An introduction to WS 2014/2015

Dr. Noémie Becker (AG Metzler)
Dr. Sonja Grath (AG Parsch)

Special thanks to: Prof. Dr. Martin Hutzenthaler
(previously AG Metzler, now University of Duisburg-Essen)
course development, lecture notes, exercises

Course outline - Day 2

Review session day 1

Basics

Matrices
Data types in R
Basic statistics with \mathbf{R}
Some distributions implemented in R
Examining the distribution of a set of data
Random number generators

Lecture notes, pp 1623

A sample R session

Review session

Libraries

R commands are organized in libraries (packages)
Examples: 'stats', 'datasets'

Loaded at start:

library(lib.loc=.Library)
Load packages:
library(packagename)
Further useful commands:
library(help="packagename")
installed.packages()
download.packages()
install.packages()

Pre-Defined Datasets

R comes with a huge amount of pre-defined datasets Examples: 'cars', 'mtcars', 'chickwts', ...
\rightarrow can be used for exercises, demonstration of in-built functions...
How to use a dataset:
data(cars)
Help:
?cars
\rightarrow Exercises

Organize your R session

General advice:

Organize your work in folders
Save your commands in scripts (text files)

Example:

\# Define a vector with age values
age $<-c(1,3,5,2,11,9,3,9,12,3)$
\# Define a vector with weight values
weight <- c(4.4,5.3,7.2,5.2,8.5,7.3,6.0,10.4,10.2,6.1)
\# Calculate the mean weight value
mean(weight)
\# Quit R session
$q()$

Organize your R session

General advice:

Organize your work in folders
Save your commands in scripts (text files)

Working directory:
getwd()
setwd()

Recipe:
(1) Open your favourite text editor
(2) Save the file (e.g. example.R)
(3) Define first comments for your workflow
(4) Write your R commands and test them step-by-step

\mathbf{R} as calculator

Basic arithmetic operations

2+3
7-4
3*5
7/3; 2^6

Comments

\# This is a comment
Integer vs. modulo divison
$5 \% / \% 3$ \# " 5 divided by 3 without decimal positions" $\rightarrow 1$
5 \%\% $3 \quad$ \# "if you divide 5 by 3 - what's the rest?" $\rightarrow 2$
Caution: German (Spanish, French..) decimal notation does not work! > 1,2
Error: unexpected ',' in "1,"
> 1.2

R as calculator

Important functions
$\exp (1)$
$\exp (\log (5))$
$\sin (\mathrm{p} / 2)$
$\cos (\mathrm{pi} / 2)$
$\max (4,2,5,1)$
$\min (4,2,5,1)$
$\operatorname{sum}(4,2,5,1)$
$\operatorname{prod}(4,2,5,1)$
sqrt(16)
factorial(4)
choose $(5,2)$

```
factorial()
"4 factorial", 4!
\(\rightarrow 4 * 3^{*} 2^{*} 1\)
choose()
"5 choose 2", ( \(\left.\begin{array}{l}a \\ b\end{array}\right)\)
\(\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}\).
```


Help!

R console

help(solve) ?(solve)	\#help page for command "solve" help("exp")
\#same as help(solve)	
help.start()	
??solve	\#list of commands which could \#be related to string "solve"
example(exp)	\#same as help.search("solve") example("*")
	\#special characters have to be in \#quotation marks

Assignments

General form:

variable <- value
Example:
$x<-5$
"The variable ' x ' is assigned the value ' 5 '"

Valid variable names: contain numbers, '_', characters
NOT allowed: '.' followed by number at the beginning
.4you
Allowed:
my.variable, my_variable, myVariable
favourite_color, a, b, c, data2, 2data ...

Assignments

$x<-5$
$5->x$
$x=5$
Works with longer expressions:
$x<-2$

$y<-x^{\wedge} 2+3$
y
[1] 7
… or to the define functions:
myfunction <- sqrt
myfunction(81)
[1] 9

Printing and Plotting

$$
x<-3
$$

print(x)
x
print(sqrt(2),digits=5)
$y<-42$
cat("And the answer is ",y,"..\n")
plot(sin, from $=-10$, to $=10$)

Vectors

Vectors are enumerations of arbitrary objects
For example:
$(2,5,3,7)$
$(1,4,7,10)$
("green","blue","red")
("A","T","G","C")
("A","A","A","G","G")

