
CONTENTS 1

R course

Contents

0 Getting started 3
0.1 What is R? . 3
0.2 Downloading R . 4
0.3 Literature . 4
0.4 Libraries . 5

1 Basics 6
1.1 R as calculator . 6
1.2 Getting help . 7
1.3 Assignments, comparisons and logical expressions 7
1.4 Printing and plotting . 8
1.5 Vectors . 9
1.6 Matrices . 12
1.7 Data types in R . 15

2 Basic Statistics with R 17
2.1 Some distributions implemented in R . 17
2.2 Examining the distribution of a set of data . 20
2.3 Random number generators . 23

3 Reading and writing data 24
3.1 Lists . 24
3.2 Data frames . 26
3.3 NA, Inf, NaN, NULL . 29
3.4 Editing data . 31
3.5 Reading and writing data frames . 31
3.6 Examples of different input files . 34
3.7 Factors . 35

4 Plotting 36
4.1 High-level plotting commands . 37
4.2 Low-level plotting functions . 41
4.3 Interacting with plots . 44
4.4 Plotting examples . 45
4.5 Devices . 50
4.6 A list of high-level plotting commands . 51
4.7 Displaying multivariate data . 54
4.8 Arguments to high-level plotting functions . 56

c© M. Hutzenthaler, R course, March 1, 2012

CONTENTS 2

5 Some statistical tests 62
5.1 Theory of statistical tests . 62
5.2 Test for a difference in mean: t-test . 62
5.3 Test for dependence . 64

5.3.1 Nominal variables (count data) . 64
5.3.2 Continuous variables . 66
5.3.3 Ordinal variables . 67

5.4 The power of a test . 68
5.5 A list of statistical tests in R . 69
5.6 Degrees of freedom . 69

6 Programming in R 70
6.1 Conditional execution: if() and ifelse() . 70
6.2 Loops: for(), while() and repeat() . 70
6.3 Examples . 71
6.4 Executing commands from a script . 72
6.5 Writing your own functions . 73
6.6 How to avoid slow R code . 76
6.7 The commands lapply() and tapply() . 77

7 Linear Regression 78
7.1 Introduction . 78
7.2 Background . 80
7.3 Summary.aov() and summary() . 83
7.4 Model checking . 85

8 Advanced topics 88
8.1 Generating and manipulating strings . 88
8.2 Object-oriented programming . 90
8.3 Scoping rules . 95
8.4 Regular expressions . 97
8.5 Outlook: DNA and protein data . 98

Appendix 98
A Save and load workspace and command history . 99
B Customizing R . 99
C Debugging . 100

Index 101

c© M. Hutzenthaler, R course, March 1, 2012

0 GETTING STARTED 3

0 Getting started

0.1 What is R?

S is an environment for calculating and visualising answers to statistical questions. It is being
developed since 1976 by John Chambers and colleagues at the Bell Labs, USA. R is an open source
implementation of S. The name of R is partly based on the (first) names of the first two R authors
(Robert Gentleman and Ross Ihaka, New Zealand, 1991-1993), and partly a play on the name of
‘S’. In 1993 Bell Labs gave ’Insightful Corp.’ (now TIBCO) an exclusive license to develop and sell
the S language. Insightful sells its implementation of S under the name S-PLUS and has built a
number of features (mostly GUIs) on top of it. There are only minor differences between R and
S-PLUS. So most R code runs on S-PLUS and vice versa.

Here is an example of an application of R. The data is from a paper of Lee Salk (The role of the
heartbeat in the relation between mother and infant, Scientific American, 1973, 228(5), 24–29).
Randomly chosen newborns heard the recording of heartbeats of a grown-up. The following figure
depicts the group of babies with birth weight below 3000g and compares the weight gain between
day 2 and day 5 of the control group with the weight gain of the group of infants which heard
heartbeats.

−200 −100 0 100

C
on

tr
ol

H
ea

rt
be

at
s

Do newborns benefit from hearing heartbeats?

Weight gain (g) between day 2 and day 5

● ● ● ● ● ● ●
●

● ●
●

● ●
●

●
●

●
●

● ● ● ●
●

●
●

● ● ● ●

● ● ●
●

● ●
●

● ●
●

● ●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

● ●

Lightweight group: Birth weight below 3000 g

−18 g (Mean)

55 g (Mean)

Difference = 73 g

n = 29

n = 35

Main advantages:

• R is free software.

• New statistical methods are usually first implemented in R.

Disadvantages:

• R takes getting used to as it is based on command lines rather than GUIs.

• The R graphics is not interactive (e.g. there is no ’undo’)

c© M. Hutzenthaler, R course, March 1, 2012

0 GETTING STARTED 4

0.2 Downloading R

R is free software (GNU general public license).

Windows users: Download the R Windows installer from

http://cran.r-project.org/bin/windows/base/

Then double-click on the installer to install R as you would any Windows software. You can
subsequently download and install packages you want from CRAN, via the > Packages > Install
packages from CRAN menu in the RGui console. Likewise, the installer for the Tinn-R program-
ming editor for Windows can be downloaded from

http://sourceforge.net/projects/tinn-r/

Start R by executing ’R.exe’.

Mac users: A universal binary for Mac OS X 10.4.4 and higher is available from

http://cran.r-project.org/bin/macosx/

Double-click on the icon for R.mpkg in the disk image to install R. You can then download and
install packages over the Internet via the > Packages and Data > Packages Installer menu.

Linux/Unix users: Precompiled binaries for many Linux systems are available from

http://cran.r-project.org/bin/linux/

or users can compile R from source. See

http://cran.r-project.org/

for details.

0.3 Literature

• Ligges, Uwe. Programmieren mit R. SpringerVerlag Berlin 2005 (German)

• The R project web page provides the following introduction to R

http://cran.r-project.org/doc/manuals/R-intro.pdf

• Here is a list of frequently asked questions

http://cran.r-project.org/doc/manuals/R-FAQ.html

• Index of R commands with explanations (German, not complete yet)

http://de.wikibooks.org/wiki/GNU R: Befehle-Index

• Short list of important commands

http://cran.r-project.org/doc/contrib/Short-refcard.pdf

This list is quite useful for reminding oneself of commands.

c© M. Hutzenthaler, R course, March 1, 2012

0 GETTING STARTED 5

0.4 Libraries

There are too many R commands to load them into the memory when an R session starts. Therefore
R commands are organised as packages. For example, the package ’base’ contains basic commands,
the package ’stats’ contains statistic commands such as distributions, the package ’datasets’ con-
tains example datasets. A selection of important packages (see library(lib.loc=.Library)) is loaded
at startup. Further packages need to be loaded ’by hand’. For example the package ’lattice’ is
loaded with

> library(lattice)

Loading a package requires the package to be installed on your computer. The list of installed pack-
ages can be viewed with installed.packages(). The list of commands contained in package xyz can
be viewed with library(help=”xyz”). The commands available.packages(), download.packages(),
install.packages(), update.packages() might help you to install or update a package.

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 6

1 Basics

1.1 R as calculator

All beginnings are difficult. So we begin with something familiar.

> 2+3

[1] 5

> 3*6

[1] 18

> # This is a comment

> 2^6; 7/3 # several commands are separated with ’;’

[1] 64

[1] 2.333333

> 4+3*5^2 # precedence rules as usual

[1] 79

> 1.2

[1] 1.2

> 1,2 # German decimal notation does not work

Error: Unexpected ’,’ in "1,"

> 1.2e3 # is equal to 1.2 * 10^3. ’e’ as in ’exponent’

[1] 1200

> 5 %/% 3 # integer division

[1] 1

> 5 %% 3 # modulo division

[1] 2

> exp(1) # exponential function

[1] 2.718282

> exp(log(5)) # log() is the natural logarithm

[1] 5

> sin(pi/2) # sine

[1] 1

> cos(pi/2) # cosine of pi/2 is zero. Note: R does not answer with zero!

[1] 6.123234e-17

> max(4,2,5,1) # maximum of all elements

[1] 5

> sum(4,2,5,1) # sum of all elements

[1] 12

> prod(4,2,5,1) # product of all elements

[1] 40

> factorial(4) # 4 factorial

[1] 24

> choose(5,2) # 5 choose 2

[1] 10

Further functions:

exp(), log(), log10(), log2(),

sin(), cos(), tan(), asin(), acos(), atan(),

sinh(), cosh(), tanh(), asinh(), acosh(), atanh()

sum(), prod(), abs(), sqrt(), max(), min(), factorial(), choose()

round(), floor(), ceiling(), trunc(), signif()

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 7

1.2 Getting help

> help(solve) # Displays an help page for the command "solve".

> ?solve # Same as help(solve).

> help("exp")

> help.start() # Shows an html-page with various links.

> help.search("solve") # Displays a list of commands which could be related to

the string "solve".

> ??solve # Same as help.search("solve").

> example(exp) # Displays examples for the usage of ’exp’.

> example("*") # Note that special characters have to be passed within

quotation marks.

1.3 Assignments, comparisons and logical expressions

> x <- 5 # The variable x is assigned the value 5

> x

[1] 5

> 6 -> x # equivalent to x <- 6 but unusual

> x

[1] 6

> x = 7 # equivalent to x <- 7 but unusual

> x

[1] 7

> y <- x^2 + 3 # assign 7^2 + 3 to the variable y

> y

[1] 52

> myfunction <- exp # assignment of a function

> myfunction(log(5))

[1] 5

> myfunction <- sqrt

> myfunction(81)

[1] 9

Subsets of large data sets are accessed by selecting all elements which have certain ’properties’.
’Properties’ are formulated with logical expressions which we now introduce.

> 4 == 4 # Are both sides equal?

[1] TRUE # TRUE is an R constant

> 4 == 5

[1] FALSE # FALSE is an R constant

> 4 == 3 + 1

[1] TRUE

> cos(pi/2) == 0 # WARNING: Never compare two numerical values with ==

Instead check whether the absolute value of cos(pi/2) is

below a sufficiently small threshold

[1] FALSE

> 3 <= 4

[1] TRUE

> 5 > 2*2

[1] TRUE

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 8

> 5 > 2+3

[1] FALSE

> 4 != 3 # ! is negation, != is ’not equal’

[1] TRUE

> 3 != 3

[1] FALSE

> 2 != 3

[1] TRUE

> TRUE & TRUE # & is the logical AND. Result is TRUE if

[1] TRUE # both expressions are TRUE

> TRUE & FALSE

[1] FALSE

> TRUE | FALSE # | is the logical OR. Result is TRUE if

[1] TRUE # at least one of the two expressions is TRUE

> FALSE | FALSE

[1] FALSE

> FALSE | TRUE

[1] TRUE

> 5 > 3 & 0 != 1

[1] TRUE

> 5 > 3 & 0 != 0

[1] FALSE

> ! TRUE # ! is the logical NOT. The result of !(expression) is TRUE

[1] FALSE # if and only if ’expression’ is FALSE

> ! FALSE

[1] TRUE

> ! (5 == 5)

[1] FALSE

1.4 Printing and plotting

Objects are printed with print(). In the interactive mode of R (you see the prompt ’>’), ’> print(x)’
is the same as ’> x’. The command cat() con’cat’enates its arguments into a single character string
and prints it. The command plot() plots functions and vectors.

> print(sqrt(2)) # the same as ’> x’(in the interactive mode)

[1] 1.414214

> print(sqrt(2),digits=5) # print 5 digits

[1] 1.4142 # see ?format for more on formatting

> sqrt(2)

[1] 1.414214 # the default is to print 7 digits

> options(digits=10) # 10 digits are printed from now on

> sqrt(2)

[1] 1.414213562

> y <- 42

> cat("And the answer is",y,"as I believe.\n") # \n produces a new line

And the answer is 42 as I believe.

> cat("Today is:\t",date(),"\n") # date() returns today’s date and time

Today is: Fri Jan 01 06:00:00 2010

> plot(sin, from=-10, to=10)

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 9

Here we used ’\n’ for a new line and ’\t’ for inserting a tab – see ?Quotes for a complete list.

−10 −5 0 5 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

si
n

(x
)

The histogram of a vector v is plotted with hist(v). The command ecdf(v) returns the empirical
cumulative distribution function (’ecdf’) of the vector v.

> v <- c (1:7, rep(2,4), rep(3,6), rep(4,3), 6:7, 7, 7)

> hist(v)

> ecdf(v) # ecdf() returns the ecdf and does not print it

Empirical CDF

Call: ecdf(v)

x[1:7] = 1, 2, 3, ..., 6, 7

> plot(ecdf(v))

Histogram of v

v

F
re

qu
en

cy

1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(v)

x

F
n(

x)

●

●

●

●

●

●

●

1.5 Vectors

Vectors are enumerations of arbitrary objects. The commands ’c’, ’seq’ and ’rep’ create vectors.

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 10

> c(2,5,3,7) # concatenate elements into a vector

[1] 2 5 3 7

> seq(from=1,to=10,by=3) # create a sequence from 1 to 10 with step size 3

[1] 1 4 7 10

> seq(from=3,to=7) # short for seq(from=3,to=7,by=1)

[1] 3 4 5 6 7

> seq(1,11,3) # short for seq(from=1,to=11,by=3).

Here the order of 1, 11 and 3 matters!

[1] 1 4 7 10

> seq(3,7) # short for seq(from=3,to=7). Again order matters!

[1] 3 4 5 6 7

> 3:7 # short for seq(from=3,to=7)

[1] 3 4 5 6 7

> c(2:5, 3:7)

[1] 2 3 4 5 3 4 5 6 7

> rep(3,5) # replicate first object (here 3) 5 times

[1] 3 3 3 3 3

> rep(0:2,3)

[1] 0 1 2 0 1 2 0 1 2

> rep(7:9,2:4) # If both arguments are vectors with the same length.

[1] 7 7 8 8 8 9 9 9 9 # Here: Replicate 7 two times, 8 three times, 9 four

times

You access elements of a vector with the []-Operator.

> x <- c(12,15,13,17,11)

> x[4] # The fourth element of the vector x

[1] 17

> x[3:5] # subvector with indices 3, 4 and 5

[1] 13 17 11

> x[-2] # the minus means ’without’

[1] 12 13 17 11

> x[-(3:5)] # all elements except 3,4 and 5

[1] 12 15

Standard operations on vectors are element by element. In a binary operation, the length of
one vector has to be a multiple of the length of the other vector. Examples:

> c(2,5,3) + c(4,2,7)

[1] 6 7 10

> c(2,5,3) * c(4,2,7)

[1] 8 10 21

> 2 + c(2,5,3) # same as c(2,2,2) + c(2,5,3)

[1] 4 7 5

> 2 * c(2,5,3) # same as c(2,2,2) * c(2,5,3)

[1] 4 10 6

> c(2,5,3)^2 # same as c(2,5,3)^c(2,2,2)

[1] 4 25 9

> c(2,5,3)^c(3,2,1)

[1] 8 25 3

> c(3,2) * c(2,5,3,4) # same as c(3,2,3,2) * c(2,5,3,4)

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 11

[1] 6 10 9 8

> c(2,5,3,4)^c(3,2) # same as c(2,5,3,4)^c(3,2,3,2)

[1] 8 25 27 16

> c(3,2)^c(2,5,3,4)

[1] 9 32 27 16

> exp(c(0,1,log(5)))

[1] 1.000000 2.718282 5.000000

> sum(5:7) # 5 + 6 + 7

[1] 18

> prod(4:6) # 4 * 5 * 6

[1] 120

> x <- 1:5

> x > 3 # which elements are > 3

[1] FALSE FALSE FALSE TRUE TRUE

> (x %% 2) == 1 # which elements are odd

[1] TRUE FALSE TRUE FALSE TRUE

A strong feature of R is indexing with logical index vectors. Thereby we may select the subvector
consisting of all elements with certain properties.

> v <- c(12,15,13,17,11)

> v[c(TRUE,FALSE,TRUE,TRUE,FALSE)]

[1] 12 13 17

> v[c(TRUE,FALSE,TRUE)] # shorter index vectors are filled up with ’FALSE’

[1] 12 13

> v[c(TRUE,FALSE,TRUE,TRUE,FALSE,TRUE,TRUE)]

[1] 12 13 17 NA NA

> v>12

[1] FALSE TRUE TRUE TRUE FALSE

> v[v>12]

[1] 15 13 17

> v<=16 & (v%%2)==1

[1] FALSE TRUE TRUE FALSE TRUE

> v[v<=16 & (v%%2)==1]

[1] 15 13 11

> v[v>=13 | (v%%2)==0]

[1] 12 15 13 17

> v[v>12] <- 0 # set all elements which are bigger than 12 to 0

> v

[1] 12 0 0 0 11

> v[v==0] <- 2 # assign 2 to all elements being equal to 0

> v

[1] 12 2 2 2 11

> v==2

[1] FALSE TRUE TRUE TRUE FALSE

Here is a selection of commands on vectors.

> v <- c(13, 15, 11, 12, 19, 11, 17, 19)

> length(v) # returns the length of the vector v

[1] 8

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 12

> rev(v) # returns the ’rev’ersed vector

[1] 19 17 11 19 12 11 15 13

> sort(v) # returns the sorted vector

[1] 11 11 12 13 15 17 19 19

> sort(v,partial=4) # returns a vector in which the fourth element

[1] 11 11 12 13 19 15 17 19 # agrees with the sorted vector

> indexvec <- order(v)

> indexvec # the index vector for sorting

[1] 3 6 4 1 2 7 5 8

> v[indexvec] # v[order(v)] is the same as sort(v)

[1] 11 11 12 13 15 17 19 19

> duplicated(v) # identifies multiple elements

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

> unique(v) # returns vector without multiple elements

[1] 13 15 11 12 19 17

> rank(v) # returns the ranks of the elements in vector v

[1] 4.0 5.0 1.5 3.0 7.5 1.5 6.0 7.5

> some <- (v > 13)

> some

[1] FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE

> any(some) # returns TRUE if at least one entry is TRUE; else FALSE

[1] TRUE

> all(some) # returns TRUE if all entries of ’some’ are TRUE; else FALSE

[1] FALSE

> which(some) # returns the indices at which ’some’ is TRUE

[1] 2 5 7 8

> which.max(v) # returns the index of the maximum (first such index)

[1] 5

> which.min(v) # returns the index of the minimum (first such index)

[1] 3

1.6 Matrices

Matrices are usually created with ’matrix’, by converting a vector into a matrix or by binding
together vectors.

> m <- matrix(data = 1:8, nrow=4, ncol=2)

> m

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

> matrix (1:8,4,2) # Same as matrix(data = 1:8, nrow=4, ncol=2)

Indexing is ’row by column’.

> m[3,2] # Entry in the third row and second column.

[1] 7

> m[2,] # Second row

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 13

[1] 2 6

> m[,2] # Second column

[1] 5 6 7 8

> m[2:3,1:2] # submatrix

[,1] [,2]

[1,] 2 6

[2,] 3 7

The command ’matrix’ stores the vector of data by default column by column, that is, it starts
filling the first column first. If you wish to specify the data row by row, then add ’byrow = TRUE’.

> y <- matrix(data = 1:8, nrow=4, ncol=2, byrow = TRUE)

> y

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

> t(y) # t(y) is the transposed matrix of y

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

> z <- as.matrix(1:6) # Convert the vector 1:6 into a matrix with one column

> z

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

[5,] 5

[6,] 6

> dim(z)

[1] 6 1

> dim(z) <- c(2,3) # Convert the 6 by 1 matrix z into a 2 by 3 matrix

> z

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> dim(z)

[1] 2 3

> is.matrix(1:6)

[1] FALSE

> is.matrix(as.matrix(1:6))

[1] TRUE

> cbind(1:3,5:7) # Bind together vectors column-wise

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

> rbind(1:3,5:7,10:12) # Bind together vectors row-wise

[,1] [,2] [,3]

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 14

[1,] 1 2 3

[2,] 5 6 7

[3,] 10 11 12

The command ’diag’ creates diagonal matrices.

> diag(1,nrow=3,ncol=3) # Creates the 3 by 3 unit matrix.

[,1] [,2] [,3] # Diagonal matrix with 3 rows and 3 columns

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> diag(3) # same as diag(1,nrow=3,ncol=3)

> diag(5:7,3,4)

[,1] [,2] [,3] [,4]

[1,] 5 0 0 0

[2,] 0 6 0 0

[3,] 0 0 7 0

As for vectors, standard operations on matrices are element by element.

> m1 <- matrix(1:6,nrow=3) ; m1

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> m2 <- matrix(16:11,nrow=3) ; m2

[,1] [,2]

[1,] 16 13

[2,] 15 12

[3,] 14 11

> m1 + m2

[,1] [,2]

[1,] 17 17

[2,] 17 17

[3,] 17 17

> m1 * m2

[,1] [,2]

[1,] 16 52

[2,] 30 60

[3,] 42 66

Note that m1∗m2 is not the matrix product. The operator for matrix multiplication is ’%*%’. The
product of a m by n matrix y and of a k by l matrix z is only defined if n == k. By definition,
the (i, j)-entry of y% ∗% z is

∑n
a=1 y[i, n] ∗ z[n, j].

