Rcourse:
Programming in R

Sonja Grath, Noémie Becker & Dirk Metzler

Winter semester 2014-15

@ Back to input files
@ Review on data frame
@ Factors

e Programming
Conditional execution

°
@ Loops

@ Executing a command from a script
@ Writing your own functions
°
°

lapply() and tapply()
How to avoid slow R code

Back to input files Review on data frame

Contents

Q Back to input files
@ Review on data frame

Back to input files Review on data frame

Review on data frame

Generic functions:

> read.table()
> write.table()

Back to input files Review on data frame

Review on data frame

Generic functions:

> read.table()
> write.table()

Example 1: wghtcls "smoker” lifespan
”"3” 0 50.3
3052.8

Back to input files Review on data frame

Review on data frame

Generic functions:

> read.table()
> write.table()

Example 1: wghtcls "smoker” lifespan

”3”050.3

3052.8

> riscfactor <-
read.table("lifespandata2.txt" ,header=TRUE)

Back to input files Review on data frame

Review on data frame

Example 2: wghtcls,smoker,lifespan
3,0,50.3
3,0,52.8

Back to input files Review on data frame

Review on data frame

Example 2: wghtcls,smoker,lifespan

3,0,50.3

3,0,52.8

> riscfactor <- read.csv("lifespandata.csv")

> riscfactor <-

read.table("lifespandata.csv" ,header=TRUE, sep=",",
fi11=TRUE)

Back to input files Review on data frame

Review on data frame

Example 2: wghtcls,smoker,lifespan

3,0,50.3

3,0,52.8

> riscfactor <- read.csv("lifespandata.csv")

> riscfactor <-

read.table("lifespandata.csv" ,header=TRUE, sep=",",
fi11=TRUE)

Example 3: weight class smoker lifespan

3050.3

30528

> riscfactor <-
read.table("lifespandata2.txt",header=TRUE)

Back to input files Review on data frame

Review on data frame

Example 2: wghtcls,smoker,lifespan

3,0,50.3

3,0,52.8

> riscfactor <- read.csv("lifespandata.csv")

> riscfactor <-

read.table("lifespandata.csv" ,header=TRUE, sep=",",
fi11=TRUE)

Example 3: weight class smoker lifespan

3050.3

3052.8

> riscfactor <-
read.table("lifespandata2.txt",header=TRUE)

You have to change the first line of the file because of the space
between weight and class.

Back to input files Factors

Contents

Q Back to input files

@ Factors

Back to input files Factors

Factors

A variable (numeric or text) can be intended as a factor.

Back to input files Factors

Factors

A variable (numeric or text) can be intended as a factor.

Example with text:

> x <- c("female","male","male","female","female")

Back to input files Factors

Factors

A variable (numeric or text) can be intended as a factor.

Example with text:

> x <- c("female","male","male","female","female")
> levels(x)

Back to input files Factors

Factors

A variable (numeric or text) can be intended as a factor.

Example with text:

> x <- c("female","male","male","female","female")
> levels(x)

NULL

Back to input files Factors

Factors

A variable (numeric or text) can be intended as a factor.

Example with text:

> x <- c("female","male","male","female","female")
> levels(x)

NULL

> str(x)

Back to input files Factors

Factors

A variable (numeric or text) can be intended as a factor.

Example with text:

> x <- c("female","male","male","female","female")
> levels(x)

NULL

> str(x)

chr [1:5] "female" "male" "male" "female" "female"

Back to input files Factors

Factors

A variable (numeric or text) can be intended as a factor.

Example with text:

> x <- c("female","male","male","female","female")
> levels(x)

NULL

> str(x)

chr [1:5] "female" "male" "male" "female" "female"
> x <-factor(x)

Back to input files Factors

Factors

A variable (numeric or text) can be intended as a factor.

Example with text:

> x <- c("female","male","male","female","female")
> levels(x)

NULL

> str(x)

chr [1:5] "female" "male" "male" "female" "female"
> x <-factor(x)

> levels(x)

[1] "female" "male"

> str(x)

Factor w/ 2 levels "female","male": 12 2 11

Back to input files Factors

Factors

Example with numbers:
>y <= rep(c(17,17,18),4); str(y)
num [1:12] 17 17 18 17 17 18 17 17 18 17 ...

