m 1} \\
& \vdots \\
& \vdots \\
& Y_{n}, X_{22}, \ldots, X_{m 2} \\
& X_{1 n}, X_{2 n}, \ldots, X_{m n}
\end{aligned}
$$

Multiple Regression

Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$. Observations:

$$
\begin{aligned}
& Y_{1}, \\
& Y_{11}, X_{21}, \ldots, X_{m 1} \\
& Y_{2}, X_{12}, X_{22}, \ldots, X_{m 2} \\
& \vdots \vdots \\
& Y_{n}, X_{1 n}, X_{2 n}, \ldots, X_{m n}
\end{aligned}
$$

Model: $Y=a+b_{1} \cdot X_{1}+b_{2} \cdot X_{2}+\cdots+b_{m} \cdot X_{m}+\varepsilon$

Multiple Regression

Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$. Observations:

$$
\begin{aligned}
& Y_{1}, \\
& Y_{11}, X_{21}, \ldots, X_{m 1} \\
& Y_{2}, X_{12}, X_{22}, \ldots, X_{m 2} \\
& \vdots \vdots \\
& Y_{n}, X_{1 n}, X_{2 n}, \ldots, X_{m n}
\end{aligned}
$$

Model: $Y=a+b_{1} \cdot X_{1}+b_{2} \cdot X_{2}+\cdots+b_{m} \cdot X_{m}+\varepsilon$
Equation system to determine $a, b_{1}, b_{2}, \ldots, b_{m}$:

$$
\begin{array}{ccccccccccccc}
Y_{1} & = & a & + & b_{1} \cdot X_{11} & + & b_{2} \cdot X_{21} & + & \ldots & + & b_{m} \cdot X_{m 1} & + & \varepsilon_{1} \\
Y_{2} & = & a & + & b_{1} \cdot X_{12} & + & b_{2} \cdot X_{22} & + & \ldots & + & b_{m} \cdot X_{m 2} & + & \varepsilon_{2} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
Y_{n} & = & a & + & b_{1} \cdot X_{1 n} & + & b_{n} \cdot X_{2 n} & + & \ldots & + & b_{m} \cdot X_{m n} & + & \varepsilon_{n}
\end{array}
$$

Model:

$$
\begin{array}{ccccccccccccc}
Y_{1} & = & a & + & b_{1} \cdot X_{11} & + & b_{2} \cdot X_{21} & + & \ldots & + & b_{m} \cdot X_{m 1} & + & \varepsilon_{1} \\
Y_{2} & = & a & + & b_{1} \cdot X_{12} & + & b_{2} \cdot X_{22} & + & \ldots & + & b_{m} \cdot X_{m 2} & + & \varepsilon_{2} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
Y_{n} & = & a & + & b_{1} \cdot X_{1 n} & + & b_{n} \cdot X_{2 n} & + & \ldots & + & b_{m} \cdot X_{m n} & + & \varepsilon_{n}
\end{array}
$$

target variable Y
explanatory variables $X_{1}, X_{2}, \ldots, X_{m}$ parameter to be estimated a, b_{1}, \ldots, b_{m} independent normally distributed pertubations $\varepsilon_{1}, \ldots, \varepsilon_{m}$ with unknown variance σ^{2}.

- Which factors influence the species richness on sandy beaches?
- Data from the dutch National Institute for Coastal and Marine Management Rijkswaterstaat/RIKZ
- see also

围 Zuur, Ieno, Smith (2007) Analysing Ecological Data. Springer

| | richness | | angle2 | NAP | grainsize | humus |
| :--- | ---: | :---: | :---: | ---: | :---: | :---: | week

Meaning of the Variables

richness Number of species that were found in a plot. angle2 slope of the beach a the plot NAP altitude of the plot compared to the mean sea level.
grainsize average diameter of sand grains
humus fraction of organic material week in which of 4 was this plot probed.
(many more variables in original data set)

Model 0:

$$
\begin{gathered}
\text { richness }=a+b_{1} \cdot \text { angle } 2+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
+b_{4} \cdot \text { humus }+\varepsilon
\end{gathered}
$$

Model 0:

$$
\begin{gathered}
\text { richness }=a+b_{1} \cdot \text { angle } 2+b_{2} \cdot \mathrm{NAP}+b_{3} \cdot \text { grainsize }+ \\
+b_{4} \cdot \text { humus }+\varepsilon
\end{gathered}
$$

