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Linear regression

photo (c) by Jörg Hempel

Griffon Vulture
Gypus fulvus
German:
Gänsegeier
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Linear regression

Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body
temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric
investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

Data from Goethe-University, Group of Prof. Prinzinger
Developed telemetric system for measuring heart beats of flying birds

Important for ecological questions: metabolic rate.
metabolic rate can only be measured in the lab
can we infer metabolic rate from heart beat frequency?
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Linear regression

vulture

day heartbpm metabol minTemp maxTemp medtemp

1 01.04./02.04. 70.28 11.51 -6 2 -2.0

2 01.04./02.04. 66.13 11.07 -6 2 -2.0

3 01.04./02.04. 58.32 10.56 -6 2 -2.0

4 01.04./02.04. 58.63 10.62 -6 2 -2.0

5 01.04./02.04. 58.05 9.52 -6 2 -2.0

6 01.04./02.04. 66.37 7.19 -6 2 -2.0

7 01.04./02.04. 62.43 8.78 -6 2 -2.0

8 01.04./02.04. 65.83 8.24 -6 2 -2.0

9 01.04./02.04. 47.90 7.47 -6 2 -2.0

10 01.04./02.04. 51.29 7.83 -6 2 -2.0

11 01.04./02.04. 57.20 9.18 -6 2 -2.0

. . . . . . .

. . . . . . .

. . . . . . .

(14 different days)
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Linear regression

> model <- lm(metabol~heartbpm,data=vulture,

subset=day=="17.05.")

> summary(model)

Call:

lm(formula = metabol ~ heartbpm, data = vulture, subset = day ==

"17.05.")

Residuals:

Min 1Q Median 3Q Max

-2.2026 -0.2555 0.1005 0.6393 1.1834

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.73522 0.84543 -9.149 5.60e-08 ***

heartbpm 0.27771 0.01207 23.016 2.98e-14 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.912 on 17 degrees of freedom

Multiple R-squared: 0.9689,Adjusted R-squared: 0.9671

F-statistic: 529.7 on 1 and 17 DF, p-value: 2.979e-14
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Linear regression

define the regression line
y = â + b̂ · x

by minimizing the sum of squared residuals:

(â, b̂) = arg min
(a,b)

∑
i

(yi − (a + b · xi))2

this is based on the model assumption that values a,b exist, such that, for all data points
(xi , yi) we have

yi = a + b · xi + εi ,

whereas all εi are independent and normally distributed with the same variance σ2.
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Linear regression

givend data:

Y X
y1 x1

y2 x2

y3 x3
...

...

yn xn

Model: there are values
a, b, σ2 such that

y1 = a + b · x1 + ε1

y2 = a + b · x2 + ε2

y3 = a + b · x3 + ε3
...

...

yn = a + b · xn + εn

ε1, ε2, . . . , εn are independent ∼ N (0, σ2).

⇒ y1, y2, . . . , yn are independent yi ∼ N (a + b · xi , σ
2).

a,b, σ2 are unknown, but not random.
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Linear regression

We estimate a and b by computing

(â, b̂) := arg min
(a,b)

∑
i

(yi − (a + b · xi))2.

Theorem

Compute â and b̂ by

b̂ =

∑
i(yi − ȳ) · (xi − x̄)∑

i(xi − x̄)2 =

∑
i yi · (xi − x̄)∑

i(xi − x̄)2

and
â = ȳ − b̂ · x̄ .

Please keep in mind:
The line y = â + b̂ · x goes through the center of gravity of the cloud of points
(x1, y1), (x2, y2), . . . , (xn, yn).
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â = ȳ − b̂ · x̄ .

Please keep in mind:
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Linear regression

Sketch of the proof of the theorem

Let g(a,b) =
∑

i(yi − (a + b · xi))2. We optimize g, by setting the derivatives of g

∂g(a,b)

∂a
=

∑
i

2 · (yi − (a + bxi)) · (−1)

∂g(a,b)

∂b
=

∑
i

2 · (yi − (a + bxi)) · (−xi)

to 0 and obtain

0 =
∑

i

(yi − (â + b̂xi)) · (−1)

0 =
∑

i

(yi − (â + b̂xi)) · (−xi)
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Linear regression

0 =
∑

i

(yi − (â + b̂xi))

0 =
∑

i

(yi − (â + b̂xi)) · xi

gives us

0 =

(∑
i

yi

)
− n · â− b̂ ·

(∑
i

xi

)

0 =

(∑
i

yixi

)
− â ·

(∑
i

xi

)
− b̂ ·

(∑
i

x2
i

)

and the theorem follows by solving this for â and b̂. �
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Linear regression

Regression and Correlation

For the bias-corrected (that is, computed with n − 1) standard deviations sx and sy and
the bias-corrected sample covarinance

cov(x , y) =
1

n − 1

∑
i

(xi − x) · (yi − y),

we obtain for the estimated slope of the regression line:

b̂ =

∑
i(xi − x) · (yi − y)∑

i(xi − x)2 =
1

n−1
∑

i(xi − x) · (yi − y)
1

n−1
∑

i(xi − x)2
=

cov(x , y)

s2
x

.

For the sample correlation cor(x , y) = cov(x , y)/(sx · sy ) we obtain

b̂ =
cov(x , y)

s2
x

=
cor(x , y) · sx · sy

s2
x

= cor(x , y) ·
sy

sx
.

In particular, b̂ is equal to the correlation if and only if sx = sy .
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Linear regression

vulture

day heartbpm metabol minTemp maxTemp medtemp

1 01.04./02.04. 70.28 11.51 -6 2 -2.0

2 01.04./02.04. 66.13 11.07 -6 2 -2.0
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Linear regression

> model <- lm(metabol~heartbpm,data=vulture,

subset=day=="17.05.")

> summary(model)

Call:

lm(formula = metabol ~ heartbpm, data = vulture,

subset = day == "17.05.")