> mat1 <- matrix(1:6,2,3)

> mat2 <- matrix(5:0,2,3)

> mat1

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> mat2

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 15

[,1] [,2] [,3]

[1,] 5 3 1

[2,] 4 2 0

In a matrix product between a vector and a matrix, the vector is interpreted as row vector for ’vector
%*% matrix’ and is interpreted as column vector for ’matrix %*% vector’. The convention for
’vector %*% vector’ is to interprete the product as scalar product ’rowvector %*% columnvector’.

> mat3 <- t(mat2) ; mat3

[,1] [,2]

[1,] 5 4

[2,] 3 2

[3,] 1 0

> mat1 %*% mat3 # 2 by 3 matrix times 3 by 2 matrix

[,1] [,2]

[1,] 19 10

[2,] 28 16

> mat3 %*% mat1 # 3 by 2 matrix times 2 by 3 matrix

[,1] [,2] [,3]

[1,] 13 31 49

[2,] 7 17 27

[3,] 1 3 5

> v <- 7:9

> v %*% mat3 # v is interpreted as row vector

[,1] [,2]

[1,] 14 8

> v %*% v # scalar product of v with itself

[,1]

[1,] 194

column vector %*% row vector has to be enforced

> as.matrix(v)%*% t(as.matrix(v))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

[3,] 3 6 9

Note that vectors are neither always interpreted as row vectors nor are vectors always interpreted
as column vectors. The interpretation depends on the evaluating function.

1.7 Data types in R

Every variable and object in R has a class (e.g. matrix, list, data frame) and a data type (e.g.
logical, numeric, complex, character) which species what type of data the object contains.
Data types in R:

Data type Discreption Examples
logical TRUE or FALSE TRUE, FALSE
numeric integers and real numbers 5, -2, 3.1415, sqrt(2)
complex complex numbers 2.1+3i, 5+0i
character character string ”This is text”, ”5”

Types can be converted with the commands as.logical(), as.numeric(), as.complex() and
as.character(). Conversion (also called coercion) of data types is usually not done by the user

c© M. Hutzenthaler, R course, March 1, 2012

1 BASICS 16

but implicitly by R where necessary. Note that implicit conversion only goes in the direction logical
→ numeric→ complex→ character. You check for the data type of a variable with the commands
is.logical(), is.numeric(), is.complex(), is.character(). You find out the data type of a
variable with mode() and the class of a variable with class().

Examples:

> x <- TRUE; mode(x)

[1] "logical"

> as.numeric(TRUE) ; as.numeric(FALSE)

[1] 1 # the internal representation of TRUE is 1

[1] 0 # the internal representation of FALSE is 0

> c("1.0",2) # the 2 is implicitly coerced to ’character’

[1] "1.0" "2"

> v <- c(1,2,2,2,5); as.numeric(v==2)

[1] 0 1 1 1 0

> sum(v==2) # same as sum(as.integer(v==2))

> [1] 3 # How many elements are equal to 2?

> 2*c(TRUE, FALSE) # Implicit coercion logical -> numeric works

[1] 2 0

> as.numeric(c("1.0", "2)) # Explicit coercion character -> numeric if possible

[1] 1 2

> 2*c("1.0","2") # Implicit coercion logical -> numeric does not work

Error in 2 * c("1.0", "2") : non-numeric argument to binary operator

c© M. Hutzenthaler, R course, March 1, 2012

2 BASIC STATISTICS WITH R 17

2 Basic Statistics with R

2.1 Some distributions implemented in R

R provides the following distributions:

Distribution R name
beta distribution beta
binomial distribution binom
Cauchy distribution cauchy
chi-square distribution chisq
exponential distribution exp
F-distribution f
gamma distribution gamma
geometric distribution geom
hypergeometric distribution hyper
log-normal distribution lnorm
logistic distribution logis
multinomial distribution multinom
multivariate normal distribution mvnorm
negative binomial distribution nbinom
normal distribution norm
Poisson distribution pois
distribution of the Wilcoxon signed rank statistic signrank
student’s t-distribution t
uniform distribution unif
Weibull distribution weibull
distribution of the Wilcoxon rank sum statistic wilcox

The normal distribution is the most important distribution due to the central limit theorem.The
binomial distribution and the uniform distribution are certainly good to know. The chi-square
distribution, student’s t-distribution and the F-distribution are used in standard tests.All other
distributions will not turn up in the course again.

For each distribution, R provides the following four commands:

dxxx: density of the xxx distribution
pxxx: distribution function of the xxx distribution (’p’ for probability)
qxxx: quantile function of the xxx distribution
rxxx: random number generator for the xxx distribution

Just replace ’xxx’ by the R name of the distribution. For example, dnorm is the density of the
normal distribution.

The density function of the normal distribution with mean µ ∈ R and standard deviation
σ ∈ (0,∞) is

dnorm(x,mean = µ, sd = σ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, x ∈ R.

Its mean is µ and its variance is σ2. The standard normal distribution has mean 0 and standard
deviation 1. So its density is dnorm(x,mean = 0, sd = 1). If ’mean’ and ’sd’ are not specified
in dnorm() they assume the default values 0 and 1, respectively. So dnorm(x) is the same as

c© M. Hutzenthaler, R course, March 1, 2012

2 BASIC STATISTICS WITH R 18

dnorm(x,mean = 0, sd = 1). The distribution function satisfies

pnorm(x) <−
∫ x

−∞
dnorm(y) dy, x ∈ R.

The quantile function at q ∈ [0, 1] is the smallest value x such that pnorm(x) ≥ q. More formally,
we have

qnorm(q) <−min
(
x ∈ R : pnorm(x) ≥ q

)
, q ∈ [0, 1].

Note that if the distribution function is continuous (as pnorm is), then the quantile function is the
inverse function of the distribution function. The command rnorm(n) generates a random sample
of length n of the normal distribution, that is, it produces n random values which are independent
and whose distribution is standard normal.

The following facts are useful to remember: 68% of the mass of a standard normal distribution
is within one standard deviation; 95% of the mass is within two standard deviations.

> pnorm(1)-pnorm(-1) # 68 % is within one standard deviation

[1] 0.6826895

> pnorm(2)-pnorm(-2) # 95 % is within two standard deviations

[1] 0.9544997

> pnorm(3)-pnorm(-3) # 99.7 % is within 3 standard deviations

[1] 0.9973002

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
 (

x)

68%

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
 (

x)

95%

Another property to remember is the following scaling property of the normal distribution. If
the distribution of X0,1 is standard normal distributed, then the distribution of Xµ,σ := σX0,1 +µ
is normal with mean µ and variance σ2. If the distribution of Xµ,σ is normal with mean µ and

variance σ2, then X0,1 :=
Xµ,σ−µ

σ is standard normally distributed.

> # The histogram of 10000 simulated values is close to the density function:

> hist(rnorm(10000),col="grey",probability=TRUE,breaks=seq(-5,to=5,by=0.2))

> plot(dnorm, from=-4,to=4,add=TRUE ,lwd=3, lty="dashed")

The last command plots dnorm between −4 and 4 with line width 3 and line type "dashed".

c© M. Hutzenthaler, R course, March 1, 2012

2 BASIC STATISTICS WITH R 19

> # The following example shows that a non-standard normal random variable

> # suitably rescaled is a standard normal variable:

> hist((rnorm(10000,mean=5,sd=10)-5) / 10,col="grey",probability=TRUE,

+ breaks=seq(-5,to=5,by=0.2))

> plot(dnorm, from=-4,to=4,add=TRUE ,lwd=3, lty="dashed")

Histogram of rnorm(10000)

rnorm(10000)

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Histogram of (rnorm(10000, mean = 5, sd = 10) − 5)/10

(rnorm(10000, mean = 5, sd = 10) − 5)/10

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

The binomial distribution is the distribution of the

number of ’successes’ in a row of independent trials.

The density dbinom(k,m, p) is the probability to have k ∈ {0, . . . ,m} ’successes’ in a row of m
trials with ’success’ probability p ∈ [0, 1]. The density function of the binomial distribution satisfies

dbinom(k,m, p) <−
(
m

k

)
pk·
(
1− p

)m−k
.

The mean is m·p and the variance is m·p·(1 − p). The distribution function of the binomial
distribution satisfies

pbinom(k,m, p) <−
k∑
l=0

dbinom(l,m, p)

The quantile function qbinom(q,m, p) at q ∈ [0, 1] is the smallest value x such that dbinom(x,m, p)
is bigger than or equal to q. The command rbinom(n,m, p) generates a random sample of length
n.

> dbinom(1,3,1/6) # Probability of one 6 when throwing a dice 3 times

[1] 0.3472222

> dbinom(0,1,1/2) # Probability of heads when throwing one coin

[1] 0.5

> dbinom(1,1,1/2) # Probability of tails when throwing one coin

[1] 0.5

> sum(dbinom(5:10,60,1/6)) # Probability to have between five and ten 6’s

[1] 0.5631944 # when throwing a dice 60 times.

> sum(dbinom(0:60,60,1/6)) # The total probability is equal to 1

c© M. Hutzenthaler, R course, March 1, 2012

2 BASIC STATISTICS WITH R 20

[1] 1

> qbinom(0.5833866,60,1/6)

[1] 11

> qbinom(0.5833865,60,1/6) # qbinom is basically the inverse function of pbinom

[1] 10

> qbinom(pbinom(0:29,60,1/6),60,1/6) == 0:29

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> rbinom(8,60,1/6)

[1] 12 10 11 11 4 12 7 11

In the last example, each of the 8 numbers is the number of 6’s after throwing a dice 60 times.
The uniform distribution on the interval [a, b], a < b, has density

dunif(x,min = a,max = b) <− 1

b− a
for all x ∈ [a, b].

The standard uniform distribution is on the interval [0, 1]. So its density is dunif(x,min = 0,max =
1). If ’min’ and ’max’ are not specified in dnorm() they assume the default values 0 and 1,
respectively. So dunif(x) is the same as dunif(x,min = 0,max = 1). The distribution function
satisfies

punif(x) <−
∫ x

0

dunif(y) dy = x for all x ∈ [0, 1].

The mean of the standard uniform distribution is 1
2 and the variance is 1

12 .

2.2 Examining the distribution of a set of data

mean(v) Computes the sample mean 1
n

∑n
i=1 vi of the vector v

where n = length(v).

var(v) Computes the sample variance 1
n−1

∑n
i=1

(
vi −mean(v)

)2
of the vector v

where n = length(v).

sd(v) Computes the sample standard deviation
√

var(v) of the vector v
where n = length(v).

cov(v, w) Computes the sample covariance 1
n−1

∑n
i=1

(
vi −mean(v)

)(
wi −mean(w)

)
of the two vectors v and w.

cor(v, w) Computes the sample correlation cov(v, w)/
√

var(v) var(w)
of the two vectors v and w.

median(v) A median is a real number such that half of the vector elements are below this
number and half of the vector elements are above this number. The median is
usually not unique. R returns the average of all medians.

quantile(v) quantile() applied to a numeric vector v displays by default the quartiles of v.
summary(v) summary() applied to a numeric vector v displays mean, variance and median

of v together with the quartiles.
boxplot(v) Box- and whisker plot
hist(v) hist() plots the histogram of v.
ecdf(v) Returns the empirical cumulative distribution function of v.

Let us recall what the quantile function, the median and the quartiles are. Let p ∈ [0, 1]. Below
the p-quantile is a fraction p of all values of the vector. For more details, see ?quantile. Any
0.25-quantile is referred to as first quartile, any 0.5- quantile is referred to as median (or second

c© M. Hutzenthaler, R course, March 1, 2012

2 BASIC STATISTICS WITH R 21

quartile) and any 0.75-quantile is referred to as third quartile. So the quartiles split the vector into
quarters.

A fraction of 25% of the elements lie below the first quartile and 25% of the elements
lie above the third quartile. The middle 50% of the data lie between the first and the

third quartile.

Here are some examples:

> mean(c(1,2,21)) # (1+2+21)/3

[1] 8

> mean(c(0,1,2,21)) # (0+1+2+21)/4

[1] 6

> mean(c(-1,0,1))

[1] 0

> var(c(-1,0,1)) # ((-1)^2+1^2) / (3-1)

[1] 1

> var(c(-2,0,2))

[1] 4

> var(rep(1,4))

[1] 0

> mean(rep(1,4))

[1] 1

> mean(1:4) # (1+2+3+4) / 4

[1] 2.5

> cov(1:4,1:4) # same as var(1:4)

[1] 1.666667 # ((1-2.5)^2+(2-2.5)^2+(3-2.5)^2+(4-2.5)^2) / (4-1)

> cor(1:4,1:4) # = cov(1:4,1:4) / sqrt(var(1:4)*var(1:4))

[1] 1

> cor(1:4,-1:4)

[1] -1

> cor(1:4,17:20)

[1] 1

> cor(1:4,20:17)

[1] -1

> median(c(1,2,9,1100))

[1] 5.5

> quantile(c(1,2,9,1100))

0% 25% 50% 75% 100%

1.00 1.75 5.50 281.75 1100.00

> summary(c(1,2,15))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 1.5 2.0 6.0 8.5 15.0

> mean(rnorm(1000000))

[1] 0.0004818741

A box- and whisker plot (short boxplot) visualizes the quartiles. The horizontal bar in the
middle shows the median value of the data. The horizontal line above the median shows the third
quartile and the horizontal line below the median shows the first quartile. The box shows where the
middle 50% of the data lie (this is called ’the interquartile range’). The length of the interquartile
range is called interquartile distance. The length of each of the two whiskers (German ’Barthaare’)

c© M. Hutzenthaler, R course, March 1, 2012

2 BASIC STATISTICS WITH R 22

is limited by 1.5 times the interquartile distance. In fact they reach to the maximum/minimum
point within that distance. All data points outside the whiskers are called outliers and are indicated
by single points in the boxplot

●

●

●

●

●

●

0
2

4
6

8
10

da
ta

 v
al

ue
s

> summary(c(1,2,1500))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 1.5 2.0 501.0 751.0 1500.0

> boxplot(c(1,2,1500))

> summary(rnorm(10000))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.858000 -0.690200 0.005504 -0.003528 0.667200 3.944000

> boxplot(rnorm(10000))

> summary(rbinom(10000,60,1/6))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 8.00 10.00 10.01 12.00 22.00

> summary(runif(1000000))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.036e-06 2.496e-01 5.002e-01 5.000e-01 7.506e-01 1.000e+00

c© M. Hutzenthaler, R course, March 1, 2012

2 BASIC STATISTICS WITH R 23

2
4

6
8

10
12

14

●

●

●●●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−
4

−
2

0
2

4

> hist(rnorm(10000))

> plot(ecdf(rnorm(100)))

Histogram of rnorm(10000)

rnorm(10000)

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(rnorm(100))

x

F
n(

x)

● ●●
● ●●●●

●●
●●●

●●
● ●●

●●
●●
●●●●

●●
●●
●●

●●●
●●
●●
●●

●●
●●●

●●
●●
●●●

●●
●●●

●●●
●●

●●
●●
●●●

●●
●●
●●●

●●
●●

●●
●●

●●
●●
●●●●

●●
● ●●

● ●

2.3 Random number generators

The random numbers produced by R are in fact only pseudo-random numbers. There are several
reasons for this. First of all, a normally distributed variable has a continuum (R) of potential
values. Computers, however, can only represent a finite number of values. The second reason is
the desire to have reproducible results. Pseudo-random numbers are supposed to have the following
properties:

• (almost) no regularities in the generated sequence

• random sequence is reproducible

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 24

• random sequence is generated as quick as possible.

The pseudo-random number generator is initialised with the so-called seed using the common
set.seed(). The sequence is then generated by applying a certain deterministic function again and
again. Thereby if the generator is initialised with the same seed again, then it generates the same
sequence. The default generator in R is Mersenne-Twister (Matsumoto and Nishimura 1998). You
can change the kind of random number generator with the command RNGkind(), see ?RNGkind.
Note that the random number generator is initialised using the system time at the beginning of
the R session. If you wish to reproduce your results, then use set.seed().

> rnorm(3)

[1] 1.0844412 -2.3456977 0.4291247

> set.seed(1234) # initialise random number generator

> rnorm(3)

[1] -1.2070657 0.2774292 1.0844412

> rnorm(3)

[1] -2.3456977 0.4291247 0.5060559

> set.seed(1234) # restart random number generator

> rnorm(3) # same values as before

[1] -1.2070657 0.2774292 1.0844412

> rnorm(3)

[1] -2.3456977 0.4291247 0.5060559

> RNGkind("Wichmann-Hill") # different kind of random number generator

> set.seed(1234) # initialise with same seed

> rnorm(3) # values are different due to different RNG

[1] -0.2160838 0.8444022 0.6975076

> RNGkind("Mersenne-Twister")

> set.seed(1234)

> rnorm(3)

[1] -1.2070657 0.2774292 1.0844412

3 Reading and writing data

3.1 Lists

Data sets are represented as so-called data frames in R. These are special lists which we now
introduce. Lists are collections of arbitrary objects. They are created with the list() command.
The elements of the list are accessed with the [[]]-operator.

> L <- list(c(1,5,3), matrix(1:6, nrow=3), c("Hello", "world"))

> L

[[1]]

[1] 1 5 3

[[2]]

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

[[3]]

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 25

[1] "Hello" "world"

> L[[1]] # First element of L

[1] 1 5 3

> L[[2]][2,1] # Element [2,1] of the second element of L

[1] 2 # Note that L[[2]] is a matrix which can be referenced with []

> L[[c(3,2)]] # Recursively: 3. element of L, hereof the 2. element

[1] "world"

> list(1:4,7:8) # A list of two vectors

[[1]]

[1] 1 2 3 4

[[2]]

[1] 7 8

> c(1:4,7:8) # c() concatenates the two vectors into one vector

[1] 1 2 3 4 7 8

when concatenating lists, however, c() produces the concatenated list

> L2 <- c(list(1:3,2:4), list(c("Hello","world"), c(1,5,3)))

> L2

[[1]]

[1] 1 2 3

[[2]]

[1] 2 3 4

[[3]]

[1] "Hello" "world"

[[4]]

[1] 1 5 3

> mode(L2) # mode() shows the type of the object

[1] "list" # indeed, L2 is a list

> L2[[2]] <- NULL # setting the second element of the list to NULL

> L2 # is the same as deleting the second element

[[1]]

[1] 1 2 3

[[2]]

[1] "Hello" "world"

[[3]]

[1] 1 5 3

Lists can alternatively be referenced by name instead of by number. In the above example, one
needs to remember that the matrix in L is the second element. The following definition is easier to
remember as the elements can be referred to by name. The elements of the list are accessed with

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 26

the $-operator.

> L <- list(v=c(1,5,3), m=matrix(1:6, nrow=3), text=c("Hello", "world"))

> L$v

[1] 1 5 3

> L$m

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> L$text

[1] "Hello" "world"

> L$m[2,1] # L$m is a matrix which can be referenced with []

[1] 2

> L$text[2]

[1] "world"

> L[[1]] # referencing by number still works

[1] 1 5 3

3.2 Data frames

Data frames are the typical R representation of data sets. Data frames are lists with the constraint
that all elements are vectors of the same length. The command data.frame() creates a data frame.

> group <- data.frame(name = c("Hans", "Caro", "Lars", "Ines", "Samira",

"Peter", "Sarah"), gender = c("male", "female", "male", "female",

"female", "male", "female"), favourite_colour = c("green", "blue", "yellow",

"black", "yellow", "green", "black"),

income = c(800,1233,2400,4000,2899,1100,1900))

> group

name gender favourite_colour income

1 Hans male green 800

2 Caro female blue 1233

3 Lars male yellow 2400

4 Ines female black 4000

5 Samira female yellow 2899

6 Peter male green 1100

7 Sarah female black 1900

> group$income

[1] 800 1233 2400 4000 2899 1100 1900

> group$gender[2]

[1] female

Levels: female male

> group[,1]

name

1 Hans

2 Caro

3 Lars

4 Ines

5 Samira

6 Peter

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 27

7 Sarah

> group$name

[1] Hans Caro Lars Ines Samira Peter Sarah

Levels: Caro Hans Ines Lars Peter Samira Sarah

> group[1,]

name gender favourite_colour income

1 Hans male green 800

Data frames usually accomodate large data sets which are difficult to get an overview of. The
command str() gives an overview of all variables in the data frame. The command summary()
prints a summary of the data frame.

> str(group)

’data.frame’: 7 obs. of 4 variables:

$ name : Factor w/ 7 levels "Caro","Hans",..: 2 1 4 3 6 5 7

$ gender : Factor w/ 2 levels "female","male",..:3 1 2 1 1 3 1

$ favourite_colour: Factor w/ 4 levels "black","blue",..: 3 2 4 1 4 3 1

$ income : num 800 1233 2400 4000 2899 ...