in R notation:
richness \sim angle2 + NAP + grainsize + humus

```
> modell0 <- lm(richness ~ angle2+NAP+grainsize+humus,
+ data = rikz)
> summary(modell0)
Call:
lm(formula = richness ~ angle2 + NAP + grainsize + humus, data = rikz)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-4.6851 & -2.1935 & -0.4218 & 1.6753 & 13.2957
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrrl} 
(Intercept) & 18.35322 & 5.71888 & 3.209 & 0.00262 & \(* *\) \\
angle2 & -0.02277 & 0.02995 & -0.760 & 0.45144 & \\
NAP & -2.90451 & 0.59068 & -4.917 & \(1.54 \mathrm{e}-05\) & \(* * *\) \\
grainsize & -0.04012 & 0.01532 & -2.619 & 0.01239 & \(*\) \\
humus & 11.77641 & 9.71057 & 1.213 & 0.23234
\end{tabular}
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 3.644 on 40 degrees of freedom
Multiple R-squared: 0.5178,Adjusted R-squared: 0.4696
- e.g. -2.90451 is the estimator for \(b_{2}\), the coefficient of NAP
- e.g. -2.90451 is the estimator for \(b_{2}\), the coefficient of NAP
- The \(p\) value \(\operatorname{Pr}(>|t|)\) refers to the null hypothesis that the true parameter value may be 0 , i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- e.g. -2.90451 is the estimator for \(b_{2}\), the coefficient of NAP
- The \(p\) value \(\operatorname{Pr}(>|t|)\) refers to the null hypothesis that the true parameter value may be 0 , i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- e.g. -2.90451 is the estimator for \(b_{2}\), the coefficient of NAP
- The \(p\) value \(\operatorname{Pr}(>|t|)\) refers to the null hypothesis that the true parameter value may be 0 , i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- Is there a significant week effect?
- e.g. -2.90451 is the estimator for \(b_{2}\), the coefficient of NAP
- The \(p\) value \(\operatorname{Pr}(>|t|)\) refers to the null hypothesis that the true parameter value may be 0 , i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- Is there a significant week effect?
- Not the number 1,2,3,4 of the week should be multiplied with a coefficient. Instead, the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a parameter that describes how much the species richness is increased compared to week 1.
- e.g. -2.90451 is the estimator for \(b_{2}\), the coefficient of NAP
- The \(p\) value \(\operatorname{Pr}(>|t|)\) refers to the null hypothesis that the true parameter value may be 0 , i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- Is there a significant week effect?
- Not the number 1,2,3,4 of the week should be multiplied with a coefficient. Instead, the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a parameter that describes how much the species richness is increased compared to week 1.
- In \(R\) this is done by changing week into a factor.

Model 0:
\[
\begin{aligned}
\text { richness }=a+ & b_{1} \cdot \text { angle } 2+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
& +b_{4} \cdot \text { humus }+ \\
& b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4}+\varepsilon
\end{aligned}
\]
\(I_{\text {week }=k}\) is a so-called indicator variable which is 1 if week \(=k\) and 0 otherwise.

Model 0:
\[
\begin{aligned}
\text { richness }=a+ & b_{1} \cdot \text { angle } 2+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
& +b_{4} \cdot \text { humus }+ \\
& b_{5} \cdot l_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4}+\varepsilon
\end{aligned}
\]
\(I_{\text {week }=k}\) is a so-called indicator variable which is 1 if week \(=k\) and 0 otherwise.
e.g. \(b_{6}\) describes by how much the species richness in an average plot probed in week 3 is increased compared to week 1.

Model 0:
\[
\begin{aligned}
\text { richness }=a+ & b_{1} \cdot \text { angle } 2+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
& +b_{4} \cdot \text { humus }+ \\
& b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4}+\varepsilon
\end{aligned}
\]
\(I_{\text {week }=k}\) is a so-called indicator variable which is 1 if week \(=k\) and 0 otherwise.
e.g. \(b_{6}\) describes by how much the species richness in an average plot probed in week 3 is increased compared to week 1.
in R notation:
```

richness ~ angle2 + NAP + grainsize + humus + factor(week)

```
```

> modell <- lm(richness ~ angle2+NAP+grainsize+humus
+factor(week), data = rikz)
> summary(modell)

```
Coefficients:
    Estimate Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\)
(Intercept) \(9.298448 \quad 7.967002 \quad 1.1670 .250629\)
angle2 \(0.016760 \quad 0.042934 \quad 0.3900 .698496\)
NAP -2.274093 0.529411 -4.296 0.000121 ***
\(\begin{array}{lllll}\text { grainsize } \quad 0.002249 & 0.021066 & 0.107 & 0.915570\end{array}\)
humus \(0.519686 \quad 8.703910 \quad 0.060 \quad 0.952710\)
factor (week) 2 -7.065098 \(1.761492-4.0110 .000282\) ***
factor (week) 3-5.719055 \(1.827616-3.1290 .003411\) **
factor(week)4 -1.481816 \(2.720089-0.5450 .589182\)
- Obviously, in weeks 2 and 3 significantly less species were found than in week 1 , which is our reference point here.
- Obviously, in weeks 2 and 3 significantly less species were found than in week 1 , which is our reference point here.
- The estimated Intercept is thus the expected species richness in week 1 in a plot where all other parameters take the value 0 .
- Obviously, in weeks 2 and 3 significantly less species were found than in week 1 , which is our reference point here.
- The estimated Intercept is thus the expected species richness in week 1 in a plot where all other parameters take the value 0 .
- An alternative representation without Intercept takes 0 as reference point.
```