Residuals:

Min 1Q Median 3Q Max

-2.2026 -0.2555 0.1005 0.6393 1.1834

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.73522 0.84543 -9.149 5.60e-08 ***

heartbpm 0.27771 0.01207 23.016 2.98e-14 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.912 on 17 degrees of freedom

Multiple R-squared: 0.9689,Adjusted R-squared: 0.9671

F-statistic: 529.7 on 1 and 17 DF, p-value: 2.979e-14
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Linear regression

Model:
Y = a + b · X + ε mit ε ∼ N (0, σ2)

How to compute the significance of a relationship between the explanatory trait X and the
target variable Y ?

In other words: How can we test the null hypothesis b = 0?

We have estimated b by b̂ 6= 0. Could the true b be 0?

How large is the standard error of b̂?
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Linear regression

yi = a + b · xi + ε mit ε ∼ N (0, σ2)

not random: a, b, xi , σ2 random: ε, yi

var(yi) = var(a + b · xi + ε) = var(ε) = σ2

and y1, y2, . . . , yn are stochastically independent.

b̂ =

∑
i yi(xi − x̄)∑
i(xi − x̄)2

var(b̂) = var
(∑

i yi(xi − x̄)∑
i(xi − x̄)2

)
=

var (
∑

i yi(xi − x̄))

(
∑

i(xi − x̄)2)
2

=

∑
i var (yi) (xi − x̄)2

(
∑

i(xi − x̄)2)
2 = σ2 ·

∑
i(xi − x̄)2

(
∑

i(xi − x̄)2)
2

= σ2

/∑
i

(xi − x̄)2
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Linear regression

In fact b̂ is normally distributed with mean b and

var(b̂) = σ2

/∑
i

(xi − x̄)2

Problem: We do not know σ2.
We estimate σ2 by considering the residual variance:

s2 :=

∑
i

(
yi − â− b̂ · xi

)2

n − 2

Note that we divide by n − 2. The reason for this is that two model parameters a and b
have been estimated, which means that two degrees of freedom got lost.
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Linear regression

var(b̂) = σ2

/∑
i

(xi − x̄)2

Estimate σ2 by

s2 =

∑
i

(
yi − â− b̂ · xi

)2

n − 2
.

Then
b̂ − b

s
/√∑

i(xi − x̄)2

is Student-t-distributed with n − 2 degrees of freedom and we can apply the t-test to test
the null hypothesis b = 0.
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log-scaling the data
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log-scaling the data

Data example: typical body weight [kg] and and brain weight [g] of 62 mammals species
(and 3 dinosaurs)
> data

weight.kg. brain.weight.g species extinct

1 6654.00 5712.00 african elephant no

2 1.00 6.60 no

3 3.39 44.50 no

4 0.92 5.70 no

5 2547.00 4603.00 asian elephant no

6 10.55 179.50 no

7 0.02 0.30 no

8 160.00 169.00 no

9 3.30 25.60 cat no

. . . .

. . . .

. . . .

64 9400.00 70.00 Triceratops yes

65 87000.00 154.50 Brachiosaurus yes
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log-scaling the data
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log-scaling the data
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log-scaling the data
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log-scaling the data

> modell <- lm(brain.weight.g~weight.kg.,subset=extinct=="no")

> summary(modell)

Call:

lm(formula = brain.weight.g ~ weight.kg., subset = extinct ==

"no")

Residuals:

Min 1Q Median 3Q Max

-809.95 -87.43 -78.55 -31.17 2051.05

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.91213 43.58134 2.063 0.0434 *

weight.kg. 0.96664 0.04769 20.269 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 334.8 on 60 degrees of freedom

Multiple R-squared: 0.8726,Adjusted R-squared: 0.8704

F-statistic: 410.8 on 1 and 60 DF, p-value: < 2.2e-16
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log-scaling the data

qqnorm(modell$residuals)
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log-scaling the data

plot(modell$fitted.values,modell$residuals)

●

●●●

●

●

● ●●

●

● ●●

●

●●●●●●

●
●
●

●●

●
●●

●
●●●●

●

●●●●●●

●

●
●
● ●●●●
●

●

●●●

●

●●●●●
●
●●

0 1000 2000 3000 4000 5000 6000

−
50

0
0

50
0

10
00

15
00

20
00

modell$fitted.values

m
od

el
l$

re
si

du
al

s

28 / 123



log-scaling the data

plot(modell$fitted.values,modell$residuals,log=’x’)
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log-scaling the data

plot(modell$model$weight.kg.,modell$residuals)
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log-scaling the data

plot(modell$model$weight.kg.,modell$residuals,log=’x’ )
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log-scaling the data

We see that the residuals’ variance depends on the fitted values (or the body weight):
“heteroscadiscity”

The model assumes homoscedascity, i.e. the random deviations must be (almost)
independent of the explaining traits (body weight) and the fitted values.
variance-stabilizing transformation:
can be rescale body- and brain size to make deviations independent of variables
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log-scaling the data

Actually not so surprising: An elephant’s brain of typically 5 kg can easily be 500 g lighter
or heavier from individual to individual. This can not happen for a mouse brain of typically
5 g. The latter will rather also vary by 10%, i.e. 0.5 g. Thus, the variance is not additive
but rather multiplicative:

brain mass = (expected brain mass) · random

We can convert this into something with additive randomness by taking the log:

log(brain mass) = log(expected brain mass) + log(random)
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log-scaling the data

> logmodell <- lm(log(brain.weight.g)~log(weight.kg.),subset=extinct=="no")

> summary(logmodell)

Call:

lm(formula = log(brain.weight.g) ~ log(weight.kg.), subset = extinct ==

"no")

Residuals:

Min 1Q Median 3Q Max

-1.68908 -0.51262 -0.05016 0.46023 1.97997

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.11067 0.09794 21.55 <2e-16 ***

log(weight.kg.) 0.74985 0.02888 25.97 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.7052 on 60 degrees of freedom