> summary(group)

name gender favourite_colour income

Caro :1 female :4 black :2 Min. : 800

Hans :1 male :3 blue :1 1st Qu.:1166

Ines :1 green :2 Median :1900

Lars :1 yellow:2 Mean :2047

Peter :1 3rd Qu.:2650

Samira:1 Max. :4000

Sarah :1

Writing ’group$’ all the time is tiring. To avoid this say attach(group). This command copies
’group’ into the search path of R (imagine a place where R looks for variables) so that all elements
can be found without mentioning ’group$’.

> gender[2]

Error: object "gender" not found

> attach(group) # copy ’group’ into the search path

> gender[2] # ’gender’ is now a known variable

[1] female

Levels: female male

> name[3]

[1] Lars

Levels: Caro Hans Ines Lars Peter Samira Sarah

> name[3] <- "Samira" # this only changes the copy of group in the search path

> name

[1] Hans Caro Samira Ines Samira Peter Sarah

Levels: Caro Hans Ines Lars Peter Samira Sarah

> group$name # the original ’group’ remains unchanged

[1] Hans Caro Lars Ines Samira Peter Sarah

Levels: Caro Hans Ines Lars Peter Samira Sarah

> detach(group) # removes ’group’ from the search path

> name[3] # after detach(group), ’name’ is no longer known

Error: object "name" not found

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 28

> gender[2]

Error: object "gender" not found

Looking at ’group’ one might think that people with favourite colour ’yellow’ have an higher
income. To investigate this, we wish to select the subset of ’group’ with favourite colour ’yellow’.
This could be done with

> group[group[["favourite_colour"]]=="yellow",]

name gender favourite_colour income

3 Lars male yellow 2400

5 Samira female yellow 2899

A more convenient solution is provided by the command subset():

> subset(group,favourite_colour=="yellow")

Of course the column of the favourite colour is identically ’yellow’ so we do not need it. We delete
it by selecting everything except the third column.

> subset(group,favourite_colour=="yellow",select=-3)

name gender income

3 Lars male 2400

5 Samira female 2899

One could also wish to have the subset of people favouring the colours ’green’ and ’black’. So
favourite colour ∈ {green, black} would be convenient. The symbol ∈ is represented in R with the
operator %in%.

> subset(group, favourite_colour %in% c("green","black"))

name gender favourite_colour income

1 Hans male green 800

4 Ines female black 4000

6 Peter male green 1100

7 Sarah female black 1900

Now does the subgroup with favourite colour ’yellow’ have more income? We calculate the sample
mean of the ’yellow’-group income, which turns out to be higher. Of course, this does not answer
the question as the sample size is way too small to have a significant result.

> yellow_group <- subset(group,favourite_colour=="yellow")

> mean(yellow_group$income)

[1] 2649.5

> subset(group, favourite_colour %in% c("green","black"))$income

[1] 800 4000 1100 1900

> mean(group$income)

[1] 2047.429

> mean(subset(group,favourite_colour != "yellow")$income)

[1] 1806.6

> mean(subset(group,favourite_colour %in% c("green","blue","black"))$income)

[1] 1806.6 # equivalent to previous command

You can split a data frame into a list of the respective subgroups. For example we split ’group’
according to ’favourite colour’. This is done with split() which returns a list of data frames. The
command unsplit() reverses this and merges a list of data frames together into a single data frame.

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 29

> L <- split(group, group$favourite_colour)

> L # L is a list of data frames

$black

name gender favourite_colour income

4 Ines female black 4000

7 Sarah female black 1900

$blue

name gender favourite_colour income

2 Caro female blue 1233

$green

name gender favourite_colour income

1 Hans male green 800

6 Peter male green 1100

$yellow

name gender favourite_colour income

3 Lars male yellow 2400

5 Samira female yellow 2899

> all(unsplit(L,group$favourite_colour)== group) # identical?

[1] TRUE

If you wish to extend your data frame, then merge() might help you. Here is an example.

> snd_colour <- data.frame(favourite_colour=c("green","blue","yellow"),

+ second_colour=c("red","yellow","brown"))

> merge(group,snd_colour,all.x=TRUE)

favourite_colour name gender income second_colour

1 black Ines female 4000 <NA>

2 black Sarah female 1900 <NA>

3 blue Caro female 1233 yellow

4 green Hans male 800 red

5 green Peter male 1100 red

6 yellow Lars male 2400 brown

7 yellow Samira female 2899 brown

Note that everyone with favourite colour=="green" has second colour=="red". The colour
"black" is not associated with any colour, so the respective entries in the merged data frame
remain NA. For more on merge(), see ?merge.

3.3 NA, Inf, NaN, NULL

Data sets are often not complete. There might be values which are simply not known. These
missing values are recorded as NA (= not available). R deals quite well with missing data. Many
commands have arguments to tell the command how to deal with NAs. The command for detecting
missing values is is.na().

> v <- c(1,3,NA,5)

> v[1] <- NA

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 30

> v

[1] NA 3 NA 5

> is.na(v)

[1] TRUE FALSE TRUE FALSE

> 5*v

[1] NA 15 NA 25

> v*NA

[1] NA NA NA NA

> sum(v)

[1] NA

> exp(v)

[1] NA 20.08554 NA 148.41316

> is.na(v)==FALSE

[1] FALSE TRUE FALSE TRUE

> w1 <- v[is.na(v)==FALSE] # remove all missing values from the vector

> w1

[1] 3 5

> w2 <- v[!is.na(v)] # same as w1

Many commands allow to ignore missing data. This is done with the argument ’na.rm=TRUE’
(remove NA’s) in commands which support this feature.

> sum(v,na.rm=TRUE)

[1] 8

The internal constants Inf and -Inf represent ∞ and −∞. Everything outside a certain range is
Inf or -Inf for R. This range depends on the system (32bit or 64bit machine). Another internal
constant is NaN (not a number). Every calculation which is not defined results in NaN.

> 1.7e308

[1] 1.7e+308

> 1.8e308

[1] Inf

> exp(709)

[1] 8.218407e+307

> exp(710)

[1] Inf

> 5/0

[1] Inf

> exp(Inf)

[1] Inf

> Inf*(-2)

[1] -Inf

> Inf*Inf

[1] Inf

> 0/0

[1] NaN

> 0*Inf

[1] NaN

> Inf -Inf

[1] NaN

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 31

>1e-310

[1] 1e-310

>1e-330

[1] 0

’NULL’ represents the null object (represents ’there is no object’) in R. NULL is often returned
by functions and expressions whose value is undefined. So NaN is an undefined numeric value and
NULL is often used as undefined object.

3.4 Editing data

When invoked on a data frame or matrix, edit() opens a separate spreadsheet-like environment for
editing. This is convenient for making small changes once a data set has been read. Note that
edit(x) works on a local copy of the object, so without storing the result in a new object all changes
are lost. We continue with the data frame ’group’ from Subsection 3.2.

> edit(group) # all changes will be lost

> newgroup <- edit(group)

> group <- edit(group) # changes are stored back into group

> fix(group) # same as ’group <- edit(group)’

If edit() is invoked with a function, then an editor is opened which allows you to edit the definition
of the function.

3.5 Reading and writing data frames

Read a data frame from a file with read.table(). Write a data frame to a file with write.table().
Typical call:

read.table(”filename.txt”,header=TRUE)
write.table(dataframe, file=”filename.txt”)

Before reading your data from a file into a data frame, you need to prepare the data file. Your
data could look as follows:

weightcls smoker lifespan
3 0 50.5
3 0 52.8
3 1 54.7
3 0 56.0
2 0 58.1
2 1 60.2
2 0 62.8
2 0 64.5
1 1 66.3
1 0 68.4
1 0 70.2
1 1 72.1

Now start Excel and open a new table. Enter the data as in the above table. Then store the file
as text file with the tabulator as delimitor: File/Save as/... then from the ’Save as type’ options
choose ’Text (Tab delimited)’. Store the file for example as ’lifespandata’. Excel automatically
adds the extension ’.txt’ for text files. Alternatively open ’lifespandata.txt’ with your favourite
text editor and type in the above table. The field separator may be one or more spaces or tabs.

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 32

Make sure that the file is in the current working directory. Use the menu (File/change directory)
or getwd() and setwd() to determine and set the working directory. Then you read the file with the
command read.table(). The first line of the file contains the names of the variables and is called
’header’, so we specify the option ’header=TRUE’.

> setwd("D:/Rcourse/") # "" are necessary. Note / instead of \

> riscfactor <- read.table(file="lifespandata.txt",header=TRUE)

> # Alternatively use file.choose() (the choose-file-menu pops up in a GUI):

> # riscfactor <- read.table(file=file.choose(),header=TRUE)

> riscfactor

weightcls smoker lifespan

1 3 0 50.5

2 3 0 52.8

3 3 1 54.7

4 3 0 56.0

5 2 0 58.1

6 2 1 60.2

7 2 0 62.8

8 2 0 64.5

9 1 1 66.3

10 1 0 68.4

11 1 0 70.2

12 1 1 72.1

> str(riscfactor)

’data.frame’ : 12 obs. of 4 variables:

$ weightcls : int 3 3 3 3 2 2 2 2 1 1 ...

$ smoker : int 0 0 1 0 0 1 0 0 1 0 ...

$ lifespan : num 50.3 52.8 54.7 56 58.1 60.2 62.8 64.5 66.3 68.4 \ldots

> write.table(riscfactor,file="lifespanout.txt")

It is important to learn how to put your data into the data file or Excel spreadsheet. There
are countless ways of doing it but only one way which makes life easy later. The key thing to
remember is that

all the values of the same variable go in the SAME COLUMN.

Here is an example. If you had an experiment with three treatments (control, pre-heated, pre-
chilled), and four measurements per treatment, it might seem like a good idea to create the spread-
sheet like this:

Control Pre-heated Pre-chilled
6.1 6.3 7.1
5.9 6.2 8.2
5.8 5.8 7.3
5.4 6.3 6.9

However this is not ideal for handling the data with R. The good way to enter these data is to
have one column for the response variable and one column which indicates the treatment.

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 33

Response Treatment
6.1 Control
5.9 Control
5.8 Control
5.4 Control
6.3 Pre-heated
6.2 Pre-heated
5.8 Pre-heated
6.3 Pre-heated
7.1 Pre-chilled
8.2 Pre-chilled
7.3 Pre-chilled
6.9 Pre-chilled

This organization of the data is more suitable for R as R is particularly good in grouping a
vector (here ’Response’) according to a criterium (here ’Treatment’). Later we will learn ’Re-
sponse ˜ Treatment’ for this. It is more work in R to join vectors together.
The following two lists explain important options of read.table() and of write.table() in more
detail.

read.table(file, header = FALSE, sep = ””, dec = ”.”, row.names, fill = FALSE, ...)

header: a logical value indicating whether the file contains the names of the variables as its first
line. If missing, the value is determined from the file format: ’header’ is set to ’TRUE’
if and only if the first row contains one fewer field than the number of columns.

sep: the field separator character. Values on each line of the file are separated by this
character. If ’sep = ””’ (the default for ’read.table’) the separator is ’white space’,
that is one or more spaces, tabs, newlines or carriage returns.

row.names: a vector of row names. This can be a vector giving the actual row names, or a single
number giving the column of the table which contains the row names, or character
string giving the name of the table column containing the row names.

If there is an header and the first row contains one fewer field than the number
of columns, the first column in the input is used for the row names. Otherwise if
’row.names’ is missing, the rows are numbered.

fill: logical. If ’TRUE’ then in case the rows have unequal length, blank fields are implicitly
added. Otherwise exit with an error message.

... There are more options, see ?read.table.

write.table(x,file=””, append=FALSE, quote=TRUE, sep=” ”, eol=”\n”, dec = ”.”,
row.names=TRUE,...)

x: the object to be written, preferably a matrix or data frame. If not, it is attempted to
coerce ’x’ to a data frame.

file: a character string naming a file for writing. ’””’ indicates output to the console.

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 34

append: logical. If ’TRUE’, the output is appended to the file. If ’FALSE’, any existing file of
the name is destroyed. So be careful.

quote: a logical value (’TRUE’ or ’FALSE’) or a numeric vector. If ’TRUE’, any character or
factor columns will be surrounded by double quotes. If a numeric vector, its elements
are taken as the indices of columns to quote. In both cases, row and column names
are quoted if they are written. If ’FALSE’, nothing is quoted.

sep: the field separator string. Values within each row of ’x’ are separated by this string.

dec: the string to use for decimal points in numeric or complex columns: must be a single
character.

row.names: either a logical value indicating whether the row names of ’x’ are to be written along
with ’x’, or a character vector of row names to be written.

... There are more options, see ?write.table.

There are short-cuts for different types of input files which save typing. Here is a list which
specifies the defaults for the different commands.

Command header sep dec fill
read.table() FALSE ”” ”.” FALSE
read.csv() TRUE ”,” ”.” TRUE
read.csv2() TRUE ”;” ”,” TRUE
read.delim() TRUE ”\t” ”.” TRUE
read.delim2() TRUE ”\t” ”,” TRUE

The commands read.csv2() and read.delim2() are for input files with german decimal nota-
tion. Note that ’csv’ is short for ’comma-separated values’. The analogs of write.table() are
write.csv(), write.csv2().

3.6 Examples of different input files

Before reading in an input file, you should open the data file in order to find out its format. The
following examples show the first lines of the input file and specify commands for reading the data.

Example 1: First three lines of the file are:

wghtcls "smoker" lifespan

"3" 0 50.3

3 0 52.8

R command (string ”3” is converted to 3)

> riscfactor <- read.table("lifespandata2.txt",header=TRUE)

Example 2: First three lines of the file are:

wghtcls,smoker,lifespan

3,0,50.3

3,0,52.8

Two R commands doing the same:

c© M. Hutzenthaler, R course, March 1, 2012

3 READING AND WRITING DATA 35

> riscfactor <- read.csv("lifespandata.csv")

> riscfactor <- read.table("lifespandata.csv",header=TRUE,sep=",",fill=TRUE)

Example 3: First three lines of the file are:

wghtcls;smoker;lifespan

3;0;50,3

3;0;52,8

R command

> riscfactor <- read.csv2("lifespandata.csv2")

Example 4: First three lines of the file are:

weight class smoker lifespan

3 0 50.3

3 0 52.8

Note that the name of the first variable contains a space. This is a problem if spaces are also
delimiters. Here R expects 4 entries per line. The R command

> riscfactor <- read.table("lifespandataspace.txt",header=TRUE)

therefore results in an error. Adding the option fill=TRUE results in 4 variables with the fourth
variable lifespan having only NA entries. You avoid this problem, if you replace ’weight class’ e.g.
by ’weight.class’ or ’weightclass’ or ’”weight class”’ or if you replace the separater by a non-white-
space such as in the file ’lifespandataspace.csv’.

3.7 Factors

In the data frame ’riscfactors’, the values of ’weightcls’ are of type ’numeric’. However, the values
’1’, ’2’ and ’3’ in the vector ’weightcls’ are intended to be names of different groups rather than
true numerical values. This does make a difference to R so we need to tell R what our intention is.
This is done with factor(). The command levels() returns the names of the different groups in a
factor. Note the different behaviour of str() and of summary() according to whether the argument
is a numeric vector or a factor.

> x <- c("female","male","male","female","female")

> levels(x)

NULL

> str(x)

chr [1:5] "female" "male" "male" "female" "female"

> x <-factor(x)

> levels(x)

[1] "female" "male"

> str(x)

Factor w/ 2 levels "female","male": 1 2 2 1 1

> y <- rep(c(17,17,18),4); str(y)

num [1:12] 17 17 18 17 17 18 17 17 18 17 ...

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

17.00 17.00 17.00 17.33 18.00 18.00

> y <- factor(y); str(y)

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 36

Factor w/ 2 levels "17","18": 1 1 2 1 1 2 1 1 2 1 ...

> summary(y)

17 18

8 4

So if numerical values are used as names rather then as true numerical values, then mark the vector
as factor. The following definition of riscfactors2 improves the definition of riscfactors.

> riscfactors2 <- data.frame(weightcls=factor(rep(3:1,c(4,4,4))),

+ smoker=factor(rep(c(0,0,1),4)), lifespan=seq(50,72,2))

> summary(riscfactors2)

weightcls smoker lifespan

1 1:4 0:8 Min. :50.0

2 2:4 1:4 1st Qu.:55.5

3 3:4 Median :61.0

4 Mean :61.0

5 3rd Qu.:66.5

6 Max. :72.0

(Other):6

> summary(riscfactors)

weightcls smoker lifespan

Min. :1 Min. :0.0000 Min. :50.0

1st Qu.:1 1st Qu.:0.0000 1st Qu.:55.5

Median :2 Median :0.0000 Median :61.0

Mean :2 Mean :0.3333 Mean :61.0

3rd Qu.:3 3rd Qu.:1.0000 3rd Qu.:66.5

Max. :3 Max. :1.0000 Max. :72.0

If the column of a data file is a factor, then either specify the class of the columns with colClasses=

or convert the variable after reading the data:

> riscfactor <- read.table("lifespandata.txt",header=TRUE,

+ colClasses=c("factor","numeric","numeric"))

> riscfactor <- read.table("lifespandata.txt",header=TRUE)

> class(riscfactor$wghtcls)

[1] "integer"

> riscfactor$wghtcls <- factor(riscfactor$wghtcls)

> class(riscfactor$wghtcls)

[1] "factor"

4 Plotting

There are three types of plotting commands:

• High-level plotting functions create a new plot (usually with axes, labels, titles and so on).

• Low-level plotting functions add more information to an existing plot, such as extra points,
lines or labels.

• Interactive graphics functions allow you to interactively add information to an existing plot
or to extract information from an existing plot using the mouse.

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 37

4.1 High-level plotting commands

The standard high-level plotting function is plot(). The beaviour of this command depends on the
type of its argument. Here is a selection of possible arguments and the resulting plot.

plot(x, y) If x and y are numerical vectors, then plot(x, y) produces a scatterplot of y against x.

plot(y) If y is a numerical vector, then this is (almost) the same as plot(1 : length(y), y).

plot(f) If f is a factor, then plot(f) is a barplot of f .

plot(f, y) If f is a factor and y is a numeric vector, then plot(f, y) produces boxplots of y for
each level of f .

plot(fun) If fun is a function, then plot(fun, from=a, to=b) plots fun in the range [a, b].

Distance needed to stop (in ft) from a certain speed (mph):

> data(cars) # cars is a dataset in the library ’datasets’, see ?cars

> attach(cars)

> str(cars)

> ?cars

> plot(speed,dist)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

The dataset for the following examples of plot() is described in the file miete03.readme.txt
which can be downloaded from the homepage.

> rent <- read.table("miete03.asc",header=TRUE)

> attach(rent)

> str(rent)

’data.frame’: 2053 obs. of 13 variables:

$ nm : num 741 716 528 554 698 ...

$ nmqm : num 10.9 11.01 8.38 8.52 6.98 ...

$ wfl : int 68 65 63 65 100 81 55 79 52 77 ...

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 38

$ rooms : int 2 2 3 3 4 4 2 3 1 3 ...

$ bj : num 1918 1995 1918 1983 1995 ...

$ bez : int 2 2 2 16 16 16 6 6 6 6 ...

$ wohngut : int 1 1 1 0 1 0 0 0 0 0 ...

$ wohnbest: int 0 0 0 0 0 0 0 0 0 0 ...

$ ww0 : int 0 0 0 0 0 0 0 0 0 0 ...

$ zh0 : int 0 0 0 0 0 0 0 0 0 0 ...

$ badkach0: int 0 0 0 0 0 0 0 0 0 0 ...

$ badextra: int 0 0 0 1 1 0 1 0 0 0 ...

$ kueche : int 0 0 0 0 1 0 0 0 0 0 ...