> modell.alternativ <- lm(richness ~ angle2+NAP+

+ grainsize+humus+factor(week)-1, data = rikz)
> summary(modell.alternativ)

```

Coefficients:
\begin{tabular}{lrrrr} 
& \multicolumn{2}{c}{ Estimate } & Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
angle2 & 0.016760 & 0.042934 & 0.390 & 0.698496 \\
NAP & -2.274093 & 0.529411 & -4.296 & 0.000121
\end{tabular}\(* * *\)
the \(p\) values refer to the question whether the four intercepts for the different weeks are significantly different from 0 .
The four \(p\) values refer to the null hypotheses that the additive parameter of a week is 0 .

How do we test whether there is a difference between the weeks?

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1 .

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1 . However, the \(p\) value refers to the situation of single testing.

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1 . However, the \(p\) value refers to the situation of single testing.

If we perform pairwise test for the weeks, we end up with \(\binom{4}{2}=6\) tests.

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1 . However, the \(p\) value refers to the situation of single testing.

If we perform pairwise test for the weeks, we end up with \(\binom{4}{2}=6\) tests.

Bonferroni correction: Multiply each \(p\) value with the number of tests performed, in our case 6.

\section*{Bonferroni correction}

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.

\section*{Bonferroni correction}

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.
Example: If you perform 20 tests where the null hypothesis is actually true, then on average 1 test will falsly reject the null hypothesis on the \(5 \%\) level.

\section*{Bonferroni correction}

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.
Example: If you perform 20 tests where the null hypothesis is actually true, then on average 1 test will falsly reject the null hypothesis on the \(5 \%\) level.
Bonferroni correction: Multiply all \(p\) values with the number of tests performed. Reject the null hypotheses where the result is still smaller than the significance level.

\section*{Bonferroni correction}

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.
Example: If you perform 20 tests where the null hypothesis is actually true, then on average 1 test will falsly reject the null hypothesis on the \(5 \%\) level.
Bonferroni correction: Multiply all \(p\) values with the number of tests performed. Reject the null hypotheses where the result is still smaller than the significance level.
Disadvantage: Conservative: Often, the null hypothies cannot be rejected even it is not true (type-2-error).

Alternative: Test whether there is a week effect by using an analysis of variance (anova) to compare a model with week effect to a model without week effect.

Alternative: Test whether there is a week effect by using an analysis of variance (anova) to compare a model with week effect to a model without week effect.

Only works for nested models, i.e. the simpler model can be obtained by restricting some parameters of the richer model to certain values or equations. In our case: "all week summands are equal".
```

> modell0 <- lm(richness ~ angle2+NAP+grainsize+humus,

+ data = rikz)
> modell <- lm(richness ~ angle2+NAP+grainsize+humus
+ +factor(week), data = rikz)
> anova(modell0, modell)
Analysis of Variance Table
Model 1: richness ~ angle2 + NAP + grainsize + humus
Model 2: richness ~ angle2 + NAP + grainsize + humus + factor(week)
Res.Df RSS Df Sum of Sq F Pr(>F)
140 531.17
2 37 353.66 3 177.51 6.1902 0.00162 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

```

We reject the null hypothesis that the weeks have no effect with a \(p\)-value of 0.00162 .

We reject the null hypothesis that the weeks have no effect with a \(p\)-value of 0.00162 .

But wait! We can only do that if the more complex model fits well to the data. We check this graphically.



\section*{plot(modell)}



Probes 22, 42, and 9 are considered as outliers.

Probes 22, 42, and 9 are considered as outliers.

Can we explain this by taking more parameters into account or are these real outliers, which are atypical and must be analysed separately.

Is there an interaction between NAP and angle2?

Is there an interaction between NAP and angle2?
\[
\begin{aligned}
\text { richness }=a & +b_{1} \cdot \text { angle } 2+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
& +b_{4} \cdot \text { humus }+ \\
& +b_{5} \cdot l_{\text {week }}=2+b_{6} \cdot l_{\text {week }=3}+b_{7} \cdot l_{\text {week }=4} \\
& b_{8} \cdot \text { angle } 2 \cdot \text { NAP }+\varepsilon
\end{aligned}
\]
in R notation:
richness ~ angle2 + NAP + angle2:NAP+grainsize + humus + factor(week)

Is there an interaction between NAP and angle2?
\[
\begin{aligned}
\text { richness }=a & +b_{1} \cdot \text { angle } 2+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
& +b_{4} \cdot \text { humus }+ \\
& +b_{5} \cdot l_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4} \\
& b_{8} \cdot \text { angle } 2 \cdot \text { NAP }+\varepsilon
\end{aligned}
\]
in R notation:
```

richness ~ angle2 + NAP + angle2:NAP+grainsize + humus + factor(week)

```
short-cut:
richness \(\sim\) angle2*NAP+grainsize + humus + factor(week)
```