Multiple R-squared: 0.9183,Adjusted R-squared: 0.9169

F-statistic: 674.3 on 1 and 60 DF, p-value: < 2.2e-16
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log-scaling the data

qqnorm(modell$residuals)
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log-scaling the data

plot(logmodell$fitted.values,logmodell$residuals)
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log-scaling the data

plot(logmodell$fitted.values,logmodell$residuals,log=’x’ )
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log-scaling the data

plot(weight.kg.[extinct==’no’],logmodell$residuals)
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log-scaling the data

plot(weight.kg.[extinct=’no’],logmodell$residuals,log=’x’ )
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Checking model assumptions
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Checking model assumptions

Is the model appropriate for the data?, e.g

yi = a + b · xi + ε with ε ∼ N (0, σ2)

If the model fits, the residuals
ri = yi −

(
â + b̂ · xi

)
approximate the εi = yi − (a + b · xi)
and therefore must

look normally distributed and
must not have obvious dependencies with X or â + b̂ · X .
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Checking model assumptions

Example: is the relation between X and Y sufficiently well described by the linear
equation Yi = a + b · Xi + εi?
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Checking model assumptions

> mod <- lm(Y ~ X)

> summary(mod)

Call:

lm(formula = Y ~ X)

Residuals:

Min 1Q Median 3Q Max

-0.49984 -0.26727 -0.13472 0.01344 1.82718

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.61118 0.33295 -1.836 0.077 .

X 1.65055 0.06472 25.505 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5473 on 28 degrees of freedom

Multiple R-squared: 0.9587,Adjusted R-squared: 0.9573

F-statistic: 650.5 on 1 and 28 DF, p-value: < 2.2e-16
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Checking model assumptions

> plot(X,residuals(mod))
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Obviously, the residuals tend to be larger for very large and very small values of X than
for mean values of X . That should not be!
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Checking model assumptions
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Checking model assumptions

Idea: Instead fit a section of a parabola instead of aline to (xi , yi), i.e. a model of the form

Yi = a + b · Xi + c · X 2
i + εi .

Is this still a linear model? Yes: Let Z = X 2, then Y is linear in X and Z .
In R:

> Z <- X^2

> mod2 <- mod <- lm(Y ~ X+Z)
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Checking model assumptions

> summary(mod2)

Call:

lm(formula = Y ~ X + Z)

Residuals:

Min 1Q Median 3Q Max

-0.321122 -0.060329 0.007706 0.075337 0.181965

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.933154 0.158825 18.468 <2e-16 ***

X 0.150857 0.061921 2.436 0.0217 *

Z 0.144156 0.005809 24.817 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1142 on 27 degrees of freedom

Multiple R-squared: 0.9983,Adjusted R-squared: 0.9981

F-statistic: 7776 on 2 and 27 DF, p-value: < 2.2e-16
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Checking model assumptions

For this model there is no obvious dependence between X and the residuals:
plot(X,residuals(mod2))
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Checking model assumptions

Is the assumption of normality in the model Yi = a + b · Xi + εi in accordance with the
data?

Are the residuals ri = Yi − (â + b̂ · Xi) more or less normally distributed?

Graphical Methods: compare the theoretical quantiles of the standard normal distribution
N (0,1) with those of the residuals.

Background: If we plot the quantiles of N (µ, σ2) against those of N (0,1), we obtain a line
y(x) = µ+ σ · x . (Reason: If X is standard-normally distributed and Y = a + b · X , then Y
is normally distributed with mean a and variance b2.)
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Are the residuals ri = Yi − (â + b̂ · Xi) more or less normally distributed?

Graphical Methods: compare the theoretical quantiles of the standard normal distribution
N (0,1) with those of the residuals.

Background: If we plot the quantiles of N (µ, σ2) against those of N (0,1), we obtain a line
y(x) = µ+ σ · x . (Reason: If X is standard-normally distributed and Y = a + b · X , then Y
is normally distributed with mean a and variance b2.)

44 / 123



Checking model assumptions

Is the assumption of normality in the model Yi = a + b · Xi + εi in accordance with the
data?
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Checking model assumptions

Before we fit the model with lm() we first have to check whether the model assumptions
are fulfilled.

To check the assumptions underlying a linear model we need the residuals. To compute
the residuals we first have to fit the model (in R with lm()). After that we can check the
model assumptions and decide whether we stay with this model or still have to modify it.

45 / 123



Checking model assumptions

Before we fit the model with lm() we first have to check whether the model assumptions
are fulfilled.

To check the assumptions underlying a linear model we need the residuals. To compute
the residuals we first have to fit the model (in R with lm()). After that we can check the
model assumptions and decide whether we stay with this model or still have to modify it.

45 / 123



Checking model assumptions

Before we fit the model with lm() we first have to check whether the model assumptions
are fulfilled.
To check the assumptions underlying a linear model we need the residuals.

To compute
the residuals we first have to fit the model (in R with lm()). After that we can check the
model assumptions and decide whether we stay with this model or still have to modify it.

45 / 123



Checking model assumptions

Before we fit the model with lm() we first have to check whether the model assumptions
are fulfilled.
To check the assumptions underlying a linear model we need the residuals. To compute
the residuals we first have to fit the model (in R with lm()).

After that we can check the
model assumptions and decide whether we stay with this model or still have to modify it.

45 / 123



Checking model assumptions

Before we fit the model with lm() we first have to check whether the model assumptions
are fulfilled.
To check the assumptions underlying a linear model we need the residuals. To compute
the residuals we first have to fit the model (in R with lm()). After that we can check the
model assumptions and decide whether we stay with this model or still have to modify it.

45 / 123



Checking model assumptions

p <- seq(from=0.01,to=0.99,by=0.01)

plot(qnorm(p,mean=0,sd=1),qnorm(p,mean=1,sd=0.5),

pch=16,cex=0.5)

abline(v=0,h=0)
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Checking model assumptions

If we plot the empirical quantiles of a sample from a normal distribution against the
theoretical quantiles of a standard normal distribution, the values are not precisely on the
line but are scattered around a line.