> plot(nm) # ’nm’ is a numerical vector

> plot(factor(rooms)) # ’rooms’ is converted into a factor

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0 500 1000 1500 2000

50
0

10
00

15
00

Index

nm

1 2 3 4 5 6

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

> plot(rooms,nm) # Here rooms is a numerical vector

> plot(factor(rooms),nm) # Here rooms is converted into a factor

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1 2 3 4 5 6

50
0

10
00

15
00

rooms

nr

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

1 2 3 4 5 6

50
0

10
00

15
00

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 39

> plot(dnorm,from=-3,to=3)

> plot(sin,from=-2*pi,to=2*pi)

> plot(cos,from=-2*pi,to=2*pi,add=TRUE,lty="dashed")

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
 (

x)

−6 −4 −2 0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

si
n

(x
)

Next we boxplot the net rent per m2. Then we wish to know whether there is a connection
between the net rent per m2 and the number of rooms in the flat. For this we wish to split the
vector ’nmqm’ according the factor ’rooms’. This is done with the ˜ -operator. The expression
’nmqm˜ rooms’ groups ’nmqm’ according to the levels in ’rooms’

> boxplot(nmqm,col=’orange’)

> boxplot(nmqm~rooms,col=’lightgray’,border=’green’)

The last command is the same as

> boxplot(list(nmqm[which(rooms==1)], nmqm[which(rooms==2)],

+ nmqm[which(rooms==3)], nmqm[which(rooms==4)], nmqm[which(rooms==5)],

+ nmqm[which(rooms==6)]),col=’lightgray’,border=’green’)

●

●

●

●

●
●

●

●
●

●

●

●

●

5
10

15
20

●

●

●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●
●

●

1 2 3 4 5 6

5
10

15
20

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 40

Now we visualize ’rooms’ with barplot(). For this we need to create a table which gives the
number of flats with 1 room, the number of flats with 2 rooms and so on. This is done by table().

> barplot(table(rooms),xlab="Rooms")

> barplot(table(bez),xlab="District")

1 2 3 4 5 6

Rooms

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

1 3 5 7 9 11 13 15 17 19 21 23 25

District

0
50

10
0

15
0

There are a number of arguments which may be passed to high-level graphics functions. The
following list contains a selection of the most important arguments.

add=TRUE Forces the function to act as a low-level graphics function, superimposing the plot
on the current plot (does not work reliably).

type= The type= argument controls the type of plot produced, as follows:

type="p" Plot individual points (the default)

type="l" Plot lines

type="b" Plot points connected by lines (both)

type="o" Plot points overlaid by lines

type="h" Plot vertical lines from points to the zero axis (high-density)

type="s"

type="S" Step-function plots. In the first form, the top of the vertical defines the point;
in the second, the bottom.

type="n" No plotting at all. However axes are still drawn (by default) and the coor-
dinate system is set up according to the data. Ideal for creating plots with
subsequent low-level graphics functions.

xlab=string

ylab=string Axis labels for the x and y axes. Use these arguments to change the default labels,
usually the names of the objects used in the call to the high-level plotting function.

main=string Figure title, placed at the top of the plot in a large font.

sub=string Sub-title, placed just below the x-axis in a smaller font.

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 41

axes=FALSE Suppresses generation of axes. Useful for adding your own custom axes with the
axis() function. The default axes=TRUE includes axes.

log="x"

log="y"

log="xy" Causes the x, y or both axes to be logarithmic.

cex=1 Amount by which plotting text and symbols should be magnified relative to the
default. This option is used if the default size of text is too small.

Graphic parameters can also be changed permanently with the command par(). For example

> par(col="green",lty="dashed")

sets the colour permanently to ”green” and the line type to ”dashed”. To undo this later proceed
as follows.

> oldpar <- par(col="green",lty="dashed") # store oldsetting in ’oldpar’

> # ... plotting commands ...

> par(oldpar) # resets all parameters

4.2 Low-level plotting functions

Low-level plotting commands can be used to add extra information (such as points, lines or text)
to the current plot. Some of the more useful low-level plotting functions are:

points(x, y)

lines(x, y) Adds points or connected lines to the current plot.

text(x, y, labels, ...) Add text to a plot at points given by x, y. Normally labels is an
integer or character vector in which case labels[i] is plotted at point (x[i], y[i]).

abline(a, b)

abline(h=y)

abline(v=x)

abline(lm.obj) Adds a line of slope b and intercept a to the current plot. h=y may be used
to specify y-coordinates for the heights of horizontal lines to go across a plot, and v=x
similarly for the x-coordinates for vertical lines. Also lm.obj may be a list with a coefficients
component of length 2 (such as the result of model-fitting functions,) which are taken as an
intercept and slope, in that order.

title(main=main,sub=sub) Adds a title main to the top of the current plot in a large font and
(optionally) a sub-title sub at the bottom in a smaller font.

axis(side=side, ...) Adds an axis to the current plot on the side given by the first argument
(1 to 4, counting clockwise from the bottom.) Other arguments control the positioning of
the axis within or beside the plot, and tick positions and labels. Useful for adding custom
axes after calling plot() with the axes=FALSE argument.

legend(x, y, legend, ...) Adds a legend to the current plot at the specified position. Plotting
characters, line styles, colors etc., are identified with the labels in the character vector legend.
At least one other argument v (a vector the same length as legend) with the corresponding
values of the plotting unit must also be given, as follows:

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 42

legend(, fill=v) Colors for filled boxes

legend(, col=v) Colors in which points or lines will be drawn

legend(, lty=v) Line styles

legend(, lwd=v) Line widths

legend(, pch=v) Plotting characters (character vector)

polygon(x, y, ...) Draws a polygon defined by the ordered vertices in (x, y) and (optionally)
shade it in with hatch lines, or fill it if the graphics device allows the filling of figures.

arrows(x0,y0,x1,y1, ...) Draw arrows from (x0, y0) to (x1, y1).

p.arrows(x0,y0,x1,y1, ...) Same as arrows() but with colour filled arrow heads. Requires
library ’sfsmisc’.

pretty() Calculate a ’pretty’ scaling of the axis.

plot.new() Empty the current plotting window (open a new window if none is open).

mtext() Write text in the margins.

Next we introduce a feature to add mathematical symbols to a plot. The following example
plots the function y = x and uses a character string to label it.

> x <- seq(from=0,to=5,by=0.1)

> plot(x,x,type="l")

> text(4.5,4,"y=x",cex=2)

> plot(x,x^2,type="l")

> text(4.5,15,"y=x^2",cex=2)

0 1 2 3 4 5

0
1

2
3

4
5

x

x

y=x

0 1 2 3 4 5

0
5

10
15

20
25

x

x^
2

y=x^2

As you can see from the last example with y=x^2, realizing mathematical symbols with plain
text is not a good solution. R provides a solution which uses so-called ’expressions’. If the ’text’
argument to one of the text-drawing functions (’text’, ’mtext’, ’axis’, ’legend’) in R is an expression,
then the argument is interpreted as a mathematical expression and the output will be formatted
according to TeX-like rules. An expression is created with the command expression(). Here are
some examples

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 43

> x <- seq(from=0,to=5,by=0.1)

> plot(x,x,type="l")

> text(4.5,4,expression(y==x),cex=2)

> plot(x,x^2,type="l")

> text(4.5,15,expression(y==x^2),cex=2)

0 1 2 3 4 5

0
1

2
3

4
5

x

x

y == x

0 1 2 3 4 5

0
5

10
15

20
25

x

x^
2

y == x2

Here is a selection of mathematical notations which can be used to print mathematical notation
into plots.

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 44

You type You see

x*y xy

x%*%y x ×× y

x/y x y

x ÷÷ yx%/%y

x+y x ++ y

x%.%y x ⋅⋅ y

x%+−%y x ±± y

xix[i]

x^2 x2

sqrt(x) x

x == yx==y

x!=y x ≠≠ y

x<=y x ≤≤ y

x>y x >> y

x%~~%y x ≈≈ y

You type You see

frac(x,y)
x

y

over(x,y)
x

y

atop(a,b)
a

b

alpha−omega αα −− ωω

Alpha−Omega ΑΑ −− ΩΩ

paste(x,y,z) xyz

x %in% A x ∈∈ A

x %notin% A x ∉∉ A

A %subset% B A ⊂⊂ B

A %subseteq% B A ⊆⊆ B

infinity ∞∞

partialdiff ∂∂

nabla ∇∇

You type You see

bgroup("(",atop(n,k),")")

n

k

sum(x[i],i==1,n) ∑∑
i==1

n
xi

integral(f(x)*dx,a,b) ⌠⌠
⌡⌡a

b

f((x))dx

lim(f(x),x%−>%0) lim
x→→0

f((x))

min(g(x), x>0) min
x>>0

g((x))

sup(g(x), x>0) sup
x>>0

g((x))

prod(x[i],i==1,n) ∏∏
i==1

n
xi

union(A[i],i==1,n) ∪∪
i==1

n
Ai

displaystyle(y) y

scriptstyle(y) y

More information, including a full listing of the features available can be obtained from within
R using the commands:

> demo(plotmath)

> help(plotmath)

> example(plotmath)

If you need special symbols, then Hershey characters might help. For an overview, type

> demo(Hershey)

> help(Hershey)

> example(Hershey)

4.3 Interacting with plots

R provides functions which allow users to extract or add information to a plot using a mouse.

locator(n,type="n") Waits for the user to select locations on the current plot using the left
mouse button. This continues until n (default 512) points have been selected, or another

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 45

mouse button is pressed. The type argument allows for plotting at the selected points and
has the same effect as for high-level graphics commands; the default is no plotting. locator()
returns the locations of the points selected as a list with two components x and y.

identify(x,y,labels) Allow the user to highlight any of the points defined by x and y (using
the left mouse button) by plotting the corresponding component of labels nearby (or the
index number of the point if labels is absent). Returns the indices of the selected points
when another button is pressed.

For example you could use these to identify outliers in your data or to find an appropriate position
for the legend in your plot.

> plot(sin,from=-2*pi,to=2*pi,)

> plot(cos,from=-2*pi,to=2*pi,add=TRUE,lty="dashed",col="red")

> text(locator(1),"sin",adj=0)

> text(locator(1),"cos",adj=1,col="red")

> legend(locator(1),legend=c("sin","cos"),col=c("black","red"),lty=c(1,2))

−6 −4 −2 0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Use the mouse to find suitable positions for labels
x

si
n

(x
)

−6 −4 −2 0 2 4 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

si
n

(x
)

sincos

sin
cos

4.4 Plotting examples

Example 1: Cars

> attach(cars)

> str(cars)

> plot(speed,dist)

> legend("topleft",legend="4 speed-17",lty="solid")

> abline(-17,4)

> title(main="Distance taken to stop a car from a certain speed")

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 46

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

Distance taken to stop a car from a certain speed

4 speed−17

Example 2:

> oldpar <- par(las=1,cex=2)

> x <- seq(-1,1,by=0.01)

> y1 <- x^2

> y2 <- x^4

> plot(x,y1, type="l",axes=FALSE,main="Example",xlab="x",

+ ylab=expression(paste("black: ", x^2, " red: ", x^4)))

>

> lines(x,y2, type="l", col=2)

> axis(1, at=c(-1, 0, 1), labels=c("-1.0", "0.0", "1.0"),col = "gold",

+ lty = "solid", lwd = 2)

> axis(2, at=c(0, 0.5, 1.0), labels=c("0.0", "0.5", "1.0"),col = "blue",

+ lty = "solid", lwd = 2)

> legend(-0.5,0.75,legend=c(expression(y==x^2), expression(y==x^4)),

+ col=c("black", "red"), lwd=2)

> box()

> par(oldpar)

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 47

Example

x

bl
ac

k:
 x

2 r
ed

: x
4

Example

x
bl

ac
k:

 x
2 r

ed
: x

4

−1.0 0.0 1.0

0.0

0.5

1.0

y=x2

y=x4

Example 3: Empirical and theoretical density of the standard normal distribution.

> par(las=1) # all labellings of axes are horizontal

> hist(x, main="Density 1000 random variables with standard normal

+ distribution", probability=TRUE, col="forestgreen", ylab="Density",

+ xlim=c(-5,5),ylim=c(0,0.45))

> plot(dnorm,from=-5,to=5,add=TRUE,lwd=5,lty="dashed")

> text(-5,0.2, adj=0, cex=1.3, expression(f(x)==frac(1,sigma*sqrt(2*pi))~~

+ e^{frac(-(x-mu)^2, 2*sigma^2)}))

> text(2,0.2, adj=0, cex=1.3, expression("mit "*{mu==0}*", "*{sigma==1}))

> legend(2.1,0.4,legend=c("emp. Density","theor. Density"),

+ col=c("forestgreen","black"), lwd=2,lty=c(1,2))

Density 1000 random variables with standard normal distribution

x

D
en

si
ty

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

Density 1000 random variables with standard normal distribution

x

D
en

si
ty

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

f((x)) ==
1

σσ 2ππ
 e

−−((x−−µµ))2
2σσ2 mit µµ == 0, σσ == 1

emp. Density
theor. Density

Example 4: Do newborns benefit from hearing heartbeats?

> data<-read.table("heartbeats.txt",header=TRUE)

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 48

> attach(data)

> str(data)

’data.frame’: 210 obs. of 3 variables:

$ wghtcls : int 1 1 1 1 1 1 1 1 1 1 ...

$ treatment: int 0 0 0 0 0 0 0 0 0 0 ...

$ wghtincr : int -190 -130 -120 -110 -100 -80 -70 -70 -60 -50 ...

> h<-treatment[wghtcls==1]

> i<-wghtincr[wghtcls==1]

> boxplot(i~h,names=c("Control","Heartbeats"),

+ xlab="Weight gain (g) between day 2 and day 5",notch=TRUE)

> title(main="Do newborns benefit from hearing heartbeats?")

> detach(data)

Control Heartbeats

−
20

0
−

10
0

0
10

0

Weight gain (g) between day 2 and day 5

Do newborns benefit from hearing heartbeats?

Example 5: Do newborns benefit from hearing heartbeats?

> data<-read.table("heartbeats.txt",header=TRUE)

> attach(data)

> h<-treatment[wghtcls==1]

> i<-wghtincr[wghtcls==1]

> mtitle<-"Do newborns benefit from hearing heartbeats?"

> sbtitle<-"Lightweight group: Birth weight below 3000 g"

> xlb<-"Weight gain (g) between day 2 and day 5"

> dev.new(height=6,width=9.5)

> par(cex.main=1.5,cex.axis=1.4,cex.lab=1.4,font.main=1,mar=c(5,5,3,1))

> stripchart(i~h,method="stack",col="blue",pch=16,cex=1.4,

+ group.names=c("Control","Heartbeats"),ylim=c(0.4,3),main=mtitle,xlab=xlb)

> text((min(i)+max(i))/2,2.9,sbtitle,cex=1.4)

> abline(v=0,lty=3)

> m0<-mean(i[h==0])

> m1<-mean(i[h==1])

> lines(c(m0,m0),c(0.9,1.5))

> text(m0+25,0.8,paste(round(m0),"g (Mean)"),cex=1.3)

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 49

> lines(c(m1,m1),c(0.9+1,1.5+1))

> text(m1+25,0.8+1,paste(round(m1),"g (Mean)"),cex=1.3)

> arrows(m0,1.6,m1,1.6,col="red")

> text(m1+40,1.6,paste("Difference =",round(m1-m0)," g"),cex=1.3,col="red",

+ adj=0)

> n0<-length(i[h==0])

> n1<-length(i[h==1])

> text(-170,1.2,paste("n =",n0),cex=1.3)

> text(-170,1.2+1,paste("n =",n1),cex=1.3)

> detach(data)

−200 −100 0 100

C
on

tr
ol

H
ea

rt
be

at
s

Do newborns benefit from hearing heartbeats?

Weight gain (g) between day 2 and day 5

● ● ● ● ● ● ●
●

● ●
●

● ●
●

●
●

●
●

● ● ● ●
●

●
●

● ● ● ●

● ● ●
●

● ●
●

● ●
●

● ●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

● ●

Lightweight group: Birth weight below 3000 g

−18 g (Mean)

55 g (Mean)

Difference = 73 g

n = 29

n = 35

Example 6: A multiplot.

> op<-par(mfrow=c(1,2)) # save old plotting options in ’op’

> x <- seq(0,2,by=0.1)

> plot(x,2*x,type="l")

> plot(x,x^2,type="l")

> mtext("A linear and a quadratic function",outer=TRUE,side=3,line=-2,cex=2)

> par(op) # reset plotting options

0 1 2 3 4

0
2

4
6

8

x

2
*

x

0 1 2 3 4

0
5

10
15

x

x^
2

A linear and a quadratic function

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 50

4.5 Devices

Having produced a nice plot, the next step is often to store the plot in a pdf-file. Here is how to
do this.

> plot(...) # Begin a plot with an high-level plotting function such as plot()

> ... # Further low-level plotting function enrich the plot

After you are finished with the plot:

> dev.print(device=pdf, file="filename.pdf")

Now the file filename.pdf contains the same plot which you saw on the screen. The rest of the
subsection explains further means of plotting into files.

Plots can be printed into windows and into files. The word ’device’ is used to refer both to
windows and to files. The command dev.new() opens a window which becomes the active device.
At any time there is exactly one active device (or no device at all). All graphical operations occur
on the active device. The command plot.new() is used to delete all contents of the active device
(starts a new plot). If there is no active device, then plot.new() opens a window which becomes
the active device. All high-level plotting functions first of all call plot.new(). So if you plot two
graphs with plot(), then the second graph overwrites the first graph. If you wish to view both
graphs simultaneously, then call dev.new() before executing the second plot() command. There is
a list of open devices, and this is considered as a circular numbered list. The device with number
1 is always the ’null device’ which is really a placeholder; any attempt to use it will open a new
device. The following list of commands enables you to handle this device list.

dev.new(height=7,width=7) Opens a new window which then becomes the active device. The
default size is a 7 inches square.

dev.off() Closes the active device. The next device in the device list then becomes active.

graphics.off() Closes all open devices.

plot.new() Deletes all contents of the active device. If no device is open, then plot.new() opens
a new window which becomes the active device.

dev.set(n) Make the device with number n the active device.

dev.prev()

dev.cur()

dev.next() Return the number and name of the previous/current/next device in the list of de-
vices.

dev.list() List all open devices.

dev.print(device=dev,file="filename") Copy the content of the active device to the file ”file-
name”. The type of output is specified by the device dev which can be e.g. pdf, postscript,
jpeg, bitmap, pictex, xfig, bmp, png.

dev.copy(device=dev,file="filename") Same as dev.print() but does not close the device.

dev.print(which=n) Copy the content of the active device to the device with number n

dev.copy2pdf(file="filename.pdf") Same as dev.copy(device=pdf,file=”filename.pdf”).

dev.copy2eps(file="filename.eps") Copies contents of the active device into an eps-file.

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 51

An alternative to copying a device to a file is to plot directly into a file. This is useful when
writing R scripts. For example, pdf(”filename.pdf”) opens the pdf-file filename.pdf as pdf-device.
All graphical operations occur then directly on this pdf-device. Note that the pdf-file will often
only be created when the pdf-device is closed with dev.off(). Here is a list of commands which
open devices.

pdf("filename ") Opens the pdf-file filename as device.

postscript("filename ") Opens the postscript-file filename as device.

jpeg("filename ") Opens the jpeg-file filename as device.

bitmap("filename ") Opens the bitmap-file filename as device.

tiff("filename ") Opens the tiff-file filename as device.

xfig("filename ") Opens the xfig-file filename as device.

pictex("filename ") Opens the pictex-file filename as device.

bmp("filename ") Opens the Windows bitmap-file filename as device.

windows() On Windows: opens a graphic window.

X11() On Unix/Linux: opens a graphic window.

quartz() On Macs: opens a graphic window.

Producing a nice plot rarely works out on the first attempt. Unfortunately there is no way to
“undo” a plotting command. The best solution is to type the commands into a script file and then
execute the script. Alternatively you might want to store intermediate states before continuing.
Here is an example.

> plot(exp,from=0,to=3)

> dev.copy(dev.new) # Save current plot by copying it into a new window

X11cairo

3

> text(2,5,"text at wrong position")

To "undo" all plotting commands since the last saving, close the current

plotting window and make the last intermediate state the active plot window.

> dev.set(dev.prev())

> dev.copy(dev.new) # Again save the current plot

X11cairo

3

> text(1,10,"text at good position")

4.6 A list of high-level plotting commands

Further useful high-level plotting functions are listed in the following table.

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 52

Function Description
barplot() Visualizes a vector with bars
boxplot() Box- and whisker plot
contour() The contour of a surface is plotted in 2D
coplot() Conditioning-Plots
dotchart() Plots the locations of vector elements on the real line
hist() Histogram
image() 3D-data is visualised with colors
mosaicplot() Plot in form of a mosaic
pairs() Produces a matrix of scatterplots
persp() 3D-plot of surfaces
pie() Circular pie-chart
qqplot() Quantile-quantile plot

> x <- rnorm(50)

> dotchart(x) # plots the points of x

> qqnorm(x) # plots the sample quantiles of x against the qunatiles of

the standard normal distribution

> qqline(x) # adds a line which passes through the first and third quartiles

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

−2 −1 0 1 2 3

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

> library(mvtnorm) # library for multivariate normal and t distribution

> x <- seq(from=-2, to=2, by=0.1)

> y <- x

> z <- matrix(nrow=length(x), ncol=length(y), data=0)

> for (i in 1:nrow(z)) for (j in 1:ncol(z))

> z[i,j] <- dmvnorm(cbind(x[i], y[j]))

> image(x,y,z)

> contour(x,y,z)

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 53

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

 0.02

 0.02

 0.02

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

−2 −1 0 1 2

−
2

−
1

0
1

2

> persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")

> library(lattice) # lattice provides several high-level plotting functions

> trellis.device()

> wireframe(z,shade=TRUE) # wireframe is in the library lattice

x

y

z

row
column

z

> data(volcano) # load volcano data, see ?volcano

> wireframe(volcano,shade=TRUE,apsect=c(61/87,0.4),light.source=c(10,0,10))

The next example uses cumsum() which sums more and more indeces

> cumsum(1:7) # 1 1+2 1+2+3 1+2+3+4 1+2+3+4+5 1+2+3+4+5+6 1+2+3+4+5+6+7

[1] 1 3 6 10 15 21 28

> cumsum(c(5,2,9,3)) # 5 5+2 5+2+9 5+2+9+3

[1] 5 7 16 19

An example showing how to fill between curves.