> modell3 <- lm(richness ~ angle2*NAP+grainsize+humus

+ +factor(week), data = rikz)
> summary(modell3)
[...]
Coefficients:

$$
\text { Estimate Std. Error t value } \operatorname{Pr}(>|t|)
$$

$$
\begin{array}{lllll}
\text { (Intercept) } & 10.438985 & 8.148756 & 1.281 & 0.208366
\end{array}
$$

angle2

$$
0.007846
$$

$$
0.044714
$$

$$
0.1750 .861697
$$

NAP

$$
-3.011876 \quad 1.099885 \quad-2.738 \quad 0.009539 \quad * *
$$

grainsize

$$
\begin{array}{lllll}
\text { humus } & 0.387333 & 8.754526 & 0.044 & 0.964955
\end{array}
$$

$$
\text { factor(week) } 2-7.444863 \quad 1.839364 \quad-4.048 \quad 0.000262 * * *
$$

$$
\text { factor(week) } 3-6.052928 \quad 1.888789-3.2050 .002831 * *
$$

$$
\text { factor(week)4-1.854893 } 2.778334-0.6680 .508629
$$

$$
\begin{array}{lllll}
\text { angle2:NAP } & 0.013255 & 0.017292 & 0.767 & 0.448337
\end{array}
$$

```
---

Signif. codes: \(0 * * * 0.001 * * 0.01 * 0.05\). \(0.1 \quad 1\)

\section*{Different types of ANOVA tables}

If you apply the R command anova to a single model, the variables are added consecutively in the same order as in the command. Each \(p\) value refers to the test whether the model gets significantly better by adding the variable to only those that are listed above the variable. In contrast to this, the \(p\) values that are given by summary or by dropterm from the MASS library always compare the model to a model where only the corresponding variable is set to 0 and all other variables can take any values. The \(p\) values given by anova thus depend on the order in which the variables are given in the command. This is not the case for summary and dropterm. The same options exist in other software packages, sometimes under the names "type I analysis" and "type II analysis".

For young anorexia patients the effect of family therapy (FT) and cognitive behavioral therapy (CBT) is compared to a control group (Cont) by comparing the weight before (Prewt) and after (Postwt) the treatment (Treat).
囯 Hand, D. J., Daly, F., McConway, K., Lunn, D. and Ostrowski, E. eds (1993) A Handbook of Small Data Sets. Chapman \& Hall

Model Im1 There is a linear relation with the pre-weight. Each treatment changes the weight by a value that depends on the treatment but not on the Preweight.
Model Im2 Interaction between Treatment und Preweight: The effect of the pre-weight depends on the kind of treatment.

```

> lm1 <- lm(Postwt~Prewt+Treat,anorexia)
> lm2 <- lm(Postwt~Prewt*Treat,anorexia)
> anova(lm1,lm2)
Analysis of Variance Table
Model 1: Postwt ~ Prewt + Treat
Model 2: Postwt ~ Prewt * Treat
Res.Df RSS Df Sum of Sq F Pr(>F)
1 68 3311.3
2 66 2844.8 2 466.5 5.4112 0.006666 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

```
result: the more complex model fits significantly better than the nested model.
result: the more complex model fits significantly better than the nested model. interpretation: The role of the weight before the treatment depends on the type of the treatment.
result: the more complex model fits significantly better than the nested model. interpretation: The role of the weight before the treatment depends on the type of the treatment.
or: The difference between effects of the treatments depends on the weight before the treetment.

\section*{Contents}
(1) Linear regression
(2) log-scaling the data
(3) Checking model assumptions
(4) Why it's called "regression"
(5) Multiple Regression
(6) Cross validation and AIC
(7) Extensions of linear models


You find a beak of a Darwin finch. The beak is 14 mm long and 10 mm high. How accurately can you predict the winglength of the bird?


> You find a beak of a Darwin finch. The beak is 14 mm long and 10 mm high. How accurately can you predict the winglength of the bird?

Your "training data" are the winglengths (WingL), beak heights (BeakH) and beak lengths (N.UBkL) of 46 Darwin finches.

```

> modH <- lm(WingL~BeakH)
> summary(modH)
Call:
lm(formula = WingL ~ BeakH)
Residuals:
Min 1Q Median 3Q Max
-7.1882-2.5327-0.2796 1.8325 16.2702
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.78083 1.33103 37.40 <2e-16 ***
BeakH 1.76284 0.09961 17.70 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 3.868 on 44 degrees of freedom
Multiple R-squared: 0.8768,Adjusted R-squared: 0.874
F-statistic: 313.2 on 1 and 44 DF, p-value: < 2.2e-16
> predict(modH,newdata=data.frame(BeakH=10))
1
67.40924

```
```

> modL <- lm(WingL~N.UBkL)
> summary(modL)
Call:
lm(formula = WingL ~ N.UBkL)
Residuals:
Min 1Q Median 3Q Max
-7.1321 -3.3974 0.4737 2.2966 18.2299
Coefficients:

| | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 41.5371 | 2.2884 | 18.15 | $<2 \mathrm{e}-16 * * *$ |
| N.UBkL | 2.5460 | 0.1875 | 13.58 | $<2 \mathrm{e}-16 * * *$ |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.838 on 44 degrees of freedom
Multiple R-squared: 0.8074,Adjusted R-squared: 0.803
F-statistic: 184.4 on 1 and 44 DF, p-value: < 2.2e-16
> predict(modL,newdata=data.frame(N.UBkL=14))
1
77.18117

```
```

> modHL <- lm(WingL~ BeakH+N.UBkL)
> summary(modHL)
Call:
lm(formula = WingL ~ BeakH + N.UBkL)
Residuals:
Min 1Q Median 3Q Max
-7.3185 -2.5022 -0.2752 1.5352 16.5893
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 48.1740 2.2572 21.343 < 2e-16 ***

