

An introduction to
WS 2014/2015

Dr. Noémie Becker (AG Metzler)
Dr. Sonja Grath (AG Parsch)

Special thanks to: Prof. Dr. Martin Hutzenthaler
(previously AG Metzler, now University of Duisburg-Essen)

course development, lecture notes, exercises

Course outline – Day 4

Reading and writing data

Data frames

NA, Inf, NaN, NULL

Editing data

Plotting

High- and low-level plotting functions and arguments

Mathematical symbols

Interacting with plots

Saving plots

Solution to the exercises

Lecture
notes,
pp 36-
62

Lecture
notes,
pp 24-
35

Reading and writing data

Data frames

General command: data.frame()

→ typical R representation of data sets

→ lists with constraint that all elements are vectors of the same length

How can you get your data into R?

name gender favourite_colour income

Hans male green 800

Caro female blue 1233

Lars male yellow 2400

Ines female black 4000

Samira female yellow 2899

Peter male green 1100

Sarah female black 1900

Possibility 1

General command: data.frame()

→ type your data at the command line/within a script

group – name of the variable

name, gender, favourite_colour, income – column names

> group <- data.frame(

name = c("Hans", "Caro", "Lars", "Ines", "Samira", "Peter", "Sarah"),

gender = c("male", "female", "male", "female", "female", "male",
"female"),

favourite_colour = c("green", "blue", "yellow", "black", "yellow", "green",
"black"),

income = c(800, 1233, 2400, 4000, 2899, 1100, 1900)

)
Note that R uses the equal sign to specify named arguments
to a function!

Possibility 2

➔ provide the data in a file (txt, csv)

➔ read in your data from that file

Typical call:

read.table("filename.txt", header=TRUE)

read.csv("filename.csv", header=TRUE)

write.table(dataframe, file="filename.txt")

write.csv(dataframe, file="filename.csv")

Example:
Workflow for reading and writing data frames

Steps:

1) Read in your data

2) Check your data

3) Perform your analyses

4) Write output

5) Close session

Data source:

data.txt

→ contains the data of the data frame we had before

Workflow - Script

Load data

group <- read.table("data.txt", header=TRUE)

Copy data into search path

attach(group)

Get an overview of data

names(group)

str(group)

summary(group)

ANALYSIS

Remove data from search path

detach(group)

attach()/detach()

Copy data into search path:
attach()

Remove data from the search path:
detach()

Example:
data(mtcars)
summary(mtcars$mpg)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 10.40 15.42 19.20 20.09 22.80 33.90
summary(mpg)
Error in summary(mpg) : object 'mpg' not found
attach(mtcars)
summary(mpg)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 10.40 15.42 19.20 20.09 22.80 33.90
detach(mtcars)

attach()/detach()

Caution: Problem when more than one object has the same name!

Example:
You define your own variable 'mpg'
mpg <- c(25,36,47)
data(mtcars)
attach(mtcars)
The following object(s) are masked _by_ '.GlobalEnv':

 mpg

mean(mpg)
[1] 36
mean(mtcars$mpg)
[1] 20.09062
mpg
[1] 25 36 47

Alternative to attach(): with()
with(mtcars, {

summary(mpg)
})

Limitation of the with() function:
with(mtcars, {

stats <- summary(mpg)
})
stats
Error: object 'stats' not found

Solution: <<- (saves object to the global environment)
with(mtcars, {

nokeepstats <- summary(mpg)
keepstats <<- summary(mpg)

})
nokeepstats
Error: object 'nokeepstats' not found
keepstats
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 10.40 15.42 19.20 20.09 22.80 33.90

More on data frames

We will work through the example from the lecture notes

(pp 26-29)

Steps:

1) Define your working directory setwd()

2) Read in data (from data.txt) read.table()

3) Check your data names(), str(), summary()

4) Copy data into search path attach()

5) Select subsets of your data subset()

6) Split your data into a list of a subgroup split()

7) Extend your data frame merge()

8) Remove data from search path detach()