Back to input files Factors

Factors

Example with numbers:

>y <= rep(c(17,17,18),4); str(y)

num [1:12] 17 17 18 17 17 18 17 17 18 17 ...
> summary (y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
17.00 17.00 17.00 17.33 18.00 18.00

Back to input files Factors

Factors

Example with numbers:

>y <= rep(c(17,17,18),4); str(y)

num [1:12] 17 17 18 17 17 18 17 17 18 17 ...
> summary (y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
17.00 17.00 17.00 17.33 18.00 18.00

> y <= factor(y); str(y)

Factor w/ 2 levels "17","18": 1121121121 ...
> summary (y)

17 18

8 4

Back to input files Factors

Back to input files

By default read.table() sets text variables as factors and not
numerical variables.

Back to input files Factors

Back to input files

By default read.table() sets text variables as factors and not
numerical variables.
This can be changed by specifying the class of the columns.

riscfactor <-
read.table("lifespandata.txt",header=TRUE,
colClasses=c("factor", "numeric", "numeric"))

Back to input files Factors

Back to input files

By default read.table() sets text variables as factors and not
numerical variables.

This can be changed by specifying the class of the columns.
riscfactor <-
read.table("lifespandata.txt",header=TRUE,
colClasses=c("factor", "numeric", "numeric"))

Or by changing the variables afterwards.
riscfactor$wghtcls <- factor(riscfactor$wghtcls)

Programming Conditional execution

Contents

e Programming
@ Conditional execution

Programming Conditional execution

Conditional execution

If(), else() and ifelse()

Programming Conditional execution

Conditional execution

If(), else() and ifelse()

Syntax:

if (condition) { commandsi }

if (condition) { commandsl } else { commands2 }
ifelse (conditions vector, yes vector, no vector)

Programming Conditional execution

Conditional execution

If(), else() and ifelse()

Syntax:

if (condition) { commandsi }

if (condition) { commandsl } else { commands2 }
ifelse (conditions vector, yes vector, no vector)

Example:
> x <-4
> if (x==b) {x <- x+1} else {x <- xx2}

Programming Conditional execution

Conditional execution

If(), else() and ifelse()

Syntax:

if (condition) { commandsi }

if (condition) { commandsl } else { commands2 }
ifelse (conditions vector, yes vector, no vector)

Example:

> x <-4

> if (x==b) {x <- x+1} else {x <- xx2}
> X

[1] 8

Programming Conditional execution

Conditional execution

Other examples:
x <- 8

if (x !'=5 & x>3) { x <= x+1 ; 17+2 } else { x <- x*2
; 2145 }

Programming Conditional execution

Conditional execution

Other examples:

x <- 8

if (x !'=5 & x>3) { x <= x+1 ; 17+2 } else { x <- x*2
; 2145 }

[1] 19

> x

(1] 9

Programming Conditional execution

Conditional execution

Other examples:

x <- 8

if (x !'=5 & x>3) { x <= x+1 ; 17+2 } else { x <- x*2
; 2145 }

[1] 19

> x

(1] 9

>y <= 1:10
> ifelse(y<6, y~°2, y-1)

Programming Conditional execution

Conditional execution

Other examples:

x <- 8

if (x !'=5 & x>3) { x <= x+1 ; 17+2 } else { x <- x*2
; 2145 }

[1] 19

> x

(1] 9

>y <= 1:10
> ifelse(y<6, y~°2, y-1)
[1] 149162556789

Programming Loops

Contents

e Programming

@ Loops

Programming Loops

Loops

For(), while() and repeat()

Programming Loops

Loops

For(), while() and repeat()

Syntax:

for (var in set) { commands }
while (condition) { commands }
repeat { commands }

Programming Loops

Loops

For(), while() and repeat()

Syntax:

for (var in set) { commands }
while (condition) { commands }
repeat { commands }

break stops all loops
next goes directly to the next iteration of the loop

Programming Loops

Examples

>x <=0
> for (i in 1:5) { if (i==3) { next } ; x <- x + i }

Programming Loops

Examples

>x <=0

> for (i in 1:5) { if (i==3) { next } ; x <- x + i }

1=3 is skipped, so x <- 1+2+4+45
> X

[1] 12

Programming Loops

Examples

>x <=0

> for (i in 1:5) { if (i==3) { next } ; x <- x + i }
1=3 is skipped, so x <- 1+2+4+45
> X

[1] 12

>y <-1; j<-1
>while (y <12 & j <8) {y<-y*2; j<-j+ 1}

Programming Loops

Examples

>x <=0

> for (i in 1:5) { if (i==3) { next } ; x <- x + i }
1=3 is skipped, so x <- 1+2+4+45