> par(bg="white")

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 54

> n <- 500

> x <- c(0,cumsum(rnorm(n)))

> y <- c(0,cumsum(rnorm(n)))

> xx <- c(0:n, n:0)

> yy <- c(x, rev(y))

> plot(xx, yy, type="n", xlab="Time", ylab="Distance")

> polygon(xx, yy, col="gray")

> title("Distance Between Brownian Motions")

row
column

volcano

0 100 200 300 400 500

−
20

−
10

0
10

20

Time

D
is

ta
nc

e

Distance Between Brownian Motions

Further examples of the graphical capabilities of R can be viewed with

> demo(graphics)

> demo(image)

> demo(persp)

> demo(plotmath)

There are many more high-level plotting functions in the lattice library (barchart bwplot cloud
contourplot densityplot dotplot histogram levelplot parallel piechart qq qqmath rfs splom stripplot
tmd wireframe xyplot). If you wish to get an overview of the features of these functions, try the
following command.

> demo(lattice)

R has no graphic engine and is therefore not capable of features like rotating 3D figures. To be
accurate, there are commands rotate.cloud(), rotate.persp() and rotate.wireframe() in
the library ’TeachingDemos’. However these are very slow.

4.7 Displaying multivariate data

R provides two very useful functions for representing multivariate data. If x is a numeric matrix
or data frame, the command

> pairs(x)

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 55

produces a pairwise scatterplot matrix of the variables defined by the columns of x, that is, every
column of x is plotted against every other column of x and the resulting plots are arranged in a
matrix with plot scales constant over the rows and columns of the matrix.

> rent <- read.table("miete03.asc",header=TRUE)

> attach(rent)

> pairs(cbind(nm,wfl), labels=c("rent","living space"))

> pairs(cbind(nm,nmqm), labels=c("rent","net rent per square meter"),

+ panel=panel.smooth)

rent

50 100 150

50
0

10
00

15
00

●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●
●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
● ●

●

●

●

●

●

●

●
● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

● ●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

500 1000 1500

50
10

0
15

0

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●
● ● ●

●

●

●
● ● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●
●

●●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

living space

rent

5 10 15 20

50
0

10
00

15
00

●●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●
●●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

● ●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●
●●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

● ●

●●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

500 1000 1500

5
10

15
20

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

● ●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●● ●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●●
●

●●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

● ●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

● ●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

net rent per square meter

When three or four variables are involved a coplot may be more enlightening. If a and b
are numeric vectors and c is a numeric vector or factor object (all of the same length), then the
command

> coplot(a ~ b | c)

produces a number of scatterplots of a against b for given values of c. If c is a factor, this simply
means that a is plotted against b for every level of c. When c is numeric, it is divided into a
number of conditioning intervals and for each interval a is plotted against b for values of c within
the interval. See ?coplot for more Details. You can also use two given variables with a command
like

> coplot(a ~ b | c * d)

which produces scatterplots of a against b for every joint conditioning interval of c and d. The
coplot() and pairs() function both take an argument panel= which can be used to customize the
type of plot which appears in each panel. The default is points() to produce a scatterplot but by
supplying some other low-level graphics function of two vectors x and y as the value of panel=
you can produce any type of plot you wish. An example panel function useful for coplots is
panel.smooth.

> coplot(nm~wfl | as.factor(rooms))

> coplot(nm~wfl | as.factor(rooms)*as.factor(badextra), panel=panel.smooth)

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 56

●

●
●

●

●

●
●● ●

●

●
●

●●

●●
●

●
●
●
●

●

● ●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●●●

●

●●
●
●●

●

●●
●

●
●

●

●

●

●

●●
●

●

●● ●

●

●
●

●
● ●●

●●●
●

●
●

●

● ●●●

●● ●
●
●
●
●●●

●

●
●

●

●
●●

●
●
●

●
●

●

●

●●

●●

●
●

●

●

●
●●

●
●●
●

● ●

●●

●

●●
●
●
●●

●

●

●
● ●●

●●●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

● ●●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●●

●
●● ●●

●●

●
●

●
● ●●

●
●●●

●

●
●●● ●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●
● ● ●●

●

50
0

10
00

15
00

●●

●

●

●
●●

●

●
●

●

●
●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●●

●

●

● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●●
●

●

●

●
●

●
●

●●

●

●

●

●

● ●

●

●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●
●●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●●

● ●

●
●

●
●

●●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●●
●

●
● ●

●

●
●

●

●●
●

●● ●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

● ●
●

●●

●

●
●
●

●

●
●

● ●

●●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●
●

● ●

●

●

●

●●●
●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●
● ●

●
●

●

●

●

●
●●

●

● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●●

●
● ●

●

●

●

●

●●
●●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●
●

●
●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●● ●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●●

●
●●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●
●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●
●

●●
●

●

●

●

●
●
●

●

50 100 150

●●

●
●

●

●

●

● ●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●
●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

● ●

●

● ●
●

●

●

●
●

●●
●

●

●

●

● ●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

50 100 150

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

50 100 150

50
0

10
00

15
00

wfl

nm

1

2

3

4

5

6

Given : as.factor(rooms)

●

●
●

●

●

●
●●
●

●

●
●●

●●
●

●
●
●
●

●

●●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●

●

●●●

●
●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●●

●

●●
●
●●

●

●●
●
●

●

●

●

●

●

●●
●

●

●●●

●

●
●

●
● ●●

●●●

●
●
●

●

●●●●
● ●

●
●
●
●●●

●

●
●

●

●
●●
●

●
●
●
●

●

●

●●

●●

●
●

●

●

●
●●

●
●●
●

●●

●●

●

●●
●
●
●●

●

●

●
●●●

●●●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●●●
●
●
●

●
●

●

●
●

●
●

●
●

●

●
●●●● ●●
●●

●
●

●
●●●

●
●●●

●

●
●●● ●

●

●

●

●
●

●

●●

●
●
●

●
●

●

●
●●●●
●

50
0

10
00

15
00

●●
●

●

●●

●

●
●

●
●●

●

●

●

●●

●

●●

●

●
●
●

●

●

●

●

●●

●

●

●

●●
●●

●●

●
●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●
●
●

●

●
●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●● ●
●●

●●

●

●

●
●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●
●●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●
●●

●

●
●

●

●●

●●●

●●

●

● ●

●●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

● ●
●

●●

●

●
●
●

●

●
●

●●

●●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

● ●

●

●

●

●●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●
●●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●●

●

●●

●

●

●

●

●●
●●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●●
●

●●
●

●

●

●

●
●
●

●

50 100

●

●
●

●

●

● ●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●
●

●

●

●

● ●●●
●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●
●

●
● ●

●

●

●

●
●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

● ●

●

● ●
●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

50 100

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

50 100

●

●

●

●

●

●

50 100

●

●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

50 100

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

50 100

●

●

●

●

50
0

10
00

15
00

wfl

nm

1

2

3

4

5

6

Given : as.factor(rooms)

0

1

G
iv

en
 :

as
.fa

ct
or

(b
ad

ex
tr

a)

4.8 Arguments to high-level plotting functions

High-level plotting functions take a large number of arguments. The list of arguments is included
in the help page of par(), see ?par. For convenience this list is included below. You are not
expected to learn these options. Reading through it, however, is recommended.

’add’ Forces the function to act as a low-level graphics function, superimposing the plot on the
current plot (does not work reliably).

’adj’ The value of ’adj’ determines the way in which text strings are justified in ’text’, ’mtext’
and ’title’. A value of ’0’ produces left-justified text, ’0.5’ (the default) centred text and
’1’ right-justified text. (Any value in [0, 1] is allowed, and on most devices values outside
that interval will also work.) Note that the ’adj’ argument of ’text’ also allows ’adj = c(x,
y)’ for different adjustment in x- and y- directions. Note that whereas for ’text’ it refers to
positioning of text about a point, for ’mtext’ and ’title’ it controls placement within the plot
or device region.

’ann’ If set to ’FALSE’, high-level plotting functions calling ’plot.default’ do not annotate the plots
they produce with axis titles and overall titles. The default is to do annotation.

’ask’ logical. If ’TRUE’ (and the R session is interactive) the user is asked for input, before a new
figure is drawn. As this applies to the device, it also affects output by packages ’grid’ and
’lattice’. It can be set even on non-screen devices but may have no effect there.

’bg’ The color to be used for the background of the device region. When called from ’par()’ it
also sets ’new=FALSE’. See ?colours() for suitable values. For many devices the initial
value is set from the ’bg’ argument of the device, and for the rest it is normally ’”white”’.

Note that some graphics functions such as ’plot.default’ and ’points’ have an argument of
this name with a different meaning.

’bty’ A character string which determined the type of ’box’ which is drawn about plots. If ’bty’
is one of ’”o”’ (the default), ’”l”’, ’”7”’, ’”c”’, ’”u”’, or ’”]”’ the resulting box resembles the
corresponding upper case letter. A value of ’”n”’ suppresses the box.

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 57

’cex’ A numerical value giving the amount by which plotting text and symbols should be magnified
relative to the default. Note that some graphics functions such as ’plot.default’ have an
argument of this name which multiplies this graphical parameter, and some functions

such as ’points’ accept a vector of values which are recycled. Other uses will take just the
first value if a vector of length greater than one is supplied.

This starts as ’1’ when a device is opened, and is reset when the layout is changed, e.g. by
setting ’mfrow’.

’cex.axis’ The magnification to be used for axis annotation relative to the current setting of ’cex’.

’cex.lab’ The magnification to be used for x and y labels relative to the current setting of ’cex’.

’cex.main’ The magnification to be used for main titles relative to the current setting of ’cex’.

’cex.sub’ The magnification to be used for sub-titles relative to the current setting of ’cex’.

’cin’ Character size ’(width, height)’ in inches. These are the same measurements as ’cra’, ex-
pressed in different units.

’col’ A specification for the default plotting color. For a list of available colours, see ?colours()

or ?colors(). (Some functions such as ’lines’ accept a vector of values which are recycled.
Other uses will take just the first value if a vector of length greater than one is supplied.)

’col.axis’ The color to be used for axis annotation. Defaults to ’”black”’.

’col.lab’ The color to be used for x and y labels. Defaults to ’”black”’.

’col.main’ The color to be used for plot main titles. Defaults to ’”black”’.

’col.sub’ The color to be used for plot sub-titles. Defaults to ’”black”’.

’cra’ Size of default character ’(width, height)’ in ’rasters’ (pixels). Some devices have no concept
of pixels and so assume an arbitrary pixel size, usually 1/72 inch. These are the same
measurements as ’cin’, expressed in different units.

’crt’ A numerical value specifying (in degrees) how single characters should be rotated. It is
unwise to expect values other than multiples of 90 to work. Compare with ’srt’ which does
string rotation.

’csi’ Height of (default-sized) characters in inches. The same as ’par(”cin”)[2]’.

’cxy’ Size of default character ’(width, height)’ in user coordinate units.
’par(”cxy”)’ is ’par(”cin”)/par(”pin”)’ scaled to user coordinates. Note that ’c(strwidth(ch),
strheight(ch))’ for a given string ’ch’ is usually much more precise.

’din’ The device dimensions, ’(width,height)’, in inches.

’err’ (Unimplemented ; R is silent when points outside the plot region are not plotted.) The
degree of error reporting desired.

’family’ The name of a font family for drawing text. The maximum allowed length is 200 bytes.
This name gets mapped by each graphics device to a device-specific font description. The
default value is ’””’ which means that the default device fonts will be used (and what those
are should be listed on the help page for the device). Standard values are ’”serif”’, ’”sans”’
and ’”mono”’, and the Hershey font families are also available. (Different devices may define
others, and some devices will ignore this setting completely.) This can be specified inline for
’text’.

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 58

’fg’ The color to be used for the foreground of plots. This is the default color used for things like
axes and boxes around plots. When called from ’par()’ this also sets parameter ’col’ to the
same value. See ?colours(). A few devices have an argument to set the initial value, which
is otherwise ’”black”’.

’fig’ A numerical vector of the form ’c(x1, x2, y1, y2)’ which gives the (NDC) coordinates of the
figure region in the display region of the device. If you set this, unlike S, you start a new
plot, so to add to an existing plot use ’new=TRUE’ as well.

’fin’ The figure region dimensions, ’(width,height)’, in inches. If you set this, unlike S, you start
a new plot.

’font’ An integer which specifies which font to use for text. If possible, device drivers arrange so
that 1 corresponds to plain text (the default), 2 to bold face, 3 to italic and 4 to bold italic.
Also, font 5 is expected to be the symbol font, in Adobe symbol encoding. On some devices
font families can be selected by ’family’ to choose different sets of 5 fonts.

’font.axis’ The font to be used for axis annotation.

’font.lab’ The font to be used for x and y labels.

’font.main’ The font to be used for plot main titles.

’font.sub’ The font to be used for plot sub-titles.

’lab’ A numerical vector of the form ’c(x, y, len)’ which modifies the default way that axes are
annotated. The values of ’x’ and ’y’ give the (approximate) number of tickmarks on the x
and y axes and ’len’ specifies the label length. The default is ’c(5, 5, 7)’. Note that this only
affects the way the parameters ’xaxp’ and ’yaxp’ are set when the user coordinate system is
set up, and is not consulted when axes are drawn. ’len’ is unimplemented in R.

’las’ numeric in 0,1,2,3; the style of axis labels.

0: always parallel to the axis [default],

1: always horizontal,

2: always perpendicular to the axis,

3: always vertical.

Also supported by ’mtext’. Note that other string/character rotation (via argument ’srt’ to
’par’) does not affect the axis labels.

’lend’ The line end style. This can be specified as an integer or string:

’0’ and ’”round”’ mean rounded line caps [default];

’1’ and ’”butt”’ mean butt line caps;

’2’ and ’”square”’ mean square line caps.

’lheight’ The line height multiplier. The height of a line of text (used to vertically space multi-line
text) is found by multiplying the character height both by the current character expansion
and by the line height multiplier. Default value is 1. Used in ’text’ and ’strheight’.

’ljoin’ The line join style. This can be specified as an integer or string:

’0’ and ’”round”’ mean rounded line joins [default];

’1’ and ’”mitre”’ mean mitred line joins;

’2’ and ’”bevel”’ mean bevelled line joins.

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 59

’lmitre’ The line mitre limit. This controls when mitred line joins are automatically converted into
bevelled line joins. The value must be larger than 1 and the default is 10. Not all devices
will honour this setting.

’lty’ The line type. Line types can either be specified as an integer (0=blank, 1=solid (default),
2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings
’”blank”’, ’”solid”’, ’”dashed”’, ’”dotted”’, ’”dotdash”’, ’”longdash”’, or ’”twodash”’, where
’”blank”’ uses ’invisible lines’ (i.e., does not draw them).

Alternatively, a string of up to 8 characters (from ’c(1:9, ”A”:”F”)’) may be given, giving
the length of line segments which are alternatively drawn and skipped.

Some functions such as ’lines’ accept a vector of values which are recycled. Other uses will
take just the first value if a vector of length greater than one is supplied.

’lwd’ The line width, a positive number, defaulting to ’1’. The interpretation is device-specific,
and some devices do not implement line widths less than one. (See the help on the device
for details of the interpretation.)

Some functions such as ’lines’ accept a vector of values which are recycled. Other uses will
take just the first value if a vector of length greater than one is supplied.

’mai’ A numerical vector of the form ’c(bottom, left, top, right)’ which gives the margin size
specified in inches.

’main’ Figure title, placed at the top of the plot in a large font.

’mar’ A numerical vector of the form ’c(bottom, left, top, right)’ which gives the number of lines
of margin to be specified on the four sides of the plot. The default is ’c(5, 4, 4, 2) + 0.1’.

’mex’ ’mex’ is a character size expansion factor which is used to describe coordinates in the margins
of plots. Note that this does not change the font size, rather specifies the size of font (as a
multiple of ’csi’) used to convert between ’mar’ and ’mai’, and between ’oma’ and ’omi’.

This starts as ’1’ when the device is opened, and is reset when the layout is changed (alongside
resetting ’cex’).

’mfcol’

’mfrow’ A vector of the form ’c(nr, nc)’. Subsequent figures will be drawn in an ’nr’-by-’nc’ array on
the device by columns (’mfcol’), or rows (’mfrow’), respectively.

In a layout with exactly two rows and columns the base value of ’”cex”’ is reduced by a factor
of 0.83: if there are three or more of either rows or columns, the reduction factor is 0.66.
Setting a layout resets the base value of ’cex’ and that of ’mex’ to ’1’.

If either of these is queried it will give the current layout, so querying cannot tell you the
order the array will be filled.

Consider the alternatives, ’layout’ and ’split.screen’.

’mfg’ A numerical vector of the form ’c(i, j)’ where ’i’ and ’j’ indicate which figure in an array
of figures is to be drawn next (if setting) or is being drawn (if enquiring). The array must
already have been set by ’mfcol’ or ’mfrow’.

For compatibility with S, the form ’c(i, j, nr, nc)’ is also accepted, when ’nr’ and ’nc’ should
be the current number of rows and number of columns. Mismatches will be ignored, with a
warning.

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 60

’mgp’ The margin line (in ’mex’ units) for the axis title, axis labels and axis line. Note that ’mgp[1]’
affects ’title’ whereas ’mgp[2:3]’ affect ’axis’. The default is ’c(3, 1, 0)’.

’new’ logical, defaulting to ’FALSE’. If set to ’TRUE’, the next high-level plotting command (actu-
ally ’plot.new’) should not clean the frame before drawing as if it was on a * new * device .
It is an error (ignored with a warning) to try to use ’new=TRUE’ on a device that does not
currently contain a high-level plot.

’oma’ A vector of the form ’c(bottom, left, top, right)’ giving the size of the outer margins in lines
of text.

’omd’ A vector of the form ’c(x1, x2, y1, y2)’ giving the region inside outer margins in NDC (=
normalised device coordinates), i.e., as fraction (in [0,1]) of the device region.

’omi’ A vector of the form ’c(bottom, left, top, right)’ giving the size of the outer margins in inches.

’pch’ Either an integer specifying a symbol or a single character to be used as the default in plotting
points. See ?points for possible values and their interpretation. Note that only integers and
single-character strings can be set as a graphics parameter (and not ’NA’ nor ’NULL’).

’pin’ The current plot dimensions, ’(width,height)’, in inches.

’plt’ A vector of the form ’c(x1, x2, y1, y2)’ giving the coordinates of the plot region as fractions
of the current figure region.

’ps’ integer; the point size of text (but not symbols). Unlike the ’pointsize’ argument of most
devices, this does not change the relationship between ’mar’ and ’mai’ (nor ’oma’ and ’omi’).

What is meant by ’point size’ is device-specific, but most devices mean a multiple of 1bp,
that is 1/72 of an inch.

’pty’ A character specifying the type of plot region to be used; ’”s”’ generates a square plotting
region and ’”m”’ generates the maximal plotting region.

’smo’ (Unimplemented) a value which indicates how smooth circles and circular arcs should be.

’srt’ The string rotation in degrees. See the comment about ’crt’. Only supported by ’text’.

’sub’ Sub-title, placed just below the x-axis in a smaller font.

’tck’ The length of tick marks as a fraction of the smaller of the width or height of the plotting
region. If tck >= 0.5 it is interpreted as a fraction of the relevant side, so if tck =1 grid
lines are drawn. The default setting (tck = NA) is to use tcl = -0.5.

’tcl’ The length of tick marks as a fraction of the height of a line of text. The default value is
’-0.5’; setting ’tcl = NA’ sets ’tck = -0.01’ which is S’ default.

’type’ The type= argument controls the type of plot produced, as follows:

type="p" Plot individual points (the default)

type="l" Plot lines

type="b" Plot points connected by lines (both)

type="o" Plot points overlaid by lines

type="h" Plot vertical lines from points to the zero axis (high-density)

c© M. Hutzenthaler, R course, March 1, 2012

4 PLOTTING 61

type="s"

type="S" Step-function plots. In the first form, the top of the vertical defines the point; in the
second, the bottom.

type="n" No plotting at all. However axes are still drawn (by default) and the coordinate system is
set up according to the data. Ideal for creating plots with subsequent low-level graphics
functions.