BeakH	1.5133	0.2999	5.047	$8.69 \mathrm{e}-06$	$* * *$
N.UBkL	0.3984	0.4513	0.883	0.382	

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 3.878 on 43 degrees of freedom
Multiple R-squared: 0.879,Adjusted R-squared: 0.8734
F-statistic: 156.2 on 2 and 43 DF, p-value: < 2.2e-16
> predict(modHL,newdata=data.frame(BeakH=10,N.UBkL=14))
1

```

Which of the three predictions \(67.4 \mathrm{~mm}, 77.2 \mathrm{~mm}\) und 68.9 mm for the winglength is most reliable?

Which of the three predictions \(67.4 \mathrm{~mm}, 77.2 \mathrm{~mm}\) und 68.9 mm for the winglength is most reliable?

In the model modHL (with beak length and height) the influence of beak length is not significant.

Which of the three predictions \(67.4 \mathrm{~mm}, 77.2 \mathrm{~mm}\) und 68.9 mm for the winglength is most reliable?

In the model modHL (with beak length and height) the influence of beak length is not significant.

We can not draw conclusion from non-significance. Beak length could still improve the prediction.

Which of the three predictions \(67.4 \mathrm{~mm}, 77.2 \mathrm{~mm}\) und 68.9 mm for the winglength is most reliable?

In the model modHL (with beak length and height) the influence of beak length is not significant.

We can not draw conclusion from non-significance. Beak length could still improve the prediction.

Is it always good to use as much data as possible?

Which of the three predictions \(67.4 \mathrm{~mm}, 77.2 \mathrm{~mm}\) und 68.9 mm for the winglength is most reliable?

In the model modHL (with beak length and height) the influence of beak length is not significant.

We can not draw conclusion from non-significance. Beak length could still improve the prediction.

Is it always good to use as much data as possible?
This could lead to "overfitting": If too many parameters are available, the model will learn all the little details of the data including random fluctions. It will learn just memorize the trainig data. This may corrupt the model's predictions for new data.

We could judge the models by the standard deviation of the \(\varepsilon_{i}\), which we estimate by the standard deviation of the residuals \(r_{i}\).

We could judge the models by the standard deviation of the \(\varepsilon_{i}\), which we estimate by the standard deviation of the residuals \(r_{i}\).
We must account for the different number \(d\) of model parameters, because we lose one degree of freedom for each estimated parameter:
\[
\widehat{\sigma}_{\epsilon}=\sqrt{\frac{1}{n-d} \sum_{i} r_{i}^{2}}=\sigma_{r} \cdot \sqrt{\frac{n-1}{n-d}}
\]

We could judge the models by the standard deviation of the \(\varepsilon_{i}\), which we estimate by the standard deviation of the residuals \(r_{i}\).
We must account for the different number \(d\) of model parameters, because we lose one degree of freedom for each estimated parameter:
\[
\widehat{\sigma}_{\epsilon}=\sqrt{\frac{1}{n-d} \sum_{i} r_{i}^{2}}=\sigma_{r} \cdot \sqrt{\frac{n-1}{n-d}}
\]

These values are reported in R by the command "summary": modH:
Residual standard error: 3.868 on 44 degrees of freedom
modL:
Residual standard error: 4.838 on 44 degrees of freedom
modHL:
Residual standard error: 3.878 on 43 degrees of freedom

Another possibility to judge the prediction error of a model is cross validation (aka Jackknife).

Another possibility to judge the prediction error of a model is cross validation (aka Jackknife).

The idea is: Remove one of the 46 birds from the dataset and fit the model to the other 45. How well can the model predict the winglength of the omitted bird?

Another possibility to judge the prediction error of a model is cross validation (aka Jackknife).

The idea is: Remove one of the 46 birds from the dataset and fit the model to the other 45. How well can the model predict the winglength of the omitted bird?

Repeat this for all 46 birds.

Another possibility to judge the prediction error of a model is cross validation (aka Jackknife).

The idea is: Remove one of the 46 birds from the dataset and fit the model to the other 45. How well can the model predict the winglength of the omitted bird?

Repeat this for all 46 birds.
We have to decide how we measure the error. How to judge a model with many medium errors compared to a model with rare large errors? We use (the square root of) the sum of squared errors.
```