If no systematic deviations from an imaginary line are recognizable: Normal distribution
assumption is acceptable

If systematic deviations from an imaginary line are obvious: Assumption of normality may
be problematic. It may be necessary to rescale variables or to take additional explanatory
variables into account.
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Why it’s called “regression”
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Why it’s called “regression”

Origin of the word “Regression”

Sir Francis Galton (1822–1911): Regression toward the mean.

Tall fathers tend to have sons that are slightly smaller than the fathers.
Sons of small fathers are on average larger than their fathers.
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Why it’s called “regression”
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Why it’s called “regression”

Some of what you should be able to explain

Model assumptions underlying linear regression
Equation
What is random, what is fixed?

approach: minimize sum of squared residuals
optimal solution for slope and intercept
slope vs. correlation
t-test for the slope (standard error, test statistic and df)
scaling the data: when, why, how?
qqnorm plots

theory
how to use them to judge model assumptions
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Multiple Regression
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Multiple Regression

Multiple Regression

β

Y

X

X

1

2
0

60 / 123



Multiple Regression

Multiple Regression

Problem: Predict Y from X1, X2,. . . ,Xm.

Observations:

Y1 , X11,X21, . . . ,Xm1

Y2 , X12,X22, . . . ,Xm2
...

...
Yn , X1n,X2n, . . . ,Xmn

Model: Y = a + b1 · X1 + b2 · X2 + · · ·+ bm · Xm + ε
Equation system to determine a, b1, b2, . . . , bm:

Y1 = a + b1 · X11 + b2 · X21 + . . . + bm · Xm1 + ε1
Y2 = a + b1 · X12 + b2 · X22 + . . . + bm · Xm2 + ε2
...

...
...

...
...

...
...

...
. . .

...
...

...
...

Yn = a + b1 · X1n + bn · X2n + . . . + bm · Xmn + εn
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Multiple Regression

Model:

Y1 = a + b1 · X11 + b2 · X21 + . . . + bm · Xm1 + ε1
Y2 = a + b1 · X12 + b2 · X22 + . . . + bm · Xm2 + ε2
...

...
...

...
...

...
...

...
. . .

...
...

...
...

Yn = a + b1 · X1n + bn · X2n + . . . + bm · Xmn + εn

target variable Y
explanatory variables X1,X2, . . . ,Xm
parameter to be estimated a,b1, . . . ,bm
independent normally distributed pertubations ε1, . . . , εm with unknown variance σ2.
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Multiple Regression Example: species richness on sandy beaches

Which factors influence the species richness on sandy beaches?
Data from the dutch National Institute for Coastal and Marine Management
Rijkswaterstaat/RIKZ
see also

Zuur, Ieno, Smith (2007) Analysing Ecological Data. Springer
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Multiple Regression Example: species richness on sandy beaches

richness angle2 NAP grainsize humus week

1 11 96 0.045 222.5 0.05 1

2 10 96 -1.036 200.0 0.30 1

3 13 96 -1.336 194.5 0.10 1

4 11 96 0.616 221.0 0.15 1

. . . . . . .

. . . . . . .

21 3 21 1.117 251.5 0.00 4

22 22 21 -0.503 265.0 0.00 4

23 6 21 0.729 275.5 0.10 4

. . . . . . .

. . . . . . .

43 3 96 -0.002 223.0 0.00 3

44 0 96 2.255 186.0 0.05 3

45 2 96 0.865 189.5 0.00 3
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Multiple Regression Example: species richness on sandy beaches

Meaning of the Variables

richness Number of species that were found in a plot.
angle2 slope of the beach a the plot

NAP altitude of the plot compared to the mean sea level.
grainsize average diameter of sand grains

humus fraction of organic material
week in which of 4 was this plot probed.

(many more variables in original data set)
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Multiple Regression Example: species richness on sandy beaches

Model 0:

richness = a + b1 · angle2 + b2 · NAP + b3 · grainsize +

+b4 · humus + ε

in R notation:
richness ∼ angle2 + NAP + grainsize + humus
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Multiple Regression Example: species richness on sandy beaches

> modell0 <- lm(richness ~ angle2+NAP+grainsize+humus,

+ data = rikz)

> summary(modell0)

Call:

lm(formula = richness ~ angle2 + NAP + grainsize + humus, data = rikz)

Residuals:

Min 1Q Median 3Q Max

-4.6851 -2.1935 -0.4218 1.6753 13.2957

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.35322 5.71888 3.209 0.00262 **

angle2 -0.02277 0.02995 -0.760 0.45144

NAP -2.90451 0.59068 -4.917 1.54e-05 ***

grainsize -0.04012 0.01532 -2.619 0.01239 *

humus 11.77641 9.71057 1.213 0.23234

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.644 on 40 degrees of freedom

Multiple R-squared: 0.5178,Adjusted R-squared: 0.4696

F-statistic: 10.74 on 4 and 40 DF, p-value: 5.237e-06
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Multiple Regression Example: species richness on sandy beaches

e.g. -2.90451 is the estimator for b2, the coefficient of NAP

The p value Pr(>|t|) refers to the null hypothesis that the true parameter value may
be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the
target variable (the species richness).
NAP is judged to be highly significant, grainsize also.
Is there a significant week effect?
Not the number 1,2,3,4 of the week should be multiplied with a coefficient. Instead,
the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a
parameter that describes how much the species richness is increased compared to
week 1.
In R this is done by changing week into a factor.

68 / 123



Multiple Regression Example: species richness on sandy beaches

e.g. -2.90451 is the estimator for b2, the coefficient of NAP
The p value Pr(>|t|) refers to the null hypothesis that the true parameter value may
be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the
target variable (the species richness).

NAP is judged to be highly significant, grainsize also.
Is there a significant week effect?
Not the number 1,2,3,4 of the week should be multiplied with a coefficient. Instead,
the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a
parameter that describes how much the species richness is increased compared to
week 1.
In R this is done by changing week into a factor.