Vectors

Vectors are enumerations of arbitrary objects
To create vectors, you can use functions in R: 'c()', 'seq()', 'rep()' $c(2,5,3,7)$
$\operatorname{seq}($ from $=1$, to $=10, b y=3)$
seq(from $=3$, to $=7$)
$\operatorname{seq}(1,11,3)$
seq(3,7)
seq(7,3)
3:7
$c(2: 5,3: 7)$
rep $(3,5)$
$\operatorname{rep}(0: 2,3)$
rep(7:9,2:4)

Operations on vectors

You assess elements of a vector with the []-Operator:
$x<-c(12,15,13,17,11)$
x[4]
[1] 17
x[3:5]
x[-2]
X[-(3:5)]
Standard operations on vectors are element by element:
$c(2,5,3)+c(4,2,7)$
[1] 6710
$2+c(2,5,3)$
$c(2,5,3)^{\wedge} 2$

Operations on vectors

```
sum(5:7)
prod(4:6)
x<-1:5
x[3:5]
x[-2]
x>3
[1] FALSE FALSE FALSE TRUE TRUE
Useful commands on vectors:
length(x)
rev(x)
sort(x)
unique(x)
```


Basics - Part II

Matrix - Definition

Wikipedia:

In mathematics, a matrix (plural matrices) is a rectangular array of numbers, symbols, or expressions arranged in rows and columns. The individual items in a matrix are called its elements or entries. An example of a matrix with 2 rows and 3 columns is:

Matrices - Basics

You can create matrices by:

1. matrix()
2. converting a vector into a matrix

3 . binding together vectors
$\mathrm{m}<-$ matrix(data $=1: 8$, nrow=4, ncol=2)
m <- matrix $(1: 8,4,2)$
z <- as.matrix(1:6)
cbind(1:3,5:7)
rbind(1:3,5:7,10:12)

Matrices - Basics

You can create matrices by:

1. matrix()
2. converting a vector into a matrix

3 . binding together vectors

Indexing is 'row by column':
$\mathrm{m}[3,2]$
$\mathrm{m}[2$,
$\mathrm{m}[$,2]
$\mathrm{m}[2: 3,1: 2]$

Matrices - Basics

Examples:
$\mathrm{m}<-$ matrix(data $=1: 8$, nrow $=4$, ncol $=2$)m[1,] $1 \quad 5$
[2,] 2 6
$\begin{array}{lll}{[3,]} & 3 & 7\end{array}$
[4,] $4 \quad 8$
$\mathrm{m}[2: 3,1: 2]$[,1] [,2]
[1,] 26
$\begin{array}{lll}{[2,]} & 3 & 7\end{array}$

Matrices - Basics

Examples:
$z<-$ as.matrix(1:6)

Z
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6

Matrices - Basics

Examples:
cbind(1:3,5:7)
[,1] [,2]
[1,] $1 \quad 5$
$[2] \quad 2 \quad$,
$\begin{array}{lll}{[3,]} & 3 & 7\end{array}$
rbind(1:3,5:7,10:12)
[,1] [,2] [,3]
[1,] $1 \begin{array}{lll}1 & 2\end{array}$
$\begin{array}{llll}{[2,]} & 5 & 6 & 7\end{array}$
$\begin{array}{llll}{[3,]} & 10 & 11 & 12\end{array}$
More in the exercises!

Functions/Commands

General form:

function()

Examples:
sqrt()
exp()
C ()
matrix()

Functions can have pre-defined parameters/arguments with default settings
\rightarrow help page of the function

Parameters/Arguments

Example: matrix()

Which arguments can be used with this function?
?matrix()
matrix \{base\}
Matrices
Description
matrix creates a matrix from the given set of values.
as.matrix attempts to turn its argument into a matrix.
is.matrix tests if its argument is a (strict) matrix.
Usage
matrix (data $=N A$, nrow $=1$, ncol $=1$, byrow $=$ FALSE, dimnames $=$ NULL)
matrix(data=(1:6),nrow=2, ncol=3)

Data types

Every variable in R has a class (e.g. matrix, list, data frame) and a data type (e.g. logical, numerical, complex, character)

Data type	Description logical	Examples TRUE or FALSE
numeric	integers and real numbers	$5,-2,3.1415$, sqrt(2)
complex	complex numbers	$2.1+3 \mathrm{i}, 5+0 \mathrm{i}$
character	character string	"This is text",
	"5"	

Types can be converted:
as.logical(), as.numeric(), as.complex, as.character()
Implicit conversion:
logical \rightarrow numeric \rightarrow complex \rightarrow character

Data types

Every variable in R has a class (e.g. matrix, list, data frame) and a data type (e.g. logical, numerical, complex, character)