prederrorHL <- numeric()
for (i in 1:46) {
selection <- rep(TRUE,46)
selection[i] <- FALSE
modHL.R <- lm(WingL~N.UBkL+BeakH,data=finchdata,
subset=selection)
prederrorHL[i]=WingL[i]-predict(modHL.R,finchdata[i,])
}

```
\begin{tabular}{c|ccc} 
& Height & Length & Height and Length \\
\hline\(\sigma\) (Residuals \()\) & 3.83 & 4.78 & 3.79
\end{tabular}
\begin{tabular}{c|ccc} 
& Height & Length & Height and Length \\
\hline\(\sigma(\) Residuals & 3.83 & 4.78 & 3.79 \\
\(d=\) (Number Parameters \()\) & 2 & 2 & 3
\end{tabular}
\begin{tabular}{c|ccc} 
& Height & Length & Height and Length \\
\hline\(\sigma\) (Residuals) & 3.83 & 4.78 & 3.79 \\
\(d=(\) Number Parameters \()\) & 2 & 2 & 3 \\
\(\sigma\) (Residuals \() \cdot \sqrt{\frac{n-1}{n-d}}\) & 3.86 & 4.84 & 3.87
\end{tabular}
\begin{tabular}{c|ccc} 
& Height & Length & Height and Length \\
\hline\(\sigma\) (Residuals) & 3.83 & 4.78 & 3.79 \\
\(d=\) (Number Parameters) & 2 & 2 & 3 \\
\(\sigma\) (Residuals) \(\cdot \sqrt{\frac{n-1}{n-d}}\) & 3.86 & 4.84 & 3.87 \\
cross validation. & 3.96 & 4.97 & 3.977
\end{tabular}
\begin{tabular}{c|ccc} 
& Height & Length & Height and Length \\
\hline\(\sigma(\) Residuals & 3.83 & 4.78 & 3.79 \\
\(d=(\) Number Parameters \()\) & 2 & 2 & 3 \\
\(\sigma\) (Residuals) \(\cdot \sqrt{\frac{n-1}{n-d}}\) & 3.86 & 4.84 & 3.87 \\
cross validation. & 3.96 & 4.97 & 3.977 \\
AIC & 259.0 & 279.5 & 260.1
\end{tabular}
\begin{tabular}{c|ccc} 
& Height & Length & Height and Length \\
\hline\(\sigma(\) Residuals \()\) & 3.83 & 4.78 & 3.79 \\
\(d=(\) Number Parameters \()\) & 2 & 2 & 3 \\
\(\sigma\) (Residuals \() \cdot \sqrt{\frac{n-1}{n-d}}\) & 3.86 & 4.84 & 3.87 \\
cross validation. & 3.96 & 4.97 & 3.977 \\
AIC & 259.0 & 279.5 & 260.1 \\
BIC & 264.4 & 285.0 & 267.4
\end{tabular}
\begin{tabular}{c|ccc} 
& Height & Length & Height and Length \\
\hline\(\sigma(\) Residuals \()\) & 3.83 & 4.78 & 3.79 \\
\(d=(\) Number Parameters \()\) & 2 & 2 & 3 \\
\(\sigma\) (Residuals \() \cdot \sqrt{\frac{n-1}{n-d}}\) & 3.86 & 4.84 & 3.87 \\
cross validation. & 3.96 & 4.97 & 3.977 \\
AIC & 259.0 & 279.5 & 260.1 \\
BIC & 264.4 & 285.0 & 267.4
\end{tabular}

Akaike's Information Criterion:
\[
\mathrm{AIC}=-2 \cdot \log L+2 \cdot(\text { NumberofParameters })
\]
\begin{tabular}{c|ccc} 
& Height & Length & Height and Length \\
\hline\(\sigma\) (Residuals) & 3.83 & 4.78 & 3.79 \\
\(d=(\) Number Parameters \()\) & 2 & 2 & 3 \\
\(\sigma\) (Residuals) \(\cdot \sqrt{\frac{n-1}{n-d}}\) & 3.86 & 4.84 & 3.87 \\
cross validation. & 3.96 & 4.97 & 3.977 \\
AIC & 259.0 & 279.5 & 260.1 \\
BIC & 264.4 & 285.0 & 267.4
\end{tabular}

Akaike's Information Criterion:
\[
\mathrm{AIC}=-2 \cdot \log L+2 \cdot(\text { NumberofParameters })
\]

Bayesian Information Criterion:
\[
\mathrm{BIC}=-2 \cdot \log L+\log (n) \cdot(\text { NumberofParameters })
\]
\begin{tabular}{c|ccc} 
& Height & Length & Height and Length \\
\hline\(\sigma(\) Residuals \()\) & 3.83 & 4.78 & 3.79 \\
\(d=(\) Number Parameters \()\) & 2 & 2 & 3 \\
\(\sigma\) (Residuals) \(\cdot \sqrt{\frac{n-1}{n-d}}\) & 3.86 & 4.84 & 3.87 \\
cross validation. & 3.96 & 4.97 & 3.977 \\
AIC & 259.0 & 279.5 & 260.1 \\
BIC & 264.4 & 285.0 & 267.4
\end{tabular}

Akaike's Information Criterion:
\[
\mathrm{AIC}=-2 \cdot \log L+2 \cdot(\text { NumberofParameters })
\]

Bayesian Information Criterion:
\[
\mathrm{BIC}=-2 \cdot \log L+\log (n) \cdot(\text { NumberofParameters })
\]

For \(n \geq 8\) holds \(\log (n)>2\) and BIC penalizes every additional parameter harder than AIC. (As always, log is the natural logarithm.)

Low values of AIC and BIC favor the model.

Low values of AIC and BIC favor the model. (At least in R. There may be programs that show AIC and BIC with inverse sign)

Low values of AIC and BIC favor the model. (At least in R. There may be programs that show AIC and BIC with inverse sign)

AIC is based on the idea to approximate the prediction error (which is exact under certain conditions).

Low values of AIC and BIC favor the model. (At least in R. There may be programs that show AIC and BIC with inverse sign)

AIC is based on the idea to approximate the prediction error (which is exact under certain conditions).

BIC approximates (up to a constant) the log of the posterior probability of the model, where all models are a priori assumed to be equally probable.
\begin{tabular}{c|ccc} 
& height & length & height and length \\
\hline\(\sigma(\) Residuals \()\) & 3.83 & 4.78 & 3.79 \\
\(d=(\) Number of parameters \()\) & 2 & 2 & 3 \\
\(\sigma\) (Residuals) \(\cdot \sqrt{\frac{n-1}{n-d}}\) & 3.87 & 4.84 & 3.88 \\
cross validation. & 26.56 & 33.34 & 26.68 \\
AIC & 259.0 & 279.5 & 260.1 \\
BIC & 264.4 & 285.0 & 267.4
\end{tabular} It seems best to use

\section*{Problem with extensive model selection}

If you have optimized the model e.g. by AIC and than compute \(p\)-values with the same data, you find too much significance.

\section*{Problem with extensive model selection}

If you have optimized the model e.g. by AIC and than compute \(p\)-values with the same data, you find too much significance. We explore this with a little simulation:
```