68 / 123



Multiple Regression Example: species richness on sandy beaches

e.g. -2.90451 is the estimator for b2, the coefficient of NAP
The p value Pr(>|t|) refers to the null hypothesis that the true parameter value may
be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the
target variable (the species richness).
NAP is judged to be highly significant, grainsize also.

Is there a significant week effect?
Not the number 1,2,3,4 of the week should be multiplied with a coefficient. Instead,
the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a
parameter that describes how much the species richness is increased compared to
week 1.
In R this is done by changing week into a factor.

68 / 123



Multiple Regression Example: species richness on sandy beaches

e.g. -2.90451 is the estimator for b2, the coefficient of NAP
The p value Pr(>|t|) refers to the null hypothesis that the true parameter value may
be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the
target variable (the species richness).
NAP is judged to be highly significant, grainsize also.
Is there a significant week effect?

Not the number 1,2,3,4 of the week should be multiplied with a coefficient. Instead,
the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a
parameter that describes how much the species richness is increased compared to
week 1.
In R this is done by changing week into a factor.

68 / 123



Multiple Regression Example: species richness on sandy beaches

e.g. -2.90451 is the estimator for b2, the coefficient of NAP
The p value Pr(>|t|) refers to the null hypothesis that the true parameter value may
be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the
target variable (the species richness).
NAP is judged to be highly significant, grainsize also.
Is there a significant week effect?
Not the number 1,2,3,4 of the week should be multiplied with a coefficient. Instead,
the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a
parameter that describes how much the species richness is increased compared to
week 1.

In R this is done by changing week into a factor.

68 / 123



Multiple Regression Example: species richness on sandy beaches

e.g. -2.90451 is the estimator for b2, the coefficient of NAP
The p value Pr(>|t|) refers to the null hypothesis that the true parameter value may
be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the
target variable (the species richness).
NAP is judged to be highly significant, grainsize also.
Is there a significant week effect?
Not the number 1,2,3,4 of the week should be multiplied with a coefficient. Instead,
the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a
parameter that describes how much the species richness is increased compared to
week 1.
In R this is done by changing week into a factor.

68 / 123



Multiple Regression Example: species richness on sandy beaches

Model 0:

richness = a + b1 · angle2 + b2 · NAP + b3 · grainsize +

+b4 · humus +

b5 · Iweek=2 + b6 · Iweek=3 + b7 · Iweek=4 + ε

Iweek=k is a so-called indicator variable which is 1 if week= k and 0 otherwise.

e.g. b6 describes by how much the species richness in an average plot probed in week 3
is increased compared to week 1.

in R notation:
richness ∼ angle2 + NAP + grainsize + humus + factor(week)
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Multiple Regression Example: species richness on sandy beaches

> modell <- lm(richness ~ angle2+NAP+grainsize+humus

+ +factor(week), data = rikz)

> summary(modell)

.

.

.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.298448 7.967002 1.167 0.250629

angle2 0.016760 0.042934 0.390 0.698496

NAP -2.274093 0.529411 -4.296 0.000121 ***

grainsize 0.002249 0.021066 0.107 0.915570

humus 0.519686 8.703910 0.060 0.952710

factor(week)2 -7.065098 1.761492 -4.011 0.000282 ***

factor(week)3 -5.719055 1.827616 -3.129 0.003411 **

factor(week)4 -1.481816 2.720089 -0.545 0.589182

---
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Multiple Regression Example: species richness on sandy beaches

Obviously, in weeks 2 and 3 significantly less species were found than in week 1,
which is our reference point here.

The estimated Intercept is thus the expected species richness in week 1 in a plot
where all other parameters take the value 0.
An alternative representation without Intercept takes 0 as reference point.
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Multiple Regression Example: species richness on sandy beaches

> modell.alternativ <- lm(richness ~ angle2+NAP+

+ grainsize+humus+factor(week)-1, data = rikz)

> summary(modell.alternativ)

.

.

.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

angle2 0.016760 0.042934 0.390 0.698496

NAP -2.274093 0.529411 -4.296 0.000121 ***

grainsize 0.002249 0.021066 0.107 0.915570

humus 0.519686 8.703910 0.060 0.952710

factor(week)1 9.298448 7.967002 1.167 0.250629

factor(week)2 2.233349 8.158816 0.274 0.785811

factor(week)3 3.579393 8.530193 0.420 0.677194

factor(week)4 7.816632 6.522282 1.198 0.238362
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Multiple Regression Example: species richness on sandy beaches

the p values refer to the question whether the four intercepts for the different weeks are
significantly different from 0.
The four p values refer to the null hypotheses that the additive parameter of a week is 0.
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Multiple Regression Example: species richness on sandy beaches

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1. However, the p
value refers to the situation of single testing.

If we perform pairwise test for the weeks, we end up with
(4

2

)
= 6 tests.

Bonferroni correction: Multiply each p value with the number of tests performed, in our
case 6.
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Multiple Regression Example: species richness on sandy beaches

Bonferroni correction

Problem: If you perform many tests, some of them will reject the null hypothesis even if
the null hypothesis is true.

Example: If you perform 20 tests where the null hypothesis is actually true, then on
average 1 test will falsly reject the null hypothesis on the 5% level.

Bonferroni correction: Multiply all p values with the number of tests performed. Reject the
null hypotheses where the result is still smaller than the significance level.

Disadvantage: Conservative: Often, the null hypothies cannot be rejected even it is not
true (type-2-error).
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Multiple Regression Example: species richness on sandy beaches

Alternative: Test whether there is a week effect by using an analysis of variance (anova)
to compare a model with week effect to a model without week effect.

Only works for nested models, i.e. the simpler model can be obtained by restricting some
parameters of the richer model to certain values or equations. In our case: “all week
summands are equal”.
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Multiple Regression Example: species richness on sandy beaches

> modell0 <- lm(richness ~ angle2+NAP+grainsize+humus,

+ data = rikz)

> modell <- lm(richness ~ angle2+NAP+grainsize+humus

+ +factor(week), data = rikz)

> anova(modell0, modell)

Analysis of Variance Table

Model 1: richness ~ angle2 + NAP + grainsize + humus

Model 2: richness ~ angle2 + NAP + grainsize + humus + factor(week)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 40 531.17

2 37 353.66 3 177.51 6.1902 0.00162 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Multiple Regression Example: species richness on sandy beaches

We reject the null hypothesis that the weeks have no effect with a p-value of 0.00162.