> X

[1] 12

>y <-1; j<-1
>while (y <12 & j <8) {y<-y*2; j<-j+ 1}
yis16andjis 5

Programming Loops

Examples

>x <=0

> for (i in 1:5) { if (i==3) { next } ; x <- x + i }
1=3 is skipped, so x <- 1+2+4+45

> X

[1] 12

>y <-1; j<-1
>while (y <12 & j <8) {y<-y*2; j<-j+ 1}
yis16andjis 5

>z <=3
> repeat { z<- z"2; if (z>100) { break }; print(z)}

Programming Loops

Examples

>x <=0

> for (i in 1:5) { if (i==3) { next } ; x <- x + i }
1=3 is skipped, so x <- 1+2+4+45

> X

[1] 12

>y <-1; j<-1
>while (y <12 & j <8) {y<-y*2; j<-j+ 1}
yis16andjis 5

>z <=3

> repeat { z<- z"2; if (z>100) { break }; print(z)}
(1] 9

[1] 81

The loop stopped after 81°2 so z is 6561.

Programming Executing a command from a script

Contents

e Programming

@ Executing a command from a script

Programming Executing a command from a script

Executing a command from a script

R scripts and stored in .R or .r files and are executed with the
command source ()

Programming Executing a command from a script

Executing a command from a script

R scripts and stored in .R or .r files and are executed with the
command source ()
source(C:/Documents/R/myscript.R)

Programming Executing a command from a script

Executing a command from a script

R scripts and stored in .R or .r files and are executed with the

command source ()
source(C:/Documents/R/myscript.R)

You can specify the current working directory using the
command setwd ()

Programming Executing a command from a script

Executing a command from a script

R scripts and stored in .R or .r files and are executed with the
command source ()
source(C:/Documents/R/myscript.R)

You can specify the current working directory using the
command setwd ()

setwd(C:/Documents/R)

getwd ()

Programming Writing your own functions

Contents

e Programming

@ Writing your own functions

Programming Writing your own functions

Basics

Syntax:
myfun <- function (argl, arg2, . . .) { commands }

Programming Writing your own functions

Basics

Syntax:
myfun <- function (argl, arg2, . . .) { commands }

Examples:
se <- function(x)

{
y<-sqrt(var(x)/length(x))
return(y)

}

Programming Writing your own functions

Basics

Syntax:
myfun <- function (argl, arg2, . . .) { commands }

Examples:

se <- function(x)

{
y<-sqrt(var(x)/length(x))
return(y)

}

se(1:4)
[1] 0.6454972

Programming Writing your own functions

Basics

Syntax:
myfun <- function (argl, arg2, . . .) { commands }

Examples:
se <- function(x)
{
y<-sqrt(var(x)/length(x))
return(y)
}
se(1:4)
[1] 0.6454972
se("wrong type of argument")
[1] NA
Warning message:
In var(x) : NAs introduced by coercion

Programming Writing your own functions

Deal with non correct arguments

Add to the previous function (before the formula for y):
if (is.numeric(x)!=TRUE)

{

stop("need numeric data")

}

Programming Writing your own functions

Deal with non correct arguments

Add to the previous function (before the formula for y):
if (is.numeric(x)!=TRUE)

{
stop("need numeric data")
}
se("wrong type of argument")
Error in se("wrong type of argument") : need numeric

data

Programming Writing your own functions

Deal with the missing data

By default, many R fucntions erase missing data automatically.
You can do the same by adding to your function:
x<-x[is.na(x)==FALSE]

Programming Writing your own functions

Deal with the missing data

By default, many R fucntions erase missing data automatically.
You can do the same by adding to your function:
x<-x[is.na(x)==FALSE]

se(c(1:4,NA))
[1] 0.6454972

Programming Writing your own functions

Add other arguments

R functions can have several arguments. Here for example you
could define an argument to control whether R should remove
the NA values or not (this is what is implemented in many R
fucntions):

se <- function(x,na.rm=FALSE)

False is the default value of the argument na.rm (more
about this next slide). { if (is.numeric(x)!=TRUE)
{stop("need numeric data")}

if (na.rm==TRUE){x<-x[is.na(x)==FALSE]}
y<-sqrt(var(x)/length(x))}

Programming Writing your own functions

Add other arguments

R functions can have several arguments. Here for example you
could define an argument to control whether R should remove
the NA values or not (this is what is implemented in many R
fucntions):

se <- function(x,na.rm=FALSE)