’usr’ A vector of the form ’c(x1, x2, y1, y2)’ giving the extremes of the user coordinates of the
plotting region. When a logarithmic scale is in use (i.e., par("xlog") is true, see below),
then the x-limits will be 10^par("usr")[1:2]. Similarly for the y-axis.

’xaxp’ A vector of the form ’c(x1, x2, n)’ giving the coordinates of the extreme tick marks and the
number of intervals between tick-marks when par("xlog") is false. Otherwise, when log
coordinates are active, the three values have a different meaning: For a small range, ’n’ is
negative , and the ticks are as in the linear case, otherwise, ’n’ is in ’1:3’, specifying a case

number, and ’x1’ and ’x2’ are the lowest and highest power of 10 inside the user coordinates,
10^par("usr")[1:2]. (The ’”usr”’ coordinates are log10-transformed here!)

n=1 will produce tick marks at 10^j for integer j,

n=2 gives marks k 10^j with k in 1, 5,

n=3 gives marks k 10^j with k in 1, 2, 5.

See ’axTicks()’ for a pure R implementation of this.

This parameter is reset when a user coordinate system is set up, for example by starting a
new page or by calling ’plot.window’ or setting ’par(”usr”)’: ’n’ is taken from ’par(”lab”)’.
It affects the default behaviour of subsequent calls to ’axis’ for sides 1 or 3.

’xaxs’ The style of axis interval calculation to be used for the x-axis. Possible values are ’”r”’, ’”i”’,
’”e”’, ’”s”’, ’”d”’. The styles are generally controlled by the range of data or ’xlim’, if given.
Style ’”r”’ (regular) first extends the data range by 4 percent at each end and then finds an
axis with pretty labels that fits within the extended range. Style ’”i”’ (internal) just finds an
axis with pretty labels that fits within the original data range. Style ’”s”’ (standard) finds
an axis with pretty labels within which the original data range fits. Style ’”e”’ (extended) is
like style ’”s”’, except that it is also ensures that there is room for plotting symbols within
the bounding box. Style ’”d”’ (direct) specifies that the current axis should be used on
subsequent plots. (Only ’”r”’ and ’”i”’ styles are currently implemented)

’xaxt’ A character which specifies the x axis type. Specifying ’”n”’ suppresses plotting of the axis.
The standard value is ’”s”’: for compatibility with S values ’”l”’ and ’”t”’ are accepted but
are equivalent to ’”s”’: any value other than ’”n”’ implies plotting.

’xlab’ Axis labels for the x axes.

’xlog’ A logical value (see ’log’ in ’plot.default’). If ’TRUE’, a logarithmic scale is in use (e.g., after
’plot(*, log = ”x”)’). For a new device, it defaults to ’FALSE’, i.e., linear scale.

’xpd’ A logical value or ’NA’. If ’FALSE’, all plotting is clipped to the plot region, if ’TRUE’,
all plotting is clipped to the figure region, and if ’NA’, all plotting is clipped to the device
region. See also ’clip’.

’yaxp’ A vector of the form ’c(y1, y2, n)’ giving the coordinates of the extreme tick marks and the
number of intervals between tick-marks unless for log coordinates, see ’xaxp’ above.

c© M. Hutzenthaler, R course, March 1, 2012

5 SOME STATISTICAL TESTS 62

’yaxs’ The style of axis interval calculation to be used for the y-axis. See ’xaxs’ above.

’yaxt’ A character which specifies the y axis type. Specifying ’”n”’ suppresses plotting.

’ylab’ Axis labels for the x axes.

’ylog’ A logical value; see ’xlog’ above.

5 Some statistical tests

5.1 Theory of statistical tests

• You want to support a hypothesis (e.g. a medication is effective)

• Assuming that measurements are subject to randomness, some pessimist could always claim
that the signal in your data is purely random (“that all 20 patients recovered might have
happened by chance”)

• In order to refute the pessimist, assume that he is right and show that the observed data are
very unlikely under this assumption.

In statistical language, the opinion of the pessimist is called null hypothesis which generally
claims that ”observation is due to randomness” and is formulated more precisely for every test,
e.g., H0: the medication has the same effect as placebo. Procedure of a statistical test:

• Formulate the null hypothesis, e.g., H0: the medication has the same effect as placebo.

• Show that the observation and everything more ’extreme’ is sufficiently unlikely under this
null hypothesis. Scientists have agreed that it suffices that this probability is at most 5%.

• This refutes the pessimist. Statistical language: We reject the null hypothesis on the signifi-
cance level 5%.

The probability of the observation and everything more ’extreme’ under the null hypothesis is
called p-value. More formally

p− value = P (observation and everything more ’extreme’ |H0 is true) .

So a p-value of 2% means that if the pessimist is right, then only 2 out of 100 experiments result in
such an observation (on average). Note that we did not disprove the pessimist. The null hypotheis
could still be true. However, if the null hypothesis is true, then it is unlikely to get such an
observation.

If the p-value is above the significance level, p-value= 8% say, then we cannot refute the null
hypothesis on the 5%-level. Of course this does in no way ’prove’ the null hypothesis. Not being
able to reject the null hypothesis is rather like being undecided, having no opinion.

The following two subsections give two important tests.

5.2 Test for a difference in mean: t-test

What is given? Independent observations (x1, . . . , xn) and (y1, . . . , ym).

Null hypothesis: x and y are samples from distributions having the same mean.

Test: t-test

R command: t.test(x, y)

c© M. Hutzenthaler, R course, March 1, 2012

5 SOME STATISTICAL TESTS 63

Idea of the test: If the sample means are too far apart, then reject the null hypothesis.

The t-test is an approximative test, the test statistic is only approximatively t-distributed. Fortu-
nately, the test rather robust. The test works also for small sample sizes quite fine. The t-test is
only sensible to the violation of independence. So if the samples are dependent, then be careful.

Example: In contrast to the common opinion, there are not only green marsians but also red and
blue marsians. The file ’mars.txt’ contains the height (in cm) and the color of all 42 marsians
which have been found in the last 50 years. We wish to support the hypothesis that the height of
green marsians is different on average from the height of blue marsians.

> mars <- read.table("mars.txt",header=TRUE)

> head(mars)

size color

1 65.67974 red

2 65.90436 red

3 67.34730 red

4 60.42924 red

5 55.34526 red

6 62.85024 red

> attach(mars)

> t.test(size[color=="green"],size[color=="blue"])

Two Sample t-test

data: size[color == "green"] and size[color == "blue"]

t = -3.4244, df = 19.419, p-value = 0.002775

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-16.875514 -4.083647

sample estimates:

mean of x mean of y

60.86840 71.34798

Answer: We reject the null hypothesis that green and blue marsians have the same height on
average (5% significance level). Here we used an unpaired t-test, as there is no dependence
between the two samples.

Here is an example for a paired t-test. We are given the wear of shoes of materials A and B
for one foot of each of ten boys. The two samples are now correlated through the boy who wore
the respective shoe. Some boys cause higher wear and some boys smaller wear. Thus we need to
apply the paired t-test.

> data(shoes,package=’MASS’)

> attach(shoes)

> head(shoes)

$A

[1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3

$B

[1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6

c© M. Hutzenthaler, R course, March 1, 2012

5 SOME STATISTICAL TESTS 64

> t.test(A,B,paired=TRUE)

Paired t-test

data: A and B

t = -3.3489, df = 9, p-value = 0.008539

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.6869539 -0.1330461

sample estimates:

mean of the differences

-0.41

Answer: We reject the null hypothesis that the two materials A and B are equally good on average
(5% significance level).

5.3 Test for dependence

It depends on the type of variable which test to use:

• variables have nominal values (no ordering, e.g., eye color or gender)

• variables have ordinal values (values are ordered but not continuous, e.g. result of dice, age
in years ∈ N)

• variables have continous values (any value in some interval is possible, e.g. body height, age
∈ [0,∞))

5.3.1 Nominal variables (count data)

Paired observations (X1, Y1), . . . , (Xn, Yn). Arrange observations as contingency table. Example:
X = eye color, Y = hair color

blond brown black total

blue 47 42 8 97
brown 3 60 33 96
green 8 15 3 26

total 58 117 44 219

What is given? Pairwise observations (x1, y1), (x2, y2), . . . , (xn, yn)

Null hypothesis: x and y are independent

Test: χ2-test for independence

R command: chisq.test(x, y) or chisq.test(contingency.table)

Idea of the test: Calculate the expected abundancies under the assumption of independence. If
the observed abundancies deviate too much from the expected abundancies, then reject the null
hypothesis.

The χ2 test for independence is an approximative test, the test statistic is only approximatively
χ2-distributed. This test should only be applied, if the following condition is statisfied. Let nkl

c© M. Hutzenthaler, R course, March 1, 2012

5 SOME STATISTICAL TESTS 65

be the entries of the contingency table. Let nk· :=
∑
l nkl be the row sums, let n·l :=

∑
k nkl be

the column sums and let n :=
∑
k

∑
l nkl be the total sum. Then the expected abundancies are

n∗kl := nk··n·l
n .

Rule of thumb for χ2-test: All expected abundancies should be bigger than 1 and 80% of
all expected abundancies should be bigger than 5.

Example:

> contingency <- matrix(c(47,3,8,42,60,15,8,33,3), nrow=3)

> chisq.test(contingency)$expected

[,1] [,2] [,3]

[1,] 25.689498 51.82192 19.488584

[2,] 25.424658 51.28767 19.287671

[3,] 6.885845 13.89041 5.223744

expected abundancies are all above 5, so we may apply the test

> chisq.test(contingency)

Pearson’s Chi-squared test

data: contingency

X-squared = 58.5349, df = 4, p-value = 5.892e-12

Answer: We reject the null hypothesis that eye color and hair color are independent (5% signifi-
cance level).

In the special case of 2 × 2 contingency tables, the χ2-approximation is not needed. Here you
should use Fisher’s exact test.

What is given? Pairwise observations (x1, y1), (x2, y2), . . . , (xn, yn); two categories both for x
and y

Null hypothesis: x and y are independent

Test: Fisher’s exact test for independence

R command: fisher.test(x, y) or fisher.test(contingency.table)

Example: Rosen and Jerdee (Influence of sex role stereotype on personnel decisions, J. Appl.
Psych 59, 9–14, 1974) let 48 participants of a management course look at personnel files and let
them decide whether to advance the person or not. The personnel files where identical except for
the gender (24 female, 24 male). The result was

female male
advancement 14 21

no advancement 10 3

> table <- matrix(c(14,10,21,3), nrow=2)

> fisher.test(table)

Fisher’s Exact Test for Count Data

c© M. Hutzenthaler, R course, March 1, 2012

5 SOME STATISTICAL TESTS 66

data: table

p-value = 0.04899

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.03105031 0.99446037

sample estimates:

odds ratio

0.2069884

Answer: We reject the null hypothesis that gender of the personnel and the decision for advance-
ment are independent (5% significance level).

5.3.2 Continuous variables

Here we assume that the variables could – in principle – take all values of some interval.

What is given? Pairwise observations (x1, y1), (x2, y2), . . . , (xn, yn); all values in some interval
are possible

Null hypothesis: x and y are independent

Test: Pearson’s correlation test for independence

Assumption: x and y are samples from a normal distribution

R command: cor.test(x, y)

Example: Distance needed to stop (in ft) from a certain speed (mph):

> data(cars) # cars is a dataset in the library ’datasets’, see ?cars

> attach(cars)

> str(cars)

> ?cars

> plot(speed,dist)

> cor.test(speed, dist)

Pearson’s product-moment correlation

data: speed and dist

t = 9.464, df = 48, p-value = 1.49e-12

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.6816422 0.8862036

sample estimates:

cor

0.8068949

Answer: We reject the null hypothesis that ’speed’ and ’dist’ are independent (5% significance
level).

c© M. Hutzenthaler, R course, March 1, 2012

5 SOME STATISTICAL TESTS 67

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

5.3.3 Ordinal variables

Here we assume that the observations can be ordered. In particular we assume that there are no
(at least not many) repeated values.

What is given? Pairwise observations (x1, y1), (x2, y2), . . . , (xn, yn); values can be ordered

Null hypothesis: x and y are uncorrelated

Test: Spearman’s rank correlation rho

R command: cor.test(x, y, method="spearman")

Example: Distance needed to stop (in ft) from a certain speed (mph):

> attach(cars)

> cor.test(speed, dist, method="spearman")

Spearman’s rank correlation rho

data: speed and dist

S = 3532.819, p-value = 8.825e-14

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.8303568

Warnmeldung:

In cor.test.default(speed, dist, method = "spearman") :

Kann exakte p-Werte bei Bindungen nicht berechnen

Answer: We reject the null hypothesis that ’speed’ and ’dist’ are independent (5% significance
level).

c© M. Hutzenthaler, R course, March 1, 2012

5 SOME STATISTICAL TESTS 68

5.4 The power of a test

The alternative hypothesis to the null hypothesis is called alternative (in symbols: H1). What
you want to show should be part of the alternative. Example:

H0 : µ = 0

H1 : µ 6= 0

There are two possible errors:

• A “type I error”, also known as “error of the first kind”, an “α error” or a “false positive”:
the error of rejecting the null hypothesis when it is actually true. Example: A test indicates
pregnancy although the woman is not pregnant.

• A “type II error”, also known as “error of the second kind”, an “β error” or a “false negative”:
the error of failing to reject the null hypothesis when it is actually not true. Example: A test
indicates no pregnancy although the woman is in fact pregnant.

null hypothesis H0 is true alternative H1 is true

null hypothesis not rejected correct type II error, false negative

null hypothesis rejected type I error, false positive correct

If β is the probability of a type II error, then the power of the test is defined as 1−β. If the power
of the test is 0, then the null hypothesis will never be rejected even if the alternative is true. As
we want to reject the null hypothesis, we would rather prefer a test power close to 1. For this,
the alternative H1 : µ 6= 0 is bad. The problem is that if the true value µ is extremely close to 0,
then the test has no chance to tell the difference from zero. Instead one would rather prefer an
alternative like H1 : |µ| ≥ 0.5.

In general, the test power increases with the sample size. There are functions e.g. power.t.test()
or power.fisher.test() to calculate the minimal sample size needed to achieve a given power of
the test. For details, see a statistics course.

c© M. Hutzenthaler, R course, March 1, 2012

5 SOME STATISTICAL TESTS 69

5.5 A list of statistical tests in R

Test R command Description
t-test t.test() Are the true means of two samples different?
F-test aov() Are the true means of several samples different? (balanced designs)
Chi-squared test chisq.test() test for independence of paired samples (count data)
Fisher’s exact test fisher.test() test for independence of paired samples (count data)
Spearman’s rho, Kendall’s tau cor.test() test for independence of paired samples
Wilcoxon, Mann-Whitney wilcox.test() Is the location parameter the same in two groups?
Kruskal-Wallis rank sum test kruskal.test() Is the location parameter the same in each group?
Shapiro-Wilk normality test shapiro.test() Is the sample drawn from a normal distribution?
Kolmogorov-Smirnov Test ks.test() Are two samples drawn from the same distribution?
Quade-test quade.test() Is the location parameter the same in each group? (block designs)
Friedman-test friedman.test() Is the location parameter the same in each group? (block designs)
Exact Binomial test binom.test() Exact test for the probability of success in a Bernoulli experiment
Variance test var.test() test for homogeneity of variances across two groups
Bartlett test bartlett.test() test for homogeneity of variances across groups
Fligner-Killeen test fligner.test() test for homogeneity of variances across groups
Levene’s test levene.test() test for homogeneity of variances across groups
Test of equal proportions prop.test() Are the probabilities of success the same in several groups?
Kendall’s tau, Spearman’s rho cor.test() test for independence between paired samples
Box-Pierce, Ljung-Box Box.test() tests for independence in a time series
Cochran-Mantel-Hanszel test mantelhaen.test() Are the (nominal) variables conditionally independent in each stratum?
Mood test of scale mood.test() two-sample test for a difference in scale parameters
Ansari-Bradley test ansari.test() test for a difference in scale parameters
McNemar’s Chi-squared test mcnemar.test() test for symmetry of rows and columns in a 2-dimensional contingency table
Mauchly’s test of sphericity mauchly.test() Is a Wishart-distributed covariance matrix proportional to a given matrix?
Exact Poisson test poisson.test() tests for the rate parameter in a Poisson distribution

5.6 Degrees of freedom

The phrase degrees of freedom turns up from time to time. As this concept is often unknown, we
quickly explain it. Suppose you are free to choose five values x1, x2, x3, x4, x5. Then your degree
of freedom is 5. Similarly there are five degrees of freedom in the vector

x <−c(x1, x2, x3, x4, x5).

Now let us consider the vector

v <− x−mean(x) = c(x1, x2, x3, x4, x5)−mean(x).

Here you may freely choose v1, v2, v3, v4. The value of v5, however, is then fixed. We know already
that the mean of v is equal to mean(v) = 0. So the fifth element of v is determined through
v1 + v2 + v3 + v4 + v5 = 0.

More generally if x is a vector of length n, then there are n − 1 degrees of freedom in the
vector x−mean(x). A different argument for this is that there is one parameter estimated from x
namely mean(x). This reduces the degrees of freedom by one. Hence there remain n − 1 degrees
of freedom. More generally still, we propose a formal definition of degrees of freedom:

degrees of freedom of a sample =
the sample size minus the number of parameters

estimated from the sample.

c© M. Hutzenthaler, R course, March 1, 2012

6 PROGRAMMING IN R 70

6 Programming in R

6.1 Conditional execution: if() and ifelse()

Syntax:

if (condition) { commands1 }
if (condition) { commands1 } else { commands2 }
ifelse (conditions vector, yes vector, no vector)

The commmand if() evaluates ’commands1 ’ if the logical expression ’condition’ returns TRUE.
Here ’commands1 ’ is a single command or a sequence of commands separated with ’;’. The co-
mand if()else evaluates ’commands1 ’ if the logical expression ’condition’ returns TRUE, otherwise
it evaluates ’commands2 ’. The command ifelse() returns a vector of the same length as ’condi-
tions vector ’ with elements selected from either ’yes vector ’ or ’no vector ’ depending on whether
the element of ’conditions vector ’ is TRUE or FALSE. Here are examples:

> x <- 4

> if (x == 5) { x <- x+1 } else { x <- x*2 }

> x

[1] 8

> if (x != 5 & x>3) { x <- x+1 ; 17+2 } else { x <- x*2 ; 21+5 }

[1] 19

> x

[1] 9

> y <- 1:10

> ifelse(y<6, y^2, y-1)

[1] 1 4 9 16 25 5 6 7 8 9

> z <- 6:-3

> sqrt(z) # Produces a warning

[1] 2.449490 2.236068 2.000000 1.732051 1.414214 1.000000 0.000000 NaN

[9] NaN NaN

Warning message:

In sqrt(z) : NaNs

> sqrt(ifelse(z>=0, z, NA)) # No warning

[1] 2.449490 2.236068 2.000000 1.732051 1.414214 1.000000 0.000000 NA

[9] NA NA

6.2 Loops: for(), while() and repeat()

Syntax:

for (var in set) { commands }
while (condition) { commands }
repeat { commands }

The object set is a vector, commands is a single command or a sequence of commands and var
is a variable which may be used in commands. The command for() is the R version of ’for each
element in the set do ...’. The command while() is the R version of ’as long as the condition is
TRUE do ...’. The command repeat() is the R version of ’repeat until I say break’. The command
’break’ stops any loop; control is then transferred to the first statement outside the loop. The
command ’next’ halts the processing of the current iteration and advances the looping index. Here
are examples:

c© M. Hutzenthaler, R course, March 1, 2012

6 PROGRAMMING IN R 71

> x <- 0

> for (i in 1:5) { if (i==3) { next } ; x <- x + i }

> x # i=3 is skipped, so x <- 1+2+4+5

[1] 12

> y <- 1; j <- 1

> while (y < 12 & j < 8) { y <- y*2 ; j <- j + 1}

> y; j

[1] 16

[1] 4

> z <- 3

> repeat { z<- z^2; if (z>100) { break }; print(z)}

[1] 9

[1] 81

> z # the loop stopped after 81^2, so z==81^2

[1] 6561

6.3 Examples

Let us approximate the mean of a dice. We use the command sample() for simulating a dice.
The command sample(v,n,replace=TRUE) produces a sample (random draw) of length n from
the vector v with replacement.

> x<-sample(1:6,1000,replace=TRUE)

> mean(x)

[1] 3.469

The result is close to the true value 3.5.
Let us now check that the t-test respects the significance level, that is, let us check that the

p-value of the t-test is below 0.05 in roughly 5% of the cases.

