Wahrscheinlichkeitsrechnung und
 Statistik für Biologen
 Diskriminanzanalyse

Martin Hutzenthaler \& Dirk Metzler
6. Juli 2010

Inhaltsverzeichnis

1 Ruf des Kleinspechts 1
2 Modell 5
2.1 Vorgehen der Diskriminanzanalyse 5
2.2 (Mehrdimensionale) Normalverteilung 6
3 Zurück zu den Rufen 7
3.1 eine Variable 8
3.2 zwei Variable 14
3.3 zehn Dimensionen 22
4 Principal component analysis (PCA) 24

1 Ruf des Kleinspechts

(Bild zeigt einen Kleinspecht (Picoides minor))

Man kann die Geschlechter optisch unterscheiden.
Frage: Geht es auch akustisch?

Ruf des Kleinspechts:

Längen der letzten fünf Pausen und Laute

Kann man aus den Längen der Pausen und der Laute

$$
(p 1, p 2, p 3, p 4, p 5, l 1,12,13, l 4,15)
$$

das Geschlecht bestimmen?
Daten: 62 Rufe von Kleinspechten
18 Rufe von Männchen
44 Rufe von Weibchen
Daten von Dr. Kerstin Höntsch, Frankfurt (siehe http:www.kleinspecht.de) aufbereitet von Dr. Brooks Ferebee, Frankfurt

Die Daten in computergerechter Form:

	G	p 1	p 2	p 3	p 4	p 5	11	12	13	14	15
1	1	0.1719	0.1581	0.1726	0.1785	0.1697	0.0740	0.0703	0.0674	0.0725	0.0660
2	1	0.1052	0.1175	0.0986	0.1008	0.1052	0.0957	0.1023	0.0950	0.0957	0.0943
3	1	0.1473	0.1407	0.1393	0.1407	0.1465	0.0754	0.0776	0.0769	0.0725	0.0653
4	1	0.1378	0.1400	0.1552	0.1828	0.1393	0.0718	0.0667	0.0645	0.0754	0.0747
5	1	0.1473	0.1371	0.1284	0.1509	0.1371	0.0740	0.0696	0.0725	0.0718	0.0718
6	1	0.1175	0.1451	0.1393	0.1407	0.1661	0.0740	0.0711	0.0754	0.0689	0.0565
7	1	0.1385	0.1262	0.1487	0.1407	0.1603	0.0653	0.0696	0.0747	0.0776	0.0725
8	1	0.1197	0.1146	0.1204	0.1182	0.1161	0.0783	0.0805	0.0783	0.0878	0.0696
9	1	0.1393	0.1269	0.1458	0.1429	0.1291	0.0761	0.0761	0.0769	0.0856	0.0725
10	1	0.1197	0.1204	0.1124	0.1146	0.1240	0.0754	0.0769	0.0848	0.0798	0.0645
11	1	0.1625	0.1589	0.1385	0.1502	0.1690	0.0638	0.0689	0.0696	0.0645	0.0529
12	1	0.1298	0.1465	0.1349	0.1400	0.1756	0.0812	0.0747	0.0747	0.0689	0.0602
13	1	0.1204	0.1226	0.1306	0.1465	0.1581	0.0761	0.0754	0.0674	0.0631	0.0689
14	1	0.1110	0.1081	0.1233	0.1248	0.1385	0.0732	0.0747	0.0732	0.0660	0.0587
15	1	0.1139	0.1313	0.1371	0.1589	0.1777	0.0689	0.0674	0.0682	0.0682	0.0711
16	1	0.1335	0.1168	0.1248	0.1313	0.1306	0.0718	0.0703	0.0689	0.0682	0.0667
17	1	0.1407	0.1407	0.1284	0.1400	0.1516	0.0725	0.0696	0.0740	0.0667	0.0696
18	1	0.1204	0.1182	0.1204	0.1269	0.1538	0.0805	0.0718	0.0769	0.0696	0.0645
19	2	0.1044	0.1204	0.1298	0.1393	0.1153	0.1110	0.1211	0.1342	0.0972	0.1037
20	2	0.1436	0.1342	0.1248	0.1581	0.1966	0.1451	0.1400	0.1335	0.1371	0.1240
21	2	0.0907	0.0943	0.0936	0.0936	0.1168	0.0921	0.0812	0.0798	0.0761	0.0674
22	2	0.0921	0.0979	0.1015	0.1015	0.1385	0.0827	0.0827	0.0754	0.0696	0.0653
23	2	0.1052	0.1168	0.1161	0.1306	0.1545	0.0776	0.0732	0.0725	0.0711	0.0609
24	2	0.0928	0.0936	0.0943	0.1066	0.1197	0.0819	0.0863	0.0812	0.0819	0.0805
25	2	0.1516	0.1494	0.1603	0.2140	0.1915	0.1414	0.1429	0.1306	0.1385	0.1044