A <- as.factor(rep(c("a","b","c"),c(40,40,40)))
B <- as.factor(rep(rep(c("w","x","y","z"), c(10,10,10,10)),3))
C <- as.factor(rep(c("p","q","r"),40))
D <- as.factor(rep(rep(c("m","n"),c(5,5)),12))
X <- rnorm(120,10,2)
library(MASS)
p <- numeric()
q <- numeric()
for(i in 1:1000) {
X <- rnorm(120,10,2)
p[i] <- anova(lm(X~1),lm(X~A*B*C*D))$"Pr(>F)"[[2]]
 q[i] <- anova(lm(X~1),stepAIC(lm(X~A*B*C*D)))$"Pr(>F)"[[2]]
}

```

Histogram of \(p\)


Histogram of \(q\)


\section*{Safe model selection and checking if you have lots of data}
(1) Divide the data randomly into 3 subsets \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), where A may contain half of the data, and B and C a quarter each.
(2) Fit each candidate model to the data subset A .
(3) Assess the accuracy of these fitted models with data subset \(B\). Let \(M\) be the best model in this contest.
(0) Assess the accuracy of M again and also its \(p\)-values, this time with dataset C .

Graphical methods are also very important in model fitting, especially applied to residuals. Plot resudials against variables. If this uncovers dependencies, they should be added to the model.

\section*{Overfitting}

What is the value of y for \(\mathrm{x}=0\) ?


\section*{Overfitting}

What is the value of \(y\) for \(x=0\) ?


\section*{Overfitting}

What is the value of y for \(\mathrm{x}=0\) ?


\section*{Overfitting}

What is the value of y for \(\mathrm{x}=0\) ?

\(\operatorname{lm}(\mathrm{y} \sim \mathrm{poly}(\mathrm{x}, 2))\) is the same as \(\operatorname{lm}\left(\mathrm{y} \sim \mathrm{x}+\mathrm{I}\left(\mathrm{x}^{2}\right)\right)\)

\section*{Overfitting}

What is the value of y for \(\mathrm{x}=0\) ?


Question: Is there a difference between Daphnia magna and Daphnia galeata in their reaction on food supply?

Question: Is there a difference between Daphnia magna and Daphnia galeata in their reaction on food supply?

Data from Justina Wolinska's ecology course for Bachelor students.
\begin{tabular}{|c|c|c|c|}
\hline & S & odlevel & species \\
\hline 1 & 68 & high & magna \\
\hline 2 & 54 & high & magna \\
\hline 3 & 59 & high & magna \\
\hline 4 & 24 & high & galeata \\
\hline 5 & 27 & high & galeata \\
\hline 6 & 16 & high & galeata \\
\hline 7 & 20 & low & magna \\
\hline 8 & 18 & low & magna \\
\hline 9 & 18 & low & magna \\
\hline 10 & 5 & low & galeata \\
\hline 11 & 8 & low & galeata \\
\hline 12 & 9 & low & galeata \\
\hline
\end{tabular}
```

> mod1 <- lm(counts~foodlevel+species,data=daph)
> mod2 <- lm(counts~foodlevel*species,data=daph)
> anova(mod1,mod2)
Analysis of Variance Table

```
```

Model 1: counts ~ foodlevel + species

```
Model 1: counts ~ foodlevel + species
Model 2: counts ~ foodlevel * species
Model 2: counts ~ foodlevel * species
    Res.Df RSS Df Sum of Sq F Pr(>F)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 9 710.00
1 9 710.00
2 8 176.67 1 533.33 24.151 0.001172 **
2 8 176.67 1 533.33 24.151 0.001172 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> summary(mod2)
[...]
Coefficients:
    Estimate Std.Error t.value Pr(>|t|)
(Intercept)
countslow
foodlevelmagna
        22.33 2.713 8.232 3.55e-05 ***
-15.00 3.837 -3.909 0.00449 **
foodlevelmagna 38.00 3.837 9.904 9.12e-06 ***
countslow:foodlevelmagna -26.67 5.426 -4.914 0.00117 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.699 on 8 degrees of freedom
Multiple R-squared: 0.9643,Adjusted R-squared: 0.9509
F-statistic: 71.95 on 3 and 8 DF, p-value: 3.956e-06
```

Result: the more complex model, in which different species react differently to low food level, fits significantly better.

