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Review on data frame

Generic functions:

> read.table()
> write.table()

Example 1: wghtcls "smoker” lifespan

”3”050.3

3052.8

> riscfactor <-
read.table("lifespandata2.txt" ,header=TRUE)
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Review on data frame

Example 2: wghtcls,smoker,lifespan

3,0,50.3

3,0,52.8

> riscfactor <- read.csv("lifespandata.csv")

> riscfactor <-

read.table("lifespandata.csv" ,header=TRUE, sep=",",
fi11=TRUE)
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Review on data frame

Example 2: wghtcls,smoker,lifespan

3,0,50.3

3,0,52.8

> riscfactor <- read.csv("lifespandata.csv")

> riscfactor <-

read.table("lifespandata.csv" ,header=TRUE, sep=",",
fi11=TRUE)

Example 3: weight class smoker lifespan

3050.3

30528

> riscfactor <-
read.table("lifespandata2.txt",header=TRUE)
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Review on data frame

Example 2: wghtcls,smoker,lifespan

3,0,50.3

3,0,52.8

> riscfactor <- read.csv("lifespandata.csv")

> riscfactor <-

read.table("lifespandata.csv" ,header=TRUE, sep=",",
fi11=TRUE)

Example 3: weight class smoker lifespan

3050.3

3052.8

> riscfactor <-
read.table("lifespandata2.txt",header=TRUE)

You have to change the first line of the file because of the space
between weight and class.
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Factors

A variable (numeric or text) can be intended as a factor.

Example with text:

> x <- c("female","male","male","female","female")
> levels(x)

NULL

> str(x)

chr [1:5] "female" "male" "male" "female" "female"
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Factors

A variable (numeric or text) can be intended as a factor.

Example with text:

> x <- c("female","male","male","female","female")
> levels(x)

NULL

> str(x)

chr [1:5] "female" "male" "male" "female" "female"
> x <-factor(x)
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Factors

A variable (numeric or text) can be intended as a factor.

Example with text:

> x <- c("female","male","male","female","female")
> levels(x)

NULL

> str(x)

chr [1:5] "female" "male" "male" "female" "female"
> x <-factor(x)

> levels(x)

[1] "female" "male"

> str(x)

Factor w/ 2 levels "female","male": 12 2 11



Back to input files Factors

Factors

Example with numbers:
>y <= rep(c(17,17,18),4); str(y)
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Factors

Example with numbers:

>y <= rep(c(17,17,18),4); str(y)

num [1:12] 17 17 18 17 17 18 17 17 18 17 ...
> summary (y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
17.00 17.00 17.00 17.33 18.00 18.00



Back to input files Factors

Factors

Example with numbers:

>y <= rep(c(17,17,18),4); str(y)

num [1:12] 17 17 18 17 17 18 17 17 18 17 ...
> summary (y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
17.00 17.00 17.00 17.33 18.00 18.00

> y <= factor(y); str(y)

Factor w/ 2 levels "17","18": 1121121121 ...
> summary (y)

17 18

8 4
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Back to input files

By default read.table() sets text variables as factors and not
numerical variables.
This can be changed by specifying the class of the columns.

riscfactor <-
read.table("lifespandata.txt",header=TRUE,
colClasses=c("factor", "numeric", "numeric"))
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Back to input files

By default read.table() sets text variables as factors and not
numerical variables.

This can be changed by specifying the class of the columns.
riscfactor <-
read.table("lifespandata.txt",header=TRUE,
colClasses=c("factor", "numeric", "numeric"))

Or by changing the variables afterwards.
riscfactor$wghtcls <- factor(riscfactor$wghtcls)
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Conditional execution

If(), else() and ifelse()

Syntax:

if ( condition ) { commandsi }

if ( condition ) { commandsl } else { commands2 }
ifelse ( conditions vector, yes vector, no vector )

Example:

> x <-4

> if (x==b) {x <- x+1} else {x <- xx2}
> X

[1] 8
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; 2145 }
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Other examples:

x <- 8

if (x !'=5 & x>3 ) { x <= x+1 ; 17+2 } else { x <- x*2
; 2145 }

[1] 19

> x

(1] 9

>y <= 1:10
> ifelse( y<6, y~°2, y-1)