Gesucht:

eine dem menschlichen Gehirn gerechte Darstellung des Vektors

$$
(p 1, p 2, p 3, p 4, p 5, l 1,12,13, l 4,15)
$$

Alle 62 Rufe: rot=Männchen, schwarz=Weibchen
$\theta \theta \theta \theta \theta \theta \theta \theta$ $\theta \ominus 日 \theta 日 \theta \ominus \ominus 日$ $\theta \ominus 日 \theta 日 曰 日 曰 日$ $\theta 日 \theta 日 \theta 日 曰 日 曰$

$$
\theta \theta \theta \theta \theta 日 \theta 日 \theta
$$

$\theta 日 \theta 日 \theta 日 \theta 日 \theta$

Mit dem Auge kann man Unterschiede erkennen：
Männchen oder Weibchen？
Typisch Männchen

Männchen oder Weibchen？
Typisch Weibchen

Männchen oder Weibchen?
Männchen

Manchmal ist es schwierig:
Männchen oder Weibchen?
Weibchen (untypisch)

Das Auge (das Gehirn) sieht Unterschiede.
Schafft es der Computer (mit Hilfe der Mathematik) auch?

2 Modell

> Die 10 Zahlen
> $(p 1, p 2, p 3, p 4, p 5, l 1, l 2,13, l 4, l 5)$
fassen wir als die Koordinaten eines Punktes im 10-dimensionalen Raum \mathbb{R}^{10} auf.
Jeder Ruf entspricht einem Zufallspunkt im \mathbb{R}^{10} :
Männchenrufe aus einer Population mit Dichte f_{m}
Weibchenrufe aus einer Population mit Dichte f_{w}
Gesucht: Eine Regel, die jeden neuen Punkt
$x=(p 1, p 2, p 3, p 4, p 5, l 1,12,13, l 4,15)$
einer der beiden Populationen zuweist.

2.1 Vorgehen der Diskriminanzanalyse

Verfahren

1. Schätze f_{m} und f_{w}
2. Ordne x der Population mit dem größeren f-Wert $z u$.

Wir benutzen für f_{m} und f_{w} mehrdimensionale Normalverteilungen.
Vorteil: Leicht anzupassen. Wir müssen nur Mittelwert(svektor) und Varianz (mehrdimensional: die Kovarianzmatrix) schätzen.

2.2 (Mehrdimensionale) Normalverteilung

Erinnerung: Eindimensionale Normalverteilung

Zur Beschreibung einer mehrdimensionalen Normalverteilung benötigt man

- Einen Mittelwertvektor μ
- Ein Achsenkreuz (die „Hauptachsen")
- Standardabweichungen in den Achsenrichtungen

3 Zurück zu den Rufen

In unserem Problem gibt es 10 Dimensionen.
Wir beginnen eindimensional.
Frage: Welche eine der 10 Variablen sollen wir wählen?
Länge der Laute bei Männchen (rot) und Weibchen (schwarz)

Keine gute Trennung der Geschlechter

Bei den Männchen sind die Pausen typischerweise länger

3.1 eine Variable

Wie gut läßt sich das Geschlecht anhand von $p 2$, der Länge der zweiten Pause, bestimmen?