But wait! We can only do that if the more complex model fits well to the data. We check
this graphically.
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Multiple Regression Example: species richness on sandy beaches

plot(modell)
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Multiple Regression Example: species richness on sandy beaches

Probes 22, 42, and 9 are considered as outliers.

Can we explain this by taking more parameters into account or are these real outliers,
which are atypical and must be analysed separately.
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Multiple Regression Example: species richness on sandy beaches

Is there an interaction between NAP and angle2?

richness = a + b1 · angle2 + b2 · NAP + b3 · grainsize +

+b4 · humus +

+b5 · Iweek=2 + b6 · Iweek=3 + b7 · Iweek=4

b8 · angle2 · NAP + ε

in R notation:
richness ∼ angle2 + NAP + angle2:NAP+grainsize + humus + factor(week)

short-cut:
richness ∼ angle2*NAP+grainsize + humus + factor(week)
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Multiple Regression Example: species richness on sandy beaches

> modell3 <- lm(richness ~ angle2*NAP+grainsize+humus

+ +factor(week), data = rikz)

> summary(modell3)

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.438985 8.148756 1.281 0.208366

angle2 0.007846 0.044714 0.175 0.861697

NAP -3.011876 1.099885 -2.738 0.009539 **

grainsize 0.001109 0.021236 0.052 0.958658

humus 0.387333 8.754526 0.044 0.964955

factor(week)2 -7.444863 1.839364 -4.048 0.000262 ***

factor(week)3 -6.052928 1.888789 -3.205 0.002831 **

factor(week)4 -1.854893 2.778334 -0.668 0.508629

angle2:NAP 0.013255 0.017292 0.767 0.448337

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Multiple Regression Example: species richness on sandy beaches

Different types of ANOVA tables

If you apply the R command anova to a single model, the variables are added consecutively in the
same order as in the command. Each p value refers to the test whether the model gets
significantly better by adding the variable to only those that are listed above the variable. In
contrast to this, the p values that are given by summary or by dropterm from the MASS library
always compare the model to a model where only the corresponding variable is set to 0 and all
other variables can take any values. The p values given by anova thus depend on the order in
which the variables are given in the command. This is not the case for summary and dropterm.
The same options exist in other software packages, sometimes under the names “type I analysis”
and “type II analysis”.
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Multiple Regression Example: Success of different therapies

For young anorexia patients the effect of family therapy (FT) and cognitive behavioral
therapy (CBT) is compared to a control group (Cont) by comparing the weight before
(Prewt) and after (Postwt) the treatment (Treat).

Hand, D. J., Daly, F., McConway, K., Lunn, D. and Ostrowski, E. eds (1993) A
Handbook of Small Data Sets. Chapman & Hall
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Multiple Regression Example: Success of different therapies

Model lm1 There is a linear relation with the pre-weight. Each treatment changes the
weight by a value that depends on the treatment but not on the Preweight.

Model lm2 Interaction between Treatment und Preweight: The effect of the pre-weight
depends on the kind of treatment.
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Multiple Regression Example: Success of different therapies
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Multiple Regression Example: Success of different therapies

> lm1 <- lm(Postwt~Prewt+Treat,anorexia)

> lm2 <- lm(Postwt~Prewt*Treat,anorexia)

> anova(lm1,lm2)

Analysis of Variance Table

Model 1: Postwt ~ Prewt + Treat

Model 2: Postwt ~ Prewt * Treat

Res.Df RSS Df Sum of Sq F Pr(>F)

1 68 3311.3

2 66 2844.8 2 466.5 5.4112 0.006666 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Multiple Regression Example: Success of different therapies

result: the more complex model fits significantly better than the nested model.

interpretation: The role of the weight before the treatment depends on the type of the
treatment.
or: The difference between effects of the treatments depends on the weight
before the treetment.
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Multiple Regression Example: Success of different therapies

result: the more complex model fits significantly better than the nested model.
interpretation: The role of the weight before the treatment depends on the type of the

treatment.
or: The difference between effects of the treatments depends on the weight
before the treetment.

88 / 123



Cross validation and AIC

Contents

1 Linear regression

2 log-scaling the data

3 Checking model assumptions

4 Why it’s called “regression”

5 Multiple Regression

6 Cross validation and AIC

7 Extensions of linear models
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

You find a beak of a Darwin
finch. The beak is 14 mm
long and 10 mm high. How
accurately can you predict the
winglength of the bird?

Your “training data” are the winglengths (WingL), beak heights (BeakH) and beak lengths
(N.UBkL) of 46 Darwin finches.
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches
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Shall we account only for beak heights, only for beak lengths or for both?
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

> modH <- lm(WingL~BeakH)

> summary(modH)

Call:

lm(formula = WingL ~ BeakH)

Residuals:

Min 1Q Median 3Q Max

-7.1882 -2.5327 -0.2796 1.8325 16.2702

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.78083 1.33103 37.40 <2e-16 ***

BeakH 1.76284 0.09961 17.70 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.868 on 44 degrees of freedom

Multiple R-squared: 0.8768,Adjusted R-squared: 0.874

F-statistic: 313.2 on 1 and 44 DF, p-value: < 2.2e-16

> predict(modH,newdata=data.frame(BeakH=10))

1

67.40924
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

> modL <- lm(WingL~N.UBkL)

> summary(modL)

Call:

lm(formula = WingL ~ N.UBkL)

Residuals:

Min 1Q Median 3Q Max

-7.1321 -3.3974 0.4737 2.2966 18.2299

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.5371 2.2884 18.15 <2e-16 ***

N.UBkL 2.5460 0.1875 13.58 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.838 on 44 degrees of freedom