Example
data.txt

name gender favourite_colour income

Hans male green 800

Caro female blue 1233

Lars male yellow 2400

Ines female black 4000

Samira female yellow 2899

Peter male green 1100

Sarah female black 1900

NA, Inf, NaN, NULL

NA = not available

Inf = Infinity

NaN = Not a Number

Important command: is.na()

Example:

v <- c(1,3,NA,5)

is.na(v)

[1] FALSE FALSE TRUE FALSE

sum(v)

[1] NA

Ignore missing data: 'na.rm=TRUE'

sum(v, na.rm=TRUE)

[1] 9

Plotting

Plotting

There are three types of plotting commands:

High-level plotting functions create a new plot (usually with
axes, labels, titles and so on)

Low-level plotting functions add more information to an
existing plot, such as extra points, lines or labels

Interactive graphics functions allow you to interactively add
information to an existing plot or to extract information from an
existing plot using the mouse

High-level plotting functions

Function Description

barplot() Visualizes a vector with bars

boxplot() Box- and whisker plot

contour() The contour of a surface is
plotted in 2D

coplot() Conditioning-Plots

hist() Histogram

mosaicplot() Plot in form of a mosaic

pairs() Produces a matrix of
scatterplots

pie() Circular pie charts

qqplot() Quantile-quantile plot

…

… many more – and R offers many packages for plotting (ggplot2, lattice...)
We will cover now: plot(), hist(), boxplot()

High-level function – plot()

➔ Standard high-level plotting function
➔ Behaviour of plot() depends on the type of its argument

plot(x,y)
If x and y are numerical vectors, then plot(x,y) produces a
scatterplot of y against x

Example:

x <- 1:10
y <- x^2
plot(x,y)

High-level function – plot()

➔ Standard high-level plotting function
➔ Behaviour of plot() depends on the type of its argument

plot(fun)
If fun is a function, then plot(fun, from=a, to=b) plots fun in the range
[a, b]

Example 1:
plot(sin, from=-2*pi, to=2*pi)

High-level function – plot()

➔ Standard high-level plotting function
➔ Behaviour of plot() depends on the type of its argument

plot(fun)
If fun is a function, then plot(fun, from=a, to=b) plots fun in the range
[a, b]

Example 2:
plot(dnorm, from = -3, to = 3)

High-level function – hist()

➔ Histogram

Example 1:
hist(rnorm(10000))

High-level function – hist()

➔ Histogram

Example 1:
hist(rnorm(10000), probability = TRUE)

High-level function – hist()

➔ Histogram

Example 2:
hist(rnorm(10000), probability=TRUE, col="grey",
breaks=seq(-5,5,by=0.2))

The histogram of 10000 simulated values is
close to the density function

Example:
hist(rnorm(10000), probability=TRUE, col="grey",
breaks=seq(-5,5,by=0.2))
plot(dnorm, from=-4, to=4, add=TRUE, lwd=3,
lty="dashed")

High-level function – boxplot()

➔ Box and whisker plot

Example:
boxplot(c(1,2,15))
boxplot(rnorm(10000))

Saving plots
➔ Several possibilities (see lecture notes pp 55/51)

(1) dev.print()

Example:
plot(...) # Begin a plot with an high-level plotting function

 #such as plot()
... # Further low-level plotting function enrich the

 #plot
After you are finished with the plot:
dev.print(device=pdf, file="filename.pdf"

→ filename.pdf now contains the plot you saw on the screen

Saving plots

(2) savePlot()

Usage:
 savePlot(filename = "Rplot",
 type = c("wmf", "emf", "png", "jpg", "jpeg", "bmp",
 "tif", "tiff", "ps", "eps", "pdf"),
 device = dev.cur(),
 restoreConsole = TRUE)
Example:
savePlot(filename="Figure1.pdf", type="pdf")

→ Figure1.pdf now contains the plot you saw on the screen
→ It can be that not all types work for your system

Saving plots

(3) Plot directly into a file

Example:
x <- 1:10
y <- x^2
pdf("filename.pdf")
plot(x,y)
dev.off()

→ filename.pdf now contains the plot
→ the plot is not printed on screen
→ works for different devices

Important:
When you are done you have to close the printing device!
dev.off()

Exercise sheet 3

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

