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Background and basics

Intruitive linear regression

What is linear regression?

It is the straight line that best approximates a set of points:
y=a+b*x
a is called the intercept and b the slope.



Background and basics

Intruitive linear regression

What is linear regression?
It is the straight line that best approximates a set of points:
y=a+b*x
a is called the intercept and b the slope.



Background and basics

Linear regression by eye

I give you the following points:
x <- 0:8 ; y <- c(12,10,8,11,6,7,2,3,3) ; plot(x,y)
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By eye we would say a=12 and b=(12-2)/8=1.25
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Background and basics

Best fit in R

y is modelled as a function of x. In R this job is done by the
function lm(). Lets try on the R console.
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The linear model does not explain all of the variation. The error
is called ”residual”.
The purpose of linear regression is to minimize this error. But do
you remember how we do this?
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Statistics

We define the linear regression

y = â + b̂ · x

by minimizing the sum of the square of the residuals:

(â, b̂) = arg min
(a,b)

∑
i

(yi − (a + b · xi))2

This assumes that a,b exist, so that for all (xi , yi)

yi = a + b · xi + εi ,

where all εi are independant and follow the normal distribution
with varaince σ2.
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Statistics

We estimate a and b, by calculating

(â, b̂) := arg min
(a,b)

∑
i

(yi − (a + b · xi))2

We can calculate â und b̂ by

b̂ =

∑
i(yi − ȳ) · (xi − x̄)∑

i(xi − x̄)2 =

∑
i yi · (xi − x̄)∑

i(xi − x̄)2

and
â = ȳ − b̂ · x̄ .
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(â, b̂) := arg min
(a,b)

∑
i

(yi − (a + b · xi))2

We can calculate â und b̂ by
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Back to our example

The commands used to produce this graph are the following:
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regr.obj <- lm(y x)

fitted <- predict(regr.obj)

plot(x,y); abline(regr.obj)

for(i in 1:9)

{
lines(c(x[i],x[i]),c(y[i],fitted[i]))

}
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Analysis of variance

Reminder: ANOVA

I am sure you all remember from statistic courses:
We observe different mean values for different groups.
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Could it be just by chance?

It depends from the variability of the group means and of the
values within groups.
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Analysis of variance

Reminder: ANOVA

ANOVA-Table (”ANalysis Of VAriance“)
Degrees
of free-
dom
(DF)

Sum of
squares
(SS)

Mean sum of
squares (SS/DF) F -Value

Groups 1 88.82 88.82 30.97

Residuals 7 20.07 2.87

Under the hypothesis H0 ”the group mean values are equal“ (and
the values are normally distributed)
F is Fisher-distributed with 1 and 7 DF,
p = Fisher1,7([30.97,∞)) ≤ 8 · 10−4.
We can reject H0.
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Analysis of variance

ANOVA in R

In R ANOVA is performed using summary.aov() and summary().

These functions apply on a regression: result of command lm().

summary.aov() gives you only the ANOVA table whereas
summary() outputs other information such as Residuals,
R-square etc ...

Lets see a couple of examples with self-generated data in R.
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Model checking

Model checking

When you perform a linear model you have to check for the
pvalues of your effects but also the variance and the normality of
the residues. Why?

This is because we assumed in our model that the residues are
normally distributed and have the same variance.

In R you can do that directly by using the function plot() on
your regression object.
Lets try on one example. We will focus on the first two graphs.
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Model checking: Good example

This is how it should look like:

On the first graph, we
should see no trend
(equal variance).
On the second graph,
points should be close
to the line (normality).
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Model checking: Bad example

This is a more problematic case:

What do you con-
clude?
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