Programming Conditional execution

Conditional execution

Other examples:

x <- 8

if (x !'=5 & x>3 ) { x <= x+1 ; 17+2 } else { x <- x*2
; 2145 }

[1] 19

> x

(1] 9

>y <= 1:10
> ifelse( y<6, y~°2, y-1)
[1] 149162556789
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for ( var in set ) { commands }
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Programming Loops

Loops

For(), while() and repeat()

Syntax:

for ( var in set ) { commands }
while ( condition ) { commands }
repeat { commands }

break stops all loops
next goes directly to the next iteration of the loop
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>x <=0
> for (i in 1:5 ) { if (i==3) { next } ; x <- x + i }
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Examples

>x <=0

> for (i in 1:5 ) { if (i==3) { next } ; x <- x + i }
# 1=3 is skipped, so x <- 1+2+4+45
> X

[1] 12

>y <-1; j<-1
>while (y <12 & j <8) {y<-y*2; j<-j+ 1}
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Examples

>x <=0

> for (i in 1:5 ) { if (i==3) { next } ; x <- x + i }
# 1=3 is skipped, so x <- 1+2+4+45

> X

[1] 12

>y <-1; j<-1
>while (y <12 & j <8) {y<-y*2; j<-j+ 1}
yis16andjis 5



Programming Loops

Examples

>x <=0

> for (i in 1:5 ) { if (i==3) { next } ; x <- x + i }
# 1=3 is skipped, so x <- 1+2+4+45

> X

[1] 12

>y <-1; j<-1
>while (y <12 & j <8) {y<-y*2; j<-j+ 1}
yis16andjis 5

>z <=3
> repeat { z<- z"2; if ( z>100 ) { break }; print(z)}



Programming Loops

Examples

>x <=0

> for (i in 1:5 ) { if (i==3) { next } ; x <- x + i }
# 1=3 is skipped, so x <- 1+2+4+45

> X

[1] 12

>y <-1; j<-1
>while (y <12 & j <8) {y<-y*2; j<-j+ 1}
yis16andjis 5

>z <=3

> repeat { z<- z"2; if ( z>100 ) { break }; print(z)}
(1] 9

[1] 81

The loop stopped after 81°2 so z is 6561.
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You can specify the current working directory using the
command setwd ()



Programming Executing a command from a script

Executing a command from a script

R scripts and stored in .R or .r files and are executed with the
command source ()
source(C:/Documents/R/myscript.R)

You can specify the current working directory using the
command setwd ()

setwd(C:/Documents/R)

getwd ()
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Syntax:
myfun <- function (argl, arg2, . . .) { commands }

Examples:

se <- function(x)

{
y<-sqrt(var(x)/length(x))
return(y)

}

se(1:4)
[1] 0.6454972



Programming Writing your own functions

Basics

Syntax:
myfun <- function (argl, arg2, . . .) { commands }

Examples:
se <- function(x)
{
y<-sqrt(var(x)/length(x))
return(y)
}
se(1:4)
[1] 0.6454972
se("wrong type of argument")
[1] NA
Warning message:
In var(x) : NAs introduced by coercion



Programming Writing your own functions

Deal with non correct arguments

Add to the previous function (before the formula for y):
if (is.numeric(x)!=TRUE)

{

stop("need numeric data")

}



Programming Writing your own functions

Deal with non correct arguments

Add to the previous function (before the formula for y):
if (is.numeric(x)!=TRUE)

{
stop("need numeric data")
}
se("wrong type of argument")
Error in se("wrong type of argument") : need numeric

data
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Deal with the missing data

By default, many R fucntions erase missing data automatically.
You can do the same by adding to your function:
x<-x[is.na(x)==FALSE]



Programming Writing your own functions

Deal with the missing data

By default, many R fucntions erase missing data automatically.
You can do the same by adding to your function:
x<-x[is.na(x)==FALSE]

se(c(1:4,NA))
[1] 0.6454972



Programming Writing your own functions

Add other arguments

R functions can have several arguments. Here for example you
could define an argument to control whether R should remove
the NA values or not (this is what is implemented in many R
fucntions):

se <- function(x,na.rm=FALSE)