False is the default value of the argument na.rm (more
about this next slide). { if (is.numeric(x)!=TRUE)
{stop("need numeric data")}

if (na.rm==TRUE){x<-x[is.na(x)==FALSE]}
y<-sqrt(var(x)/length(x))}

You can omit to write the name of the argument:
se(c(NA,1:4), TRUE))
[1] 0.6454972

Programming Writing your own functions

Add other arguments

R functions can have several arguments. Here for example you
could define an argument to control whether R should remove
the NA values or not (this is what is implemented in many R
fucntions):

se <- function(x,na.rm=FALSE)

False is the default value of the argument na.rm (more
about this next slide). { if (is.numeric(x)!=TRUE)
{stop("need numeric data")}

if (na.rm==TRUE){x<-x[is.na(x)==FALSE]}
y<-sqrt(var(x)/length(x))}

You can omit to write the name of the argument:
se(c(NA,1:4), TRUE))

[1] 0.6454972

Or give na.rm before the vector.

But not both (omit name and change order of arguments).

Programming Writing your own functions

Giving default values to the arguments

Imagine a function multiplies a number by a predefined other

number.
mymul <- function(x, n){
return(x*n) }

Programming Writing your own functions

Giving default values to the arguments

Imagine a function multiplies a number by a predefined other
number.

mymul <- function(x, n){

return(x*n) }

You can set by default the value of n to 2:
mymul <- function(x, n=2){
return(x*n) }

Programming Writing your own functions

Giving default values to the arguments

Imagine a function multiplies a number by a predefined other
number.

mymul <- function(x, n){

return(x*n) }

You can set by default the value of n to 2:
mymul <- function(x, n=2){
return(x*n) }

mymul (2) gives as answer 4

mymul (2,3) becomes 6

Programming Writing your own functions

Returning several values

To do so use a vector or a list.

Programming Writing your own functions

Returning several values

To do so use a vector or a list.

ci.norm <- function(x,conf=0.95)

{
q <- gnorm(1-(1-conf)/2)
return(

list (lower=mean(x)-g*se(x) ,upper=mean(x)+qg*se(x)))

}

Programming Writing your own functions

Returning several values

To do so use a vector or a list.

ci.norm <- function(x,conf=0.95)

{

q <- gnorm(1-(1-conf)/2)

return(

list (lower=mean(x)-g*se(x) ,upper=mean(x)+qg*se(x)))

}

ci.norm(rnorm(100))
$lower [1] -0.1499551
$upper [1] 0.2754680

ci.norm(rnorm(100, conf=0.99))
$lower [1] -0.1673693
$upper [1] 0.2443276

Programming lapply() and tapply()

Contents

e Programming

@ lapply() and tapply()

Programming lapply() and tapply()

lapply() and tapply()

You use apply() and its derivatives to apply the same function to
each element of an object.

v <- 1:4

sapply(v,factorial)

returns a vector, lapply() would return a list

[1] 1 26 24

Programming lapply() and tapply()

lapply() and tapply()

You use apply() and its derivatives to apply the same function to
each element of an object.

v <- 1:4

sapply(v,factorial)

returns a vector, lapply() would return a list

[1] 1 26 24

tapply() is used for data frames.

Programming lapply() and tapply()

lapply() and tapply()

You use apply() and its derivatives to apply the same function to
each element of an object.

v <- 1:4

sapply(v,factorial)

returns a vector, lapply() would return a list

[1] 1 26 24

tapply() is used for data frames.

Example: data frame containing lifespan for people from 3
classes of weight. You want the mean lifespan for each class.
tapply(lifespan,weightcls,mean)

123

69 61 53

Programming How to avoid slow R code

Contents

e Programming

@ How to avoid slow R code

Programming How to avoid slow R code

How to avoid slow R code

@ R has to interpret your commands each time you run a
script and it takes time to determine the type of your
variables.

@ So avoid using loops and calling functions again and again
if possible

@ When you use loops, avoid increasing the size of an object
(vector ..:) at each iteration but rather define it with full size
before.

@ Think in whole objects such as vectors or lists and apply
operations to the whole object instead of looping through all
elements.

	Back to input files
	Review on data frame
	Factors

	Programming
	Conditional execution
	Loops
	Executing a command from a script
	Writing your own functions
	lapply() and tapply()
	How to avoid slow R code