Data type	Description logical	Examples TRUE or FALSE
numeric	integers and real numbers	TRU, sqrt(2) s.
complex	complex numbers	$2.1+3 \mathrm{i}, 5+0 \mathrm{i}$
character	character string	"This is text",
	"5"	

Check for data type:

is.logical(), is.numeric(), is.complex(), is.character()
mode()
class()
\# find out the data type
\# find out the class

Basic Statistics with R

Some distributions implemented in \mathbf{R}

Distribution	R name
beta	beta
binomial	binom
Cauchy	cauchy
chi-square	chisq
exponential	exp
F	F
gamma	gamma
geometric	geom
hypergeometric	hyper
log-normal	Inorm
logistic	logis
multinomial	multinom
multivariate	mvnorm
normal	norm
Poisson	pois
Student's t	t
uniform	unif
distribution of the Wilcoxon rank statistic	wilcox
...	..

Some distributions implemented in \mathbf{R}

For each distribution:
dxxx: density of the xxx distribution
pxxx: distribution function of the xxx distribution (' p ' for probability) qxxx: quantile function of the xxx distribution rxxx: random number generator for the xxx distribution

Example: Normal distribution

$\operatorname{dnorm}(x$, mean $=\mu, s d=\rho)$
Standard normal distribution: mean 0, standard deviation 1
dnorm $(x$, mean $=0, s d=0)$
dnorm(x)

Example: Normal distribution

Recall:
plot()
plot(fun)
\rightarrow If fun is a function, then $\operatorname{plot}(f u n$, from=a, to=b) plots fun in the range [a, b]
plot(dnorm, from $=-3$, to $=3$)

Important functions

Imagine you have a vector v:

v <- c(1:4)
v
[1] 1234
mean(v)
[1] 2.5
$\operatorname{var}(v)$
[1] 1.666667
sd(v)
[1] 1.290994
median(v)
[1] 2.5

Important functions

Imagine you have a vector v:
v <- c(1:4)
v
[1] 1234
quantile(v)
0\% 25\% 50\% 75\% 100\%
1.001 .752 .503 .254 .00
summary(v)

Min. 1st Qu. Median Mean 3rd Qu. Max.
$\begin{array}{llllll}1.00 & 1.75 & 2.50 & 2.50 & 3.25 & 4.00\end{array}$

Box- and whisker plot (boxplot)

Get 10000 normally distributed values:

rnorm(10000)
boxplot(rnorm(10000))

Random numbers

Actually: Random numbers are not really random...
\rightarrow pseudo-random numbers

Reasons:

1. A normally distributed variable has a continuum of potential values - but computers only can represent a finite number of values
2. Results should be reproducible

Properties of pseudo-random numbers:

\rightarrow Almost no regularities in the generated sequence
\rightarrow Random sequence is reproducible
\rightarrow Random sequence is generated quickly

Random numbers in \mathbf{R}

If you want to reproduce your results: set.seed()
set.seed(1234)
rnorm(3)

Clarification:

The 'seed' can be every number (does not have to be '1234' - it is just used to make your results reproducible)
set.seed(1111)
rnorm(3)

A sample R session

R in Action

Data Analysis and Graphics with R 2nd edition (2011)
Robert I. Kabacoff
http://www.manning.com/kabacoff/
\rightarrow Sample Chapter 1 (PDF)

Organize your R session

General advice:

Organize your work in folders
Save your commands in scripts (text files)

Example:

\# Define a vector with age values
age $<-c(1,3,5,2,11,9,3,9,12,3)$
\# Define a vector with weight values
weight <- c(4.4,5.3,7.2,5.2,8.5,7.3,6.0,10.4,10.2,6.1)
\# Calculate the mean weight value
mean(weight)
\# Quit R session
$q()$

What you should do now

If you have your own laptop or computer

1. Install R and RStudio (see tutorial on the web)
2. Read the first chapter of "R in Action" (course web page)
http://www.manning.com/kabacoff/SampleCh-01.pdf
3. Open a R session and try the commands we learned today and yesterday (lecture slides)
\rightarrow if you have trouble with installing R, ask us
4. Try to solve the exercises on sheet01_2015.pdf

If you don't have your own laptop or computer

1. Go to a computer room (C 00.005 or G 00.037)
2. Read the first chapter of " R in Action" (course web page) http://www.manning.com/kabacoff/SampleCh-01.pdf
3. Open a R session and try the commands we learned
4. Try to solve the exercises on sheet01_2015.pdf

Keep in mind:
Programming needs a lot of practice!