False is the default value of the argument na.rm (more
about this next slide). { if (is.numeric(x)!=TRUE)
{stop("need numeric data")}

if (na.rm==TRUE){x<-x[is.na(x)==FALSE]}
y<-sqrt(var(x)/length(x))}
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could define an argument to control whether R should remove
the NA values or not (this is what is implemented in many R
fucntions):

se <- function(x,na.rm=FALSE)

False is the default value of the argument na.rm (more
about this next slide). { if (is.numeric(x)!=TRUE)
{stop("need numeric data")}

if (na.rm==TRUE){x<-x[is.na(x)==FALSE]}
y<-sqrt(var(x)/length(x))}

You can omit to write the name of the argument:
se(c(NA,1:4), TRUE))
[1] 0.6454972



Programming Writing your own functions

Add other arguments

R functions can have several arguments. Here for example you
could define an argument to control whether R should remove
the NA values or not (this is what is implemented in many R
fucntions):

se <- function(x,na.rm=FALSE)

False is the default value of the argument na.rm (more
about this next slide). { if (is.numeric(x)!=TRUE)
{stop("need numeric data")}

if (na.rm==TRUE){x<-x[is.na(x)==FALSE]}
y<-sqrt(var(x)/length(x))}

You can omit to write the name of the argument:
se(c(NA,1:4), TRUE))

[1] 0.6454972

Or give na.rm before the vector.

But not both (omit name and change order of arguments).



Programming Writing your own functions

Giving default values to the arguments

Imagine a function multiplies a number by a predefined other
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mymul <- function(x, n){
return(x*n) }
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mymul <- function(x, n){
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You can set by default the value of n to 2:
mymul <- function(x, n=2){
return(x*n) }



Programming Writing your own functions

Giving default values to the arguments

Imagine a function multiplies a number by a predefined other
number.

mymul <- function(x, n){

return(x*n) }

You can set by default the value of n to 2:
mymul <- function(x, n=2){
return(x*n) }

mymul (2) gives as answer 4

mymul (2,3) becomes 6
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Returning several values

To do so use a vector or a list.

ci.norm <- function(x,conf=0.95)

{
q <- gnorm(1-(1-conf)/2)
return(

list (lower=mean(x)-g*se(x) ,upper=mean(x)+qg*se(x)))

}



Programming Writing your own functions

Returning several values

To do so use a vector or a list.

ci.norm <- function(x,conf=0.95)

{

q <- gnorm(1-(1-conf)/2)

return(

list (lower=mean(x)-g*se(x) ,upper=mean(x)+qg*se(x)))

}

ci.norm(rnorm(100))
$lower [1] -0.1499551
$upper [1] 0.2754680

ci.norm(rnorm(100, conf=0.99))
$lower [1] -0.1673693
$upper [1] 0.2443276



Programming lapply() and tapply()

Contents

e Programming

@ lapply() and tapply()



Programming lapply() and tapply()

lapply() and tapply()

You use apply() and its derivatives to apply the same function to
each element of an object.

v <- 1:4

sapply(v,factorial)

# returns a vector, lapply() would return a list

[1] 1 26 24
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lapply() and tapply()

You use apply() and its derivatives to apply the same function to
each element of an object.

v <- 1:4

sapply(v,factorial)

# returns a vector, lapply() would return a list

[1] 1 26 24

tapply() is used for data frames.

Example: data frame containing lifespan for people from 3
classes of weight. You want the mean lifespan for each class.
tapply(lifespan,weightcls,mean)

123

69 61 53
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How to avoid slow R code

@ R has to interpret your commands each time you run a
script and it takes time to determine the type of your
variables.

@ So avoid using loops and calling functions again and again
if possible

@ When you use loops, avoid increasing the size of an object
(vector ..:) at each iteration but rather define it with full size
before.

@ Think in whole objects such as vectors or lists and apply
operations to the whole object instead of looping through all
elements.
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