> counter <- 0

> for(i in 1:10000) {

+ if(t.test(rnorm(100),rnorm(100))$p.value <= 0.05) {

+ counter <- counter + 1

+ }

+ }

> counter/10000

[1] 0.0497

>

Indeed, the probability of the error of the first kind is close to 5%. Let’s repeat that with a shorter
sample size:

> counter <- 0

> for(i in 1:10000) {

+ if(t.test(rnorm(10),rnorm(10))$p.value <= 0.01) {

+ counter <- counter + 1

+ }

+ }

> counter/10000

[1] 0.009

Again reasonably close to the theoretical value 1%.

c© M. Hutzenthaler, R course, March 1, 2012

6 PROGRAMMING IN R 72

6.4 Executing commands from a script

Instead of typing commands in R it is often more convenient to type the commands into a file and
then execute the file with R. Files with R commands are called R scripts and are usually given the
extension ’.R’ (or ’.r’) although this is not necessary. You execute an R script with the command
source(). The argument for source() is the filename of the script (the name must be quoted). Let
’C:/Documents/R/myscript.R’ be the following R script:

cat("This is the script ’myscript.R’\n")

5+3

print(4+1)

x <- 7

if (x == 3)

{

cat("The value of x is equal to 3\n")

} else {

cat("The value of x is not equal to 3 but equal to",x,"\n")

}

for (i in list("Anton","Berta","Casper"))

{

cat(i)

cat(" ")

}

cat("\n")

Now we execute the script.

> source("C:/Documents/R/myscript.R")

This is the script ’myscript.R’

[1] 5

The value of x is not equal to 3 but equal to 7

Anton Berta Casper

If you wish to avoid entering the pathname in the command source() and if ’myscript.R’ is in the
current working directory, then it suffices to say source(”myscript.R”). If you are unsure, what
the current working directory is, use the command getwd(). You may change the current working
directory with setwd().

> source("myscript.R")

Error in file(file, "r", encoding = encoding) :

cannot open connection

Additional warning:

In file(file, "r", encoding = encoding) :

cannot open file ’myscript.R’: No such file or directory

myscript.R does not exist? Probably wrong working directory. Let’s check.

> getwd()

[1] "C:/Documents/")

> setwd("C:/Documents/R") # We need to change the working directory

> getwd()

[1] "C:/Documents/R")

> dir() # Show all files in the current directory

[1] "somepdffile.pdf" "myscript.R" "otherscript.R"

c© M. Hutzenthaler, R course, March 1, 2012

6 PROGRAMMING IN R 73

> source("myscript.R") # Now it works

This is the script ’myscript.R’

[1]

The value of x is not equal to 3 but equal to 7

Anton Berta Casper

Another way to execute the script is in Unix and Macintosh to enter ’Rscript myscript.R’ on the
shell command line.

6.5 Writing your own functions

Syntax:

myfun <− function (arg1, arg2, . . .) { commands }
This defines a function with name myfun. The function arguments arg1, arg2, . . . are then processed
with the sequence of commands commands. Use the command return() for returning a value. If
you need to return several values put them into a list and return the list.

Being defined the function can be called as myfun(expr1,expr2,...) where expr1, expr2, ... are
expressions whose values are assigned to the respective argument in the definition of the function.

> se <- function(x)

+ {

+ y<-sqrt(var(x)/length(x))

+ return(y)

+ }

> se(1:4)

[1] 0.6454972

>

> se("wrong type of argument")

[1] NA

Warning message:

In var(x) : NAs introduced by coercion

In case of an error (e.g. wrong type of arguments), use the command stop(”errormsg”) to stop the
execution of the function and to return the error message ’errormsg ’. Improved version:

> se <- function(x)

+ {

+ if (is.numeric(x)!=TRUE)

+ {

+ stop("need numeric data")

+ }

+ y<-sqrt(var(x)/length(x))

+ }

> se(1:4)

[1] 0.6454972

> se("wrong type of argument")

Error in se("wrong type of argument") : need numeric data

> se(c(NA,1:4))

[1] NA

> sum(c(NA,1:4),na.rm=TRUE)

[1] 10

c© M. Hutzenthaler, R course, March 1, 2012

6 PROGRAMMING IN R 74

In many cases arguments can be given commonly appropriate default values, in which case they
may be omitted from the call when the defaults are appropriate. Improved version:

> se <- function(x,na.rm=FALSE)

+ {

+ if (is.numeric(x)!=TRUE)

+ {

+ stop("need numeric data")

+ }

+ if (na.rm==TRUE)

+ {

+ x<-x[is.na(x)==FALSE]

+ }

+ y<-sqrt(var(x)/length(x))

+ }

> se(c(NA,1:4))

[1] NA

> se(c(NA,1:4),na.rm=TRUE)

[1] 0.6454972

> se(c(NA,1:4),TRUE)

[1] 0.6454972

> se(na.rm=TRUE,c(NA,1:4))

[1] 0.6454972

> se(TRUE,c(NA,1:4))

Error in se(TRUE,c(NA,1:4)) : argument is required to be numeric

The arguments in the call se(c(NA,1:4),TRUE) are assigned to the variables of se() in the order
specified by the definition of se(). Remembering this order of arguments is often inconvenient.
The order of arguments does not matter if you reference by name, that is, if you specify arguments
in the form ’name=object ’. Furthermore there may be both unnamed and named arguments.

Another feature of R is the ’. . . ’ argument. Thereby one can pass on arguments from one
function to another function.

> se.sq <- function(x, ...)

+ {

+ y <- se(x, ...)

+ return(y^2)

+ }

Whatever is assigned to the ’...’ argument is put into the argument list of se().

> se.sq(1:4)

[1] 0.4166667

> se.sq(c(NA,1:4))

[1] NA

> se.sq(c(NA,1:4),na.rm=TRUE)

[1] 0.4166667

If you want to return several values, then return them as vector or as list. Here is an example
which returns the confidence interval of the mean of a sample based on the normal approximation.

> ci.norm <- function(x,conf=0.95)

c© M. Hutzenthaler, R course, March 1, 2012

6 PROGRAMMING IN R 75

+ {

+ q <- qnorm(1-(1-conf)/2)

+ return(list(lower=mean(x)-q*se(x),upper=mean(x)+q*se(x)))

+ }

> ci.norm(rnorm(100))

$lower

[1] -0.1499551

$upper

[1] 0.2754680

> ci.norm(rnorm(100),conf=0.99)

$lower

[1] -0.1673693

$upper

[1] 0.2443276

Note that many commands in R (e.g. mean(), var(), median()) are functions written with
function(). Here is a modified version of the command median():

mymedian <- function(x, na.rm=FALSE)

{

if(mode(x) != "numeric")

{

stop("need numeric data")

}

if(na.rm)

{

x <- x[!is.na(x)] # remove all NA’s

} else if (any(is.na(x))) # if there is an NA, then return NA

{

return(NA)

}

n <- lenght(x)

if (n == 0) { return(NA) }

half <- (n+1)/2 # e.g. if n=6 then half=3.5 if n=7, then half=4

if (n%%2==1)

{

If n is odd, sort x until the index ’half’ is placed correctly

y <- sort(x, partial = half)[half]

} else

{

If n is even, sort x until the indices ’half’ and ’half+1’ are

placed correctly. Then return the midpoint of these two elements.

v <- sort(x,partial= c(half,half+1)) [c(half,half+1)]

y <- sum(v) / 2

}

return(y)

}

c© M. Hutzenthaler, R course, March 1, 2012

6 PROGRAMMING IN R 76

Now we execute mymedian() to see what happens. Let the definition of mymedian() be the content
of the file ’mymedian.R’ in the current directory.

> source("mymedian.R")

> mymedian(TRUE)

Error in mymedian(TRUE) : need numeric data

> mymedian(c(4:1,NA,14:11))

[1] NA

> mymedian(c(4:1,NA,14:11),na.rm=TRUE)

[1] 7.5

6.6 How to avoid slow R code

When applying your R script to a data set, you might end up waiting a long time until the script
finishes. This might even happen for medium size data sets. In that case your R code is presumably
slow. Now we explain which code is fast and which code is slow.

Here is some background knowledge. In case of a compiler language, the program code is
translated into machine readable code (’compiled’) which produces an executable file. This exe-
cutable file contains only commands which the processor directly understands. R, however, is an
interpreter language. Here your program code is not translated into machine code by a compiler.
Instead the code is ’interpreted’ by the interpreter R at run-time. So your code is translated into
machine commands each time you run your script. Obviously this results in a slower run-time
which is a disadvantage of interpreter languages. The advantage of an interpreter language is that
the type (numeric vector, integer matrix) of a variable is not needed to be specified in the script;
it is determined at run-time. This is convenient for the programmer.

Here is how you avoid slow R code. All iterations and function calls are time consuming as the
interpreter has to check for the type of the variables. If the number of iterations is small, then this
is not a problem. However, if you run through your large data set with a for()-loop, then the code
is likely to be slow. Instead try to use R commands such as operations on vectors and matrices.
Here is an example which uses the command system.time() to measure the elapsed time.

> x<-0

> for(i in 1:1000000) x <- x+i

> x

[1] 500000500000

> sum(as.numeric(1:1000000)) # as.numeric due to the small range of integers

[1] 500000500000 # much faster than previous loop

> x<-0

> system.time(for(i in 1:1e7) x <- x+i)

User System elapsed

23.809 0.092 23.928 # approx 24 seconds

> system.time(sum(as.numeric(1:1e7)))

User System elapsed

0.512 0.140 0.663 # less than a second

The reason for this difference in the run-time is that internal commands such as sum() are compiled
and optimised. Another way of avoiding loops and extensive function calls are the commands
apply(), lapply(), tapply() introduced in Subsection 6.7.

Think in whole objects such as vectors or lists and apply operations
to the whole object instead of looping through all elements.

c© M. Hutzenthaler, R course, March 1, 2012

6 PROGRAMMING IN R 77

6.7 The commands lapply() and tapply()

The command apply() and its relatives apply a function to each element of the specified object.
Here are the relatives of apply().

lapply() for vectors, ’l’ists and data frames. Returns a list
sapply() same as lapply() but sappl() tries to ’s’implify its output
apply() applies a function to each row or column of a matrix
tapply() for ’t’ables which are grouped according to factors
mapply() ’m’ultivariate version of sapply()

Examples for lapply(), sapply() and apply():

> v <- 1:4

> lapply(v,factorial) # returns list

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 6

[[4]]

[1] 24

> sapply(v,factorial) # returns vector

[1] 1 2 6 24

> L <- list(0:3, 5:8, -1:2)

> lapply(L,mean) # mean of each vector in the list

[[1]]

[1] 1.5

[[2]]

[1] 6.5

[[3]]

[1] 0.5

> sapply(L,mean)

[1] 1.5 6.5 0.5

> m <- cbind(0:3, 5:8, -1:2) ; m

[,1] [,2] [,3]

[1,] 0 5 -1

[2,] 1 6 0

[3,] 2 7 1

[4,] 3 8 2

> apply(m,2,mean) # apply ’mean’ to each column; 2 for second margin

[1] 1.5 6.5 0.5

> apply(m,1,mean) # apply ’mean’ to each row; 1 for first margin

[1] 1.333333 2.333333 3.333333 4.333333

c© M. Hutzenthaler, R course, March 1, 2012

7 LINEAR REGRESSION 78

The command tapply() is typically applied to data frames. This command is frequently used
and therefore important. To motivate its usage we begin with an example. Consider the following
data frame. Each individual is either smoker or non-smoker and belongs to one the three weight
classes 1, 2 or 3.

> riscfactors <- data.frame(weightcls=rep(3:1,c(4,4,4)),

+ smoker=rep(c(0,0,1),4), lifespan=seq(50,72,2))

> riscfactors

weightcls smoker lifespan

1 3 0 50

2 3 0 52

3 3 1 54

4 3 0 56

5 2 0 58

6 2 1 60

7 2 0 62

8 2 0 64

9 1 1 66

10 1 0 68

11 1 0 70

12 1 1 72

> attach(riscfactors)

What is the influence of the two risk factors ’weight’ and ’smoking’ on the average life span? For
example we could calculate the average lifespan for smokers and non-smokers in our self-generated
data. This could be done as follows.

> mean(lifespan[smoker==0])

[1] 60

> mean(lifespan[smoker==1])

[1] 63

However this becomes inconvenient if the factor has many values. More convenient is the command
tapply(). The following command applies the function ’mean’ to the two subvectors of lifespan
which are determined by the vector ’smoker’.

> tapply(lifespan,smoker,mean)

0 1

60 63

> tapply(lifespan,weightcls,mean) # group lifespan according to weightcls

1 2 3

69 61 53

7 Linear Regression

7.1 Introduction

Linear regression (the term was first used by Pearson, 1908) is the process of finding a straight line
that best approximates a set of points. Suppose we have two variables x and y with decimal values
(e.g. height, weights, volumes or temperatures). The variable x shall be the explanatory variable.
We think of the response variable y as depending on x or as noisy measurement of a function of

c© M. Hutzenthaler, R course, March 1, 2012

7 LINEAR REGRESSION 79

x. In accordance with the principle of parsimony, we assume this dependence to be the simplest
model of all namely the linear model:

y = a+ b·x

The parameter a is called intercept (the value of y when x = 0) and the parameter b is the slope.
Let us consider the following self-generated data. You may think of x as the amount of some

growth inhibitor and of y as the measured growth.

> x <- 0:8

> y <- c(12,10,8,11,6,7,2,3,3)

> plot(x,y)

The points are depicted in the left of the following two plots.

●

●

●

●

●

●

●

● ●

0 2 4 6 8

2
4

6
8

10
12

x

y

●

●

●

●

●

●

●

● ●

0 2 4 6 8

2
4

6
8

10
12

x

y

This is how we do linear regression ’by eye’. We look for the straight line which fits the data best.
So let us see what has happened to the response variable y. The values of y decrease from 12 to
about 2. At x = 0 we have the response variable to be about 12. So the intercept is about a = 12.
What might be the slope? The values of y decrease from 12 to about 2, so ∆y = −10. The values
of x increase from 0 to 8, so ∆x = 8. Altogether we guess the slope to be ∆y

∆x = −10
8 = 1.25. Let

us draw the line given by the linear function

y = 12− 1.25·x

into the plot of the data points, see the picture on the right-hand side. This looks like a reasonable
fit.

Now we ask R for the best fit. We wish to express that ’y is modelled as a function of x’. This
is shortly denoted in R as y ∼ x. We look for the linear model which explains y as a function of
x. The corresponding R command is lm(y ∼ x). Note that lm is short for l inear model.

> lm(y~x)

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

c© M. Hutzenthaler, R course, March 1, 2012

7 LINEAR REGRESSION 80

11.756 -1.217

So the straight line which fits the data best is given by

y = 11.756− 1.217·x.

The object returned by lm() is a very detailed list. One of its entries is ’coefficient’ which is a
vector of length 2 whose first entry is the intercept and whose second entry is the slope.

> regr.obj <- lm(y~x)

> cat("The intercept is",regr.obj$coefficient[1],"and the slope is",

+ regr.obj$coefficient[2],"\n")

The intercept is 11.75556 and the slope is -1.216667

The command coef() returns the coefficients as well. For example coef(regr.obj) is the same as
regr.obj$coefficient.

7.2 Background

We have not clarified what we mean by ’best fit’. The ’best fit’ linear model is found by minimising
the error sum of squares. More formally, (intercept, slope) are the values of (ã, b̃) which minimise

length(x)∑
i=1

(
yi − ã− b̃·xi

)2
.

Now we need to know whether the linear model is a good explanation of the data. The linear
model is supposed to explain the variance or more precisely the sum of squares

SSY <− (n− 1) ∗ var(y) =

length(y)∑
i=1

(yi −mean(y))2 =

length(y)∑
i=1

(yi)
2 − (

∑
yi)

2

n

of the vector y. Of course the linear model typically does not explain all of SSY, there remain
errors. The difference between each data point and the value predicted by the model at the same
value of x is called a residual. The following figure depicts the residuals in our data. For this we
use the R command predict() which calculates the values of the regression line at the points of x.

> fitted <- predict(regr.obj)

> plot(x,y)

> abline(regr.obj)

> for(i in 1:9){ lines(c(x[i],x[i]),c(y[i],fitted[i])) }

c© M. Hutzenthaler, R course, March 1, 2012

7 LINEAR REGRESSION 81

●

●

●

●

●

●

●

● ●

0 2 4 6 8

2
4

6
8

10
12

x

y

The linear model does not explain the sum of the squares of the residuals

SSE <−
length(x)∑
i=1

(
yi − a− b·xi

)2
where a is the intercept and b is the slope of the regression line. The explained variation is the
regression sum of squares

SSR <− SSY−SSE .

One can show that

SSR =

(
SSXY

)2
SSX

where SSXY = (n− 1)· cov(x, y), SSX = (n− 1)· var(x).

A measure of fit is the fraction of the total variation in y that is explained by the regression. The
total variation is SSY and the explained variation is SSR, so our measure of fit – let’s call it r2 –
is given by

r2 =
SSR

SSY
=
(
cor(x, y)

)2
.

The formal name of this quantity is the coefficient of determination, but most people just refer to
it as ’r squared ’. The value of r2 lies between 0 and 1. The bigger r2, the better is the fit. If the
fit is perfect, then r2 = 1. At the other extreme if x explains no variation in y at all, then r2 = 0.

> n <- length(x)

> SSY <- (n-1)*var(y) ; SSY

[1] 108.8889

> SSR <- ((n-1)*cov(x,y))^2/ ((n-1)*var(x)) ; SSR

[1] 88.81667

> SSE <- SSY-SSR ; SSE

[1] 20.07222

> SSR/SSY ; (cor(x,y))^2 # r^2

[1] 0.8156633

[1] 0.8156633

c© M. Hutzenthaler, R course, March 1, 2012

7 LINEAR REGRESSION 82

These values are now recorded in what is known as ’Anova table’. Anova is short for analysis of
variance.

Source Sum of squares Degrees of freedom Mean squares F value Pr(>F)

Regression 88.817

Error 20.072

Total 108.889

The third column is important to understand. There are n <− length(x) points in the graph. As
these points are sampled independently from the underlying distribution, there are n degrees of
freedom in the data vector y. The vector x is now considered to be fixed and therefore contributes
no degrees of freedom. In the total sum of squares SSY =

∑
(y−mean(y))2, the vector y is centred

with its mean. The resulting vector has mean 0. So the degree of freedom of the centred vector
is now n − 1 because knowing n − 1 element of a centred vector enables us to calculate the n-th
element. Consequently the degree of freedom in the total sum of squares is n− 1 (in our case 8).
A different argument for this is that there is one parameter estimated from y namely the mean
mean(y). Hence there remain n − 1 degrees of freedom. Next consider the error sum of squares
SSE =

∑
(y − a− b·x)2. Here there are two parameters estimated from y, namely a and b. Hence

there remain n− 2 degrees of freedom (in our case 7). Because of SSR = SSY−SSE there remains
n− 1− (n− 2) = 1 degree of freedom for the regression sum of squares. Another way to see this is
from SSR = SSXY2 / SSX which contains exactly one parameter which is estimated from y namely
cov(x, y).

To complete the Anova table, we enter the variances in the fourth column. Recall that

variance =
sum of squares

degree of freedom
.

The fifth column contains the F ratios. In most simple Anova tables, you divide the treatment
variance in the numerator (here the regression variance) by the error variance in the denominator.
The last column contains the probability to obtain the F ratio or a higher value by chance. The
distribution of the ratio of the mean squares is the F-distribution, see Subsection 2.1. So we obtain
the probability of having the F ratio or a higher value with the command 1-pf().

> 20.072/7

[1] 2.867429

> 108.889/8

[1] 13.61112

> 88.817/2.86746

[1] 30.9741

> 1-pf(30.9741,1,7)

[1] 0.0008460645 # the regression line is highly significant

Source Sum of squares Degrees of freedom Mean squares F value Pr(>F)

Regression 88.817 1 88.817 30.974 0.000846

Error 20.072 7 2.867

Total 108.889 8 13.611

c© M. Hutzenthaler, R course, March 1, 2012

7 LINEAR REGRESSION 83

7.3 Summary.aov() and summary()

R produces the above Anova table without the last line with the command summary.aov() which
summarises an analysis of variance model.

> summary.aov(regr.obj)

Df Sum Sq Mean Sq F value Pr(>F)

x 1 88.817 88.817 30.974 0.000846 ***

Residuals 7 20.072 2.867

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The command summary() shows more details and contains everything you need to know about the
parameters and their standard errors.

> summary(regr.obj)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-2.4556 -0.8889 -0.2389 0.9778 2.8944

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***

x -1.2167 0.2186 -5.565 0.000846 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.693 on 7 degrees of freedom

Multiple R-squared: 0.8157,djusted R-squared: 0.7893

F-statistic: 30.97 on 1 and 7 DF, p-value: 0.000846

We read off from the summary that both the estimate of the intercept and the estimate of the
slope are highly significant (at level 0.001).