Multiple R-squared: 0.8074,Adjusted R-squared: 0.803

F-statistic: 184.4 on 1 and 44 DF, p-value: < 2.2e-16

> predict(modL,newdata=data.frame(N.UBkL=14))

1

77.18117
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

> modHL <- lm(WingL~BeakH+N.UBkL)

> summary(modHL)

Call:

lm(formula = WingL ~ BeakH + N.UBkL)

Residuals:

Min 1Q Median 3Q Max

-7.3185 -2.5022 -0.2752 1.5352 16.5893

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.1740 2.2572 21.343 < 2e-16 ***

BeakH 1.5133 0.2999 5.047 8.69e-06 ***

N.UBkL 0.3984 0.4513 0.883 0.382

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.878 on 43 degrees of freedom

Multiple R-squared: 0.879,Adjusted R-squared: 0.8734

F-statistic: 156.2 on 2 and 43 DF, p-value: < 2.2e-16

> predict(modHL,newdata=data.frame(BeakH=10,N.UBkL=14))

1

68.88373 94 / 123



Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

Which of the three predictions 67.4mm, 77.2mm und 68.9mm for the winglength is most
reliable?

In the model modHL (with beak length and height) the influence of beak length is not
significant.

We can not draw conclusion from non-significance. Beak length could still improve the
prediction.

Is it always good to use as much data as possible?

This could lead to “overfitting”: If too many parameters are available, the model will learn
all the little details of the data including random fluctions. It will learn just memorize the
trainig data. This may corrupt the model’s predictions for new data.
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

We could judge the models by the standard deviation of the εi , which we estimate by the
standard deviation of the residuals ri .

We must account for the different number d of model parameters, because we lose one
degree of freedom for each estimated parameter:

σ̂ε =

√
1

n − d

∑
i

r2
i = σr ·

√
n − 1
n − d

.

These values are reported in R by the command “summary”:
modH:
Residual standard error: 3.868 on 44 degrees of freedom

modL:
Residual standard error: 4.838 on 44 degrees of freedom

modHL:
Residual standard error: 3.878 on 43 degrees of freedom
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

Another possibility to judge the prediction error of a model is cross validation (aka
Jackknife).

The idea is: Remove one of the 46 birds from the dataset and fit the model to the other
45. How well can the model predict the winglength of the omitted bird?

Repeat this for all 46 birds.

We have to decide how we measure the error. How to judge a model with many medium
errors compared to a model with rare large errors? We use (the square root of) the sum
of squared errors.
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

prederrorHL <- numeric()

for (i in 1:46) {

selection <- rep(TRUE,46)

selection[i] <- FALSE

modHL.R <- lm(WingL~N.UBkL+BeakH,data=finchdata,

subset=selection)

prederrorHL[i]=WingL[i]-predict(modHL.R,finchdata[i,])

}
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

Height Length Height and Length
σ(Residuals) 3.83 4.78 3.79

d = (Number Parameters) 2 2 3

σ(Residuals)·
√

n−1
n−d 3.86 4.84 3.87

cross validation. 3.96 4.97 3.977
AIC 259.0 279.5 260.1
BIC 264.4 285.0 267.4

Akaike’s Information Criterion:

AIC = −2 · log L + 2 · (NumberofParameters)

Bayesian Information Criterion:

BIC = −2 · log L + log(n) · (NumberofParameters)

For n ≥ 8 holds log(n) > 2 and BIC penalizes every additional parameter harder than AIC.
(As always, log is the natural logarithm.)
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

Low values of AIC and BIC favor the model.

(At least in R. There may be programs that
show AIC and BIC with inverse sign)

AIC is based on the idea to approximate the prediction error (which is exact under certain
conditions).

BIC approximates (up to a constant) the log of the posterior probability of the model,
where all models are a priori assumed to be equally probable.
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

height length height and length
σ(Residuals) 3.83 4.78 3.79

d = (Number of parameters) 2 2 3

σ(Residuals)·
√

n−1
n−d 3.87 4.84 3.88

cross validation. 26.56 33.34 26.68
AIC 259.0 279.5 260.1
BIC 264.4 285.0 267.4

It seems best to use

only the beak height.
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

Problem with extensive model selection
If you have optimized the model e.g. by AIC and than compute p-values with the same
data, you find too much significance.

We explore this with a little simulation:

A <- as.factor(rep(c("a","b","c"),c(40,40,40)))

B <- as.factor(rep(rep(c("w","x","y","z"),c(10,10,10,10)),3))

C <- as.factor(rep(c("p","q","r"),40))

D <- as.factor(rep(rep(c("m","n"),c(5,5)),12))

X <- rnorm(120,10,2)

library(MASS)

p <- numeric()

q <- numeric()

for(i in 1:1000) {

X <- rnorm(120,10,2)

p[i] <- anova(lm(X~1),lm(X~A*B*C*D))$"Pr(>F)"[[2]]

q[i] <- anova(lm(X~1),stepAIC(lm(X~A*B*C*D)))$"Pr(>F)"[[2]]

}
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

Safe model selection and checking if you have lots of data

1 Divide the data randomly into 3 subsets A, B, C, where A may contain half of the
data, and B and C a quarter each.

2 Fit each candidate model to the data subset A.
3 Assess the accuracy of these fitted models with data subset B. Let M be the best

model in this contest.
4 Assess the accuracy of M again and also its p-values, this time with dataset C.
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Cross validation and AIC Example: Beak sizes and winglengths in Darwin finches

Graphical methods are also very important in model fitting, especially applied to residuals.
Plot resudials against variables. If this uncovers dependencies, they should be added to
the model.
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Cross validation and AIC Example: Overfitting
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Cross validation and AIC Example: Overfitting
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Cross validation and AIC Example: Daphnia

Question: Is there a difference between Daphnia magna and Daphnia galeata in their
reaction on food supply?