Mittelwert $\mu_{m}=0,1316, \quad$ Standardabweichung $\sigma_{m}=0,0150$

Wir approximieren f_{m} durch die Normalverteilung mit Mittelwert μ_{m} und Standardabweichung σ_{m}

p2-Werte (nur Weibchen)

Mittelwert $\mu_{w}=0,0938, \quad$ Standardabweichung $\sigma_{m}=0,0201$
Wir approximieren f_{w} durch die Normalverteilung mit Mittelwert μ_{w} und Standardabweichung σ_{w}
p2-Werte (Weibchen) und (geschätztes) f_{w}

Klassifikationsregel:
f_{m} größer \longrightarrow "Männchen"
f_{w} größer \longrightarrow "Weibchen"

Falsch klassifiziert:
1 Männchen 6 Weibchen

3.2 zwei Variable

Zur Verbesserung der Klassifikation nehmen wir mehr Information hinzu, z.B. eine weitere Variable.

Wir betrachten:
Erste Variable $=$ p2 Zweite Variable $=12$

Beobachtung: 12 allein trennt die Geschlechter sehr schlecht.
Aber: 12 zusammen mit p2 gibt zusätzliche Information:

Beispielsweise zeigt die Hinzunahme von 12, dass die 5 Punkte oben rechts besser zu den Weibchen passen.
Wir approximieren die Verteilungen von (p2, 12) bei Männchen und bei Weibchen durch zweidimensionale Normalverteilungen.
($\mathrm{p} 2,12$), Männchen

Wie im eindimensionalen Fall schätzen wir den (zweidimensionalen) Mittelwert und die (zweidimensionale) Varianz (d.h. die sog. Kovarianzmatrix)
und approximieren f_{m} durch eine zweidimensionale Normalverteilung mit dem geschätzten Mittelwert und der geschätzten Varianz.

Viele der Weibchen passen schlecht zu f_{m} :

Klassifikation:
Für jeden Punkt berechnen wir $f_{m}(x)$ und $f_{w}(x)$.
$f_{m}(x)$ größer \longrightarrow "Männchen"
$f_{w}(x)$ größer \longrightarrow "Weibchen"
$\log \left(f_{w}\right)$ gegen $\log \left(f_{m}\right)$ und Diagonale:

$\log \left(f_{w}\right)$ gegen $\log \left(f_{m}\right)$ und Diagonale, Ausschnittvergrößerung:

Falsch klassifiziert: 1 Männchen, 1 Weibchen (und eigentlich 2 „, unentschieden")

Wenn man nur p2 und 12 kennt, ist es sehr verständlich, dass diese Fälle falsch klassifiziert werden.

3.3 zehn Dimensionen

Wir verfahren genause mit allen Variablen (p1, p2, p3, p4, p5, 11, 12, 13, 14, 15) gemeinsam - mathematisch analog, allerdings geometrisch sehr schwierig darzustellen.

Ergebnis:
$\log \left(f_{w}\right)$ gegen $\log \left(f_{m}\right)$ und Diagonale (basierend auf allen 10 Variablen):

$\log \left(f_{w}\right)$ gegen $\log \left(f_{m}\right)$ und Diagonale (basierend auf allen 10 Variablen, Ausschnittvergrößerung):

Die zwei mit (p2,l2) falsch klassifizierten Fälle wurden nun richtig klassifiziert. Allerdings wurden zwei Weibchen (knapp) falsch klassifiziert.

Falsch klassifiziert

Die beiden falsch klassifierten Rufe: sie sehen ziemlich „männlich" aus.

4 Principal component analysis (PCA)

> Wir wollen multi-dimensionale Daten visualisieren, um gewisse Muster zu finden.
> Wie visualisieren wir multi-dimensionale Daten???

Beispiel: 2-dimensionale Daten in 3 Dimensionen (Vorstellung: Wolke rotiert in 3 Dimensionen)
$\underset{\infty}{\circ}$

Um einen guten Blick auf die Daten zu haben wollen wir die Komponenten darstellen, die die meiste Variation beitragen.

Die Achse mit der größten Variation wird in die x-Achse rotiert, die Achse mit der zweit größten Variation wird in die y-Achse rotiert.

Beispiel: 2-dimensionale Daten

Die Hauptkomponentenanalyse (engl. principal component analysis) findet die Achse mit dem größten Beitrag zur gesamten Variation.

Alles weitere hierzu in der Vorlesung „Multivariate Statistics in Ecology and Quantitative Genetics" (Master Studium)