Result: the more complex model, in which different species react differently to low food level, fits significantly better.

But does it fit well enough...?


```
> mod3 <- lm(log(counts) ~foodlevel+species,data=daph)
> mod4 <- lm(log(counts)~foodlevel*species,data=daph)
> anova(mod3,mod4)
Analysis of Variance Table
Model 1: log(counts) ~ foodlevel + species
Model 2: log(counts) ~ foodlevel * species
    Res.Df RSS Df Sum of Sq F Pr(>F)
1
    9 0.38041
    8 0.37856 1 0.0018545 0.0392 0.848
```

```
> summary(mod3)
Call:
lm(formula = log(counts) ~ foodlevel + species, data = daph)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-0.34017 & -0.05915 & 0.02622 & 0.13153 & 0.24762
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrrr} 
(Intercept) & 3.0946 & 0.1028 & 30.104 & \(2.41 \mathrm{e}-10\) & \(* * *\) \\
foodlevellow & -1.1450 & 0.1187 & -9.646 & \(4.83 \mathrm{e}-06\) & \(* * *\) \\
speciesmagna & 0.9883 & 0.1187 & 8.326 & \(1.61 \mathrm{e}-05\) & \(* * *\)
\end{tabular}
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.2056 on 9 degrees of freedom
Multiple R-squared: 0.9475,Adjusted R-squared: 0.9358
F-statistic: 81.19 on 2 and 9 DF, p-value: 1.743e-06
```


The qqplot looks better now but not really good.

The qqplot looks better now but not really good.
The reason is perhaps that the values of the target variable counts were small integers such that the normal distribution assumption is dubious.

The qqplot looks better now but not really good.
The reason is perhaps that the values of the target variable counts were small integers such that the normal distribution assumption is dubious.

Instead of the normal linear model we can fit a log transformed generalized linear model of type Poisson. We will see this in a few days.

The qqplot looks better now but not really good.
The reason is perhaps that the values of the target variable counts were small integers such that the normal distribution assumption is dubious.

Instead of the normal linear model we can fit a log transformed generalized linear model of type Poisson. We will see this in a few days.

For now we only compare the models with normality assumptions.

```
> AIC (mod1,mod}2,\operatorname{mod}3,\operatorname{mod}4
    df AIC
mod1 4 91.0188246
mod2 5 76.3268216
mod3 4 0.6376449
mod4 5 2.5790019
```

The log-linear models clearly have better AIC values than the linear models with untransformed data. But one should not compare AIC values between models with different (or differently scaled) target variable.

```
> AIC(mod1,mod2,mod3,mod4)
    df AIC
mod1 4 91.0188246
mod2 5 76.3268216
mod3 4 0.6376449
mod4 5 2.5790019
```

The log-linear models clearly have better AIC values than the linear models with untransformed data. But one should not compare AIC values between models with different (or differently scaled) target variable.

The interaction in model mod4 is not only non-significant, the model mod3 without interaction also has the better AIC values.

So we favor mod3:

$$
\log (\text { counts })=3.09-1.14 \cdot I_{\text {low food }}+0.99 \cdot I_{\text {magna }}+\varepsilon
$$

So we favor mod3:

$$
\log (\text { counts })=3.09-1.14 \cdot I_{\text {low food }}+0.99 \cdot I_{\text {magna }}+\varepsilon
$$

By applying the e function we obtain:

$$
\text { counts }=21.98 \cdot 0.32^{\text {low food }} \cdot 2.69^{\text {Imagna }} \cdot e^{\varepsilon}
$$

prediction of log-linear model

But is it reasonable at all to assume normal distribution when the data are counts $0,1,2, \ldots$?

But is it reasonable at all to assume normal distribution when the data are counts $0,1,2, \ldots$?

We will come back to this dataset when we discuss GLMs.

Contents

(1) Linear regression
(2) log-scalling the data
(3) Checking model assumptions
(9) Why it's called' "regression"
(5) Multiple Regression

- Cross validation and AIC
(7) Extensions of linear models

Extensions of linear models

multiple linear model: models as we discussed, with more than one explanatory variable multivariate linear model: the response variable y_{i} is multi-dimensional. That is, y consists of two or more columns that my be correlated
General linear model: the errors ε_{i} can be correlated. They still have $\mathbb{E}\left(\varepsilon_{i}\right)=0$ but even the assumption of normality can be dropped.
Generalized linear model (GLM): The response variable y_{i} are not normally distributed; possible distributions are Poisson, binomial (e.g. logistic regression) or gamma. There may be no ε_{i}.
Linear mixed models: The coefficients of one or more factor variables (that typically have many classes) are assumed to be normally distributed.

Some of the things you should be able to explain

- interpretation of interaction terms
- how to specify all assumtions of multiple linear models ...
- ... in precise mathematical terms
- ... in R notation
- and how to translate these notations into each other
- graphical methods to check model assumptions
- meaning of Anova p-values in different kinds of R output
- overfitting and how to avoid it
- cross validation, AIC, BIC and how to apply them
- connection betweed standard deviation of residuals and of ϵ_{i}