Data from Justina Wolinska’s ecology course for Bachelor students.
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Cross validation and AIC Example: Daphnia

> daph <- read.table("daphnia_justina.csv",h=T)

> daph

counts foodlevel species

1 68 high magna

2 54 high magna

3 59 high magna

4 24 high galeata

5 27 high galeata

6 16 high galeata

7 20 low magna

8 18 low magna

9 18 low magna

10 5 low galeata

11 8 low galeata

12 9 low galeata
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Cross validation and AIC Example: Daphnia

> mod1 <- lm(counts~foodlevel+species,data=daph)

> mod2 <- lm(counts~foodlevel*species,data=daph)

> anova(mod1,mod2)

Analysis of Variance Table

Model 1: counts ~ foodlevel + species

Model 2: counts ~ foodlevel * species

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 710.00

2 8 176.67 1 533.33 24.151 0.001172 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Cross validation and AIC Example: Daphnia

> summary(mod2)

[...]

Coefficients:

Estimate Std.Error t.value Pr(>|t|)

(Intercept) 22.33 2.713 8.232 3.55e-05 ***

countslow -15.00 3.837 -3.909 0.00449 **

foodlevelmagna 38.00 3.837 9.904 9.12e-06 ***

countslow:foodlevelmagna -26.67 5.426 -4.914 0.00117 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.699 on 8 degrees of freedom

Multiple R-squared: 0.9643,Adjusted R-squared: 0.9509

F-statistic: 71.95 on 3 and 8 DF, p-value: 3.956e-06
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Cross validation and AIC Example: Daphnia

Result: the more complex model, in which different species react differently to low food
level, fits significantly better.

But does it fit well enough...?

111 / 123



Cross validation and AIC Example: Daphnia

Result: the more complex model, in which different species react differently to low food
level, fits significantly better.

But does it fit well enough...?

111 / 123



Cross validation and AIC Example: Daphnia
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Cross validation and AIC Example: Daphnia

> mod3 <- lm(log(counts)~foodlevel+species,data=daph)

> mod4 <- lm(log(counts)~foodlevel*species,data=daph)

> anova(mod3,mod4)

Analysis of Variance Table

Model 1: log(counts) ~ foodlevel + species

Model 2: log(counts) ~ foodlevel * species

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 0.38041

2 8 0.37856 1 0.0018545 0.0392 0.848
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Cross validation and AIC Example: Daphnia

> summary(mod3)

Call:

lm(formula = log(counts) ~ foodlevel + species, data = daph)

Residuals:

Min 1Q Median 3Q Max

-0.34017 -0.05915 0.02622 0.13153 0.24762

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0946 0.1028 30.104 2.41e-10 ***

foodlevellow -1.1450 0.1187 -9.646 4.83e-06 ***

speciesmagna 0.9883 0.1187 8.326 1.61e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.2056 on 9 degrees of freedom

Multiple R-squared: 0.9475,Adjusted R-squared: 0.9358

F-statistic: 81.19 on 2 and 9 DF, p-value: 1.743e-06
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Cross validation and AIC Example: Daphnia
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Cross validation and AIC Example: Daphnia

The qqplot looks better now but not really good.

The reason is perhaps that the values of the target variable counts were small integers
such that the normal distribution assumption is dubious.

Instead of the normal linear model we can fit a log transformed generalized linear model
of type Poisson. We will see this in a few days.

For now we only compare the models with normality assumptions.
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Cross validation and AIC Example: Daphnia

> AIC(mod1,mod2,mod3,mod4)

df AIC

mod1 4 91.0188246

mod2 5 76.3268216

mod3 4 0.6376449

mod4 5 2.5790019

The log-linear models clearly have better AIC values than the linear models with
untransformed data. But one should not compare AIC values between models with
different (or differently scaled) target variable.

The interaction in model mod4 is not only non-significant, the model mod3 without
interaction also has the better AIC values.

117 / 123



Cross validation and AIC Example: Daphnia

> AIC(mod1,mod2,mod3,mod4)

df AIC

mod1 4 91.0188246

mod2 5 76.3268216

mod3 4 0.6376449

mod4 5 2.5790019

The log-linear models clearly have better AIC values than the linear models with
untransformed data. But one should not compare AIC values between models with
different (or differently scaled) target variable.

The interaction in model mod4 is not only non-significant, the model mod3 without
interaction also has the better AIC values.
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Cross validation and AIC Example: Daphnia

So we favor mod3:

log(counts) = 3.09− 1.14 · Ilow food + 0.99 · Imagna + ε

By applying the e function we obtain:

counts = 21.98 · 0.32Ilow food · 2.69Imagna · eε
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Cross validation and AIC Example: Daphnia
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Cross validation and AIC Example: Daphnia

But is it reasonable at all to assume normal distribution when the data are counts
0,1,2,. . . ?

We will come back to this dataset when we discuss GLMs.

120 / 123



Cross validation and AIC Example: Daphnia

But is it reasonable at all to assume normal distribution when the data are counts
0,1,2,. . . ?

We will come back to this dataset when we discuss GLMs.

120 / 123



Extensions of linear models
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Extensions of linear models

Extensions of linear models

multiple linear model: models as we discussed, with more than one explanatory variable
multivariate linear model: the response variable yi is multi-dimensional. That is, y

consists of two or more columns that my be correlated
General linear model: the errors εi can be correlated. They still have E(εi) = 0 but even

the assumption of normality can be dropped.
Generalized linear model (GLM): The response variable yi are not normally distributed;

possible distributions are Poisson, binomial (e.g. logistic regression) or
gamma. There may be no εi .

Linear mixed models: The coefficients of one or more factor variables (that typically have
many classes) are assumed to be normally distributed.
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Extensions of linear models

Some of the things you should be able to explain

interpretation of interaction terms
how to specify all assumtions of multiple linear models . . .

. . . in precise mathematical terms

. . . in R notation
and how to translate these notations into each other

graphical methods to check model assumptions
meaning of Anova p-values in different kinds of R output
overfitting and how to avoid it
cross validation, AIC, BIC and how to apply them
connection betweed standard deviation of residuals and of εi

Items listed on page 110
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