Here are two extreme examples and one moderate example with self-generated data.

the first example is a decreasing line with slope -1 without noise.

> x <- 0:8

> decrease <- 8:0

> regr <- lm(decrease~x)

> regr1 <- lm(decrease~x)

> plot(x,decrease) ; abline(regr1)

> summary(regr1)

Call:

lm(formula = decrease ~ x)

Residuals:

c© M. Hutzenthaler, R course, March 1, 2012

7 LINEAR REGRESSION 84

Min 1Q Median 3Q Max

-1.724e-15 1.370e-16 2.031e-16 2.472e-16 9.006e-16

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.000e+00 4.894e-16 1.635e+16 <2e-16 ***

x -1.000e+00 1.028e-16 -9.729e+15 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 7.962e-16 on 7 degrees of freedom

Multiple R-squared: 1,djusted R-squared: 1

F-statistic: 9.465e+31 on 1 and 7 DF, p-value: < 2.2e-16

the second example is just noise which does not depend on x

> x <- seq(0,8,by=0.1)

> length(x)

[1] 81

> indpndnt <- rnorm(81,0,2)

> regr2 <- lm(indpndnt~x)

> plot(x,indpndnt) ; abline(regr2)

> summary(regr2)

Call:

lm(formula = indpndnt ~ x)

Residuals:

Min 1Q Median 3Q Max

-5.1527 -1.2588 -0.1359 1.2855 4.2083

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.81396 0.45566 -1.786 0.0779 .

x 0.11480 0.09835 1.167 0.2466

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.07 on 79 degrees of freedom

Multiple R-squared: 0.01695,djusted R-squared: 0.004511

F-statistic: 1.362 on 1 and 79 DF, p-value: 0.2466

the third example is a decreasing line with slope -1/2 plus noise

> noisyline <- seq(8,0,by=-0.1) + rnorm(81,0,4)

> regr3 <- lm(noisyline~x)

> plot(x,noisyline) ; abline(regr3)

> summary(regr3)

Call:

lm(formula = noisyline ~ x)

c© M. Hutzenthaler, R course, March 1, 2012

7 LINEAR REGRESSION 85

Residuals:

Min 1Q Median 3Q Max

-8.4352 -2.5893 0.3918 2.3173 8.9245

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.6273 0.7892 10.932 < 2e-16 ***

x -1.0420 0.1703 -6.117 3.43e-08 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.584 on 79 degrees of freedom

Multiple R-squared: 0.3214,djusted R-squared: 0.3129

F-statistic: 37.42 on 1 and 79 DF, p-value: 3.429e-08

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8

x

de
cr

ea
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

−
6

−
4

−
2

0
2

4

x

in
dp

nd
nt

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

−
5

0
5

10
15

x

no
is

yl
in

e

7.4 Model checking

The p-values are one thing to check. In addition one should check for constancy of variance
and normality of errors. The simplest way to do this is with four model-checking plots:

> plot(regr3)

c© M. Hutzenthaler, R course, March 1, 2012

7 LINEAR REGRESSION 86

0 2 4 6 8

−
1
0

−
5

0
5

1
0

Fitted values

R
e
s
id

u
a
ls

lm(noisyline ~ x)

Residuals vs Fitted

7

55
40

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

lm(noisyline ~ x)

Normal Q−Q

7

55

40

0 2 4 6 8

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d
a
rd

iz
e
d

re
s
id

u
a
ls

lm(noisyline ~ x)

Scale−Location

7

55

40

0.00 0.01 0.02 0.03 0.04 0.05

−
2

−
1

0
1

2
3

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

lm(noisyline ~ x)

Cook's distance

Residuals vs Leverage

7

75

65

This is how it should look like: The points of the upper left picture looks like points from a
centred normal distribution and the line is identically zero. The points in the upper right picture
should be close to the dotted line. We do not discuss the third and fourth picture.

Here is an example in which the regression line fits poorly.

> x <- seq(-2,6,by=0.1)

> noisy <- x^2 + rnorm(81,0,0.1)

> regr4 <- lm(noisy~x)

> plot(x,noisy) ; abline(regr4)

c© M. Hutzenthaler, R course, March 1, 2012

7 LINEAR REGRESSION 87

●●●●
●

●
●

●

●
●●

●●●●

●
●

●
●●●

●
●●●

●●●●
●

●●
●

●
●●

●
●●●

●

●●
●

●●
●●

●

●
●●

●

●

●

●

●
●

●

●●
●

●

●●

●
●

●
●

●

●●

●●

●

●
●

●

●
●

●

−2 0 2 4 6
0

10
20

30

x

no
is

y

> plot(regr4)

−5 0 5 10 15 20 25

−
5

0
5

1
0

Fitted values

R
e
s
id

u
a
ls

lm(noisy ~ x)

Residuals vs Fitted

81
1

80

−2 −1 0 1 2

−
1

0
1

2

Theoretical Quantiles

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

lm(noisy ~ x)

Normal Q−Q

81
1

80

−5 0 5 10 15 20 25

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d
a
rd

iz
e
d

re
s
id

u
a
ls

lm(noisy ~ x)

Scale−Location

811
80

0.00 0.01 0.02 0.03 0.04 0.05

−
1

0
1

2

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

lm(noisy ~ x)

Cook's distance

Residuals vs Leverage

81
1
80

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 88

8 Advanced topics

8.1 Generating and manipulating strings

Here is an overview of commands which generate or manipulate strings. For the syntax details,
see the respective help pages.

format() Format an R object for pretty printing

formatC()sprintf() Formatting as in the language ’C’

grep()grepl()

regexpr()

gregexpr() Find a substring in a list of strings (get regular expression)

match()pmatch()

charmatch() Returns positions of (partial) matches

nchar() Count the number of characters

parse() Convert a string into an expression

deparse() Convert an expression into a string

paste() Concatenate strings after converting to string

cat() Same as paste() but prints result onto the console (or into a file)

strsplit() Split str ing at given delimiter

sub()gsub() Substitute a substring by another string

substring() Return the substring between the given positions

toupper() Translate lower-case into upper-case characters

tolower() Translate upper-case into lower-case characters

Examples

> s <- paste("Diet",1:8); s # adds one space between the arguments by default

[1] "Diet 1" "Diet 2" "Diet 3" "Diet 4" "Diet 5" "Diet 6" "Diet 7" "Diet 8"

> s <- paste("grey",2:10,"0",sep=""); s

[1] "grey20" "grey30" "grey40" "grey50" "grey60" "grey70" "grey80"

[8] "grey90" "grey100"

> nchar("Number?")

[1] 7

> nchar(s)

[1] 6 6 6 6 6 6 6 6 7

> u <- toupper(s) ; u

[1] "GREY20" "GREY30" "GREY40" "GREY50" "GREY60" "GREY70" "GREY80"

[8] "GREY90" "GREY100"

> tolower(u)

[1] "grey20" "grey30" "grey40" "grey50" "grey60" "grey70" "grey80"

[8] "grey90" "grey100"

> substring("abcdef",first=2,last=4)

[1] "bcd"

> s[2:4] <- "green"

> substring(s,rep(5,9),rep(10,9)) # characters between position 5 and 10

[1] "20" "n" "n" "n" "60" "70" "80" "90" "100"

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 89

> strsplit("Peter Pan"," ")

[[1]]

[1] "Peter" "Pan"

> strsplit("Peter Pan","e")

[[1]]

[1] "P" "t" "r Pan"

Here is an application of parse() and one of deparse().

> c <- "green"

> str <- paste(’plot(1:10,col="’,c,’")’,sep="") ; str

[1] "plot(1:10,col=\"green\")"

> ep <- parse(text=str)

> eval(ep) # Execute the command

> x <- 1:10

> regr <- lm(x~1)

> epp <- formula(regr) # extract the formula of the call to lm() from regr

> class(epp)

[1] "formula"

> deparse(epp) # convert the formula into a string

[1] "x ~ 1"

> pmatch(c("mod","med"), c("mean", "median", "mode"))

[1] 3 2 # third element begins with ’mod’, second with ’med’

> format(13.7)

[1] "13.7"

> format(13.7, nsmall = 3)

[1] "13.700"

> format(c(6.0, 13.1), digits = 2)

[1] " 6" "13"

> format(c(6.0, 13.1), digits = 2, nsmall = 1)

[1] " 6.0" "13.1"

A quite strong tool for dealing with strings are regular expressions. Here is a first simple
example. The command grep() finds its first argument in a list of strings and returns the index
vector (default) or the strings (if value=TRUE).

> grep("rey",s)

[1] 1 2 3 4 5 6 7 8 9

> grep("rey",s,value=T)

[1] "grey20" "grey30" "grey40" "grey50" "grey60" "grey70" "grey80"

[8] "grey90" "grey100"

Here a fixed string is found in a list of strings. The power of regular expressions is that not only
fixed strings but quite general strings can be matched. For this the following placeholders and
quantifiers are used.

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 90

. matches any single character

[abd] matches any single character in the list, here a b or d

[ˆabd] matches any single character except the characters in the list

[b-s] matches any single character between b and s

* the preceding item will be matched zero or more times

+ the preceding item will be matched one or more times

? the preceding item will be matched zero or one time

{n,} the preceding item will be matched n or more times

{n,m} the preceding item will be matched at least n times but not more than m times

abc|def matches one or the other string, here it matches ’abs’ or ’def’

ˆ matches the beginning of the string

$ matches the end of the string

() the string which is matched between (and) can later be referred to with \\1, \\2 etc
There are more features, see ?regexp or ?grep.

By default repetition is greedy, so the maximal possible number of repeats is used. This can be
changed to minimal by appending ? to the quantifier.

Here are several examples to become familiar with regular expressions.

> s <- colors()

> grep("gr[ea]y",s) # any color with ’grey’ or ’gray’ in it

> grep("gr[ea]y",s,value=T)

> grep("gr[ea]y$",s,value=T) # any color which ends on ’gr[ea]y’

> grep("^gre",s,value=T) # any color which starts with ’gre’

> grep("^gre.*[^0-9]$",s,value=T) # starts with ’gre’ and ends with a letter

> grep("green|yellow",s,value=T) # any color with ’green’ or ’yellow’ in it

> sub("AB","ab","ABCDEFAB")

[1] "abCDEFAB"

> gsub("AB","ab","ABCDEFAB")

[1] "abCDEFab"

> str <- c("data1 ","data2 ","data3 ")

> sub(" +$","",str) # trim trailing white space

[1] "data1" "data2" "data3"

> gsub("([ab])", "\\1_\\1_", "abc and ABC") # double all ’a’ or ’b’s

[1] "a_a_b_b_c a_a_nd ABC"

> gsub("\\b(\\w)", "\\U\\1", "a test of capitalizing", perl=TRUE)

[1] "A Test Of Capitalizing"

8.2 Object-oriented programming

There are two approaches to object-oriented programming in R. Both have advantages and disad-
vantages. We first explain the so called S3 approach which was historically the first approach.

Many objects in R have a ’class’ attribute, a character string or character vector giving the
name(s) of the class(es) the object belongs to. If the object does not have a class attribute, then it
has an implicit class which is the result of mode(x) (except that integer vectors have implicit class
’integer’). You obtain the class name(s) of an object obj with the command class(obj). The class

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 91

attribute can be set with class(obj) <-. If an object has a ’class’ attribute, then is.object()

returns TRUE.
The most useful feature of object-oriented programming are ’generic’ functions. For example,

print() is a generic function. If regr is of class lm, print(regr) calls automatically the func-
tion print.lm(regr). If ’clname’ is a class and the function print.clname exists, then print()

calls this function print.clname if its argument is of that class. More generally if ’genericfun’ is
then name of generic function, if obj is of class ’clname’ and if the function genericfun.clname

exists, then genericfun(obj) automatically calls genericfun.clname(obj). If the function
genericfun.clname does not exist, then the default method genericfun.default(obj) is called.
The command print() generic function with most methods, see methods("print").

Here is an educational example to illustrate the mechanism.

> Q <- 1 # arbitrary object

> class(Q) <- "quit" # Q is now of class ’quit’ (which didn’t exist before)

> print.quit <- function(x) q("no")

> Q # closes R session without saving workspace image

Entering Q calls implicitly print(Q). As Q is of class ’quit’, this calls automatically print.quit(Q).
We defined this function to execute q("no") which quits the R session without saving a workspace
image. This example is of no practical use but it illustrates the mechanism of generic functions.

Here is a list of commands for object-oriented programming:

attributes() Returns the list of all attributes of an object

attr() Viewing and setting single attributes

class() Viewing and setting the class attribute

getS3method() Shows an invisible method

inherits() Inherit methods from another class

methods() Show all methods belonging to a generic function or to a class

unclass() Removes the ’class’ attribute. (default generic function is called)

> x <- 1:4; y <- c(1.2,pi)

> class(x)

[1] "integer"

> class(y)

[1] "numeric"

> class(as.factor(x))

[1] "factor"

> class(list(x,y))

[1] "list"

> regr <- lm(x^2~x)

> class(regr)

[1] "lm"

> fun <- ecdf(rnorm(100))

> class(fun)

[1] "ecdf" "stepfun" "function"

> attributes(regr)

$names

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 92

$class

[1] "lm"

> print

function (x, ...)

UseMethod("print")

<environment: namespace:base>

> methods(print)

[1] print.acf*

...

[42] print.data.frame

...

[44] print.default

...

[56] print.factor

...

[61] print.glm

...

[75] print.lm

...

[101] print.quit # the function which we defined above

...

[143] print.xtabs*

Non-visible functions are asterisked

> methods(class=factor) # all methods of class ’factor’

[1] [.factor [[.factor [<-.factor

[4] all.equal.factor as.character.factor as.data.frame.factor

[7] as.Date.factor as.list.factor as.POSIXlt.factor

[10] as.vector.factor format.factor is.na<-.factor

[13] length<-.factor levels<-.factor Math.factor

[16] Ops.factor plot.factor* print.factor

[19] relevel.factor* relist.factor* reorder.factor*

[22] rep.factor summary.factor Summary.factor

[25] xtfrm.factor

Non-visible functions are asterisked

> line # the function ’line’ returns an object of class ’tukeyline’

function (x, y = NULL)

{

xy <- xy.coords(x, y)

ok <- complete.cases(xyx, xyy)

n <- length(ok)

if (n <= 1)

stop("insufficient observations")

z <- .C("tukeyline", as.double(xy$x[ok]), as.double(xy$y[ok]),

double(n), double(n), n, double(2), DUP = FALSE, PACKAGE = "stats")

value <- list(call = sys.call(), coefficients = z[[6]], residuals = z[[3L]],

fitted.values = z[[4L]])

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 93

class(value) <- "tukeyline"

value

}

For example the command print.factor() is the print method for class ’factor’.
As educational example let us define a class ’myline’. The class is represented by a list consisting

of an ’intercept’ and a ’slope’. Here is an example how to generate an object of this class.

> obj <- list(intercept=5,slope=2)

> class(obj) <- "myline"

> obj # print.myline is not defined, so print.default is called

$intercept

[1] 5

$slope

[1] 2

attr(,"class")

[1] "myline"

Next we define a print method.

> print.myline <- function(x,...){

+ cat("Intercept:\t",x$intercept,"\nSlope: \t",x$slope,"\n")}

> obj

Intercept: 5

Slope: 2

So far plot(obj) goes pretty wrong, so let’s define a plot function.

> plot.myline <- function(x,...){

+ x<- seq(-5,5,by=0.1)

+ plot(x,obj$intercept+obj$slope*x,type="l",ylab=NA,xlab=NA,...)

+ }

> plot(obj,sub="mysub")

Next one should suitably define other functions such as summary.myline() or a function which
generates objects of class ’myline’.

Note that the S3 approach has no strict definition of the class itself. For example we could
generate an object of class ’myline’ which includes more information:

> obj2 <- list(intercept=5,slope=2,point=1)

> class(obj2) <- "myline"

> obj2 # calls print.myline

Intercept: 5

Slope: 2

Let us now introduce the S4 approach to object-oriented programming. Note that the following
commands only work on S4 objects. The idea is to provide a command SetClass() which explicitly
defines a class including all of its components. Here we only give an example to illustrate the main
idea. Note the following differences: Entering an S4 object on the console calls show() instead of
print(). Moreover elements of an S4 object are accessed with the @-operator rather than with

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 94

the $-operator. The elements of an S4 objects are called slots. Another way of accessing elements
is with the command slot(obj,slotname).

Let us define the class ’myline’ in the S4 approach. The command setClass() defines a new
class. The command getClass() returns the definition of the class. The command prototype()

defines the default object of class ’myline’.

> setClass("myline",

+ representation=representation(intercept="numeric",slope="numeric"),

+ prototype =prototype(intercept=0,slope=1)

+)

[1] "myline"

> getClass("myline")

Class myline [in ".GlobalEnv"]

Slots:

Name: intercept slope

Class: numeric numeric

> getSlots("myline") # get the slots of class ’myline’

intercept slope

"numeric" "numeric"

> slotNames("myline") # same as names(getSlots("myline"))

[1] "intercept" "slope"

The command new() generates a new object of a class.

> obj <- new("myline") # Generate a new object of class ’myline’

> obj # This implicitly calls show(obj)

An object of class myline

Slot "intercept":

[1] 0

Slot "slope":

[1] 1

Next we define the method show() with setMethod()

> setMethod("show", signature(object="myline"),

+ function(object){

+ cat("Intercept:\t",object@intercept,"\nSlope: \t",object@slope,"\n")

+ }

+)

[1] "show"

> obj # implicitly calls the method ’show()’

Intercept: 0

Slope: 1

> slotNames(obj)

[1] "intercept" "slope"

> obj@slope

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 95

[1] 1

> obj@slope <- 5

> slot(obj,"intercept") # same as obj@intercept

[1] 0

> slot(obj,"intercept") <- 3

> obj

Intercept: 3

Slope: 5

> scndobj <- new("myline",intercept=6,slope=8)

> scndobj

Intercept: 6

Slope: 8

> unclass(scndobj)

<S4 Type Object>

attr(,"intercept")

[1] 6

attr(,"slope")

[1] 8

Advantage of S3 approach: Quick and easy to implement. Advantage of S4 approach: Has a
formal class definition and enforces to think about the class structure. This avoids later problems.

Knowing how classes and objects are defined in R we can investigate objects which are returned
by more complex commands.

> x <- 1:10

> regr <- lm(x~1)

> class(regr)

> methods(class="lm")

> attributes("lm")

> attributes(regr)

> unclass(regr)

> tt <- t.test(rnorm(100))

> class(tt)

> methods(class="htest")

> attributes(tt)

> unclass(tt)

> fun <- ecdf(rnorm(100))

> class(fun)

> methods(class="ecdf")

> attributes(fun)

> unclass(fun)

8.3 Scoping rules

R looks for variables in the search path which is an hierarchical list. The workspace .GlobalEnv is
element 0 in that list. All elements being defined on the console or in a script (outside of a function)
are stored in this workspace. Other elements of the search path are loaded libraries, attached data
frames or environments generated by a function call. The command search() returns the list of
elements with non-positive levels. At the startup of an R session the search path could look as
follows.

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 96

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

Ignore the enumeration here. The workspace is element 0, package:stats is element −1, the
element on level −2 is package:graphics and package:base is element −8 in this case. If a data
frame is attached or a library is loaded, then these are placed at position −1. The contents of each
element of the search path is viewed with ls().

> attach(ChickWeight)

> library("sfsmisc")

> attach(cars)

> search()

[1] ".GlobalEnv" "cars" "package:sfsmisc"

[4] "ChickWeight" "package:stats" "package:graphics"

[7] "package:grDevices" "package:utils" "package:datasets"

[10] "package:methods" "Autoloads" "package:base"

> x <- 5

> ls() # returns the workspace by default

[1] "x"

> ls("cars")

[1] "dist" "speed"

> detach(ChickWeight)

> detach(cars)

> detach(package:sfsmisc)

The ordering of the search path has the following reason. If there are different objects of the same
name on different levels, then R uses the object on the highest level. For example, the library
base contains the function sum(). If you define sum on the console, then this object is stored in
.GlobalEnv which is at a higher level. The originial function is thereby ’hidden’. You can still
access the original function through the ::-operator as base::sum. An existing object is removed
from the search path with the command rm().

> sum(1:5)

[1] 15

> sum <- exp # define a new object called ’sum’ in the workspace

> sum(1:5)

[1] 2.718282 7.389056 20.085537 54.598150 148.413159

> base::sum(1:5) # the originial function is accessed with base::sum

[1] 15

> rm(sum) # Remove the object ’sum’ from the workspace

> sum(1:5) # Now base::sum() is no longer hidden

[1] 15

If you call a function from the console, then this call creates a new element in the search path
at level 1. This element contains all objects which are created within the function. When the
function terminates, then the returned value is copied into the workspace and the environment at
level 1 in the search path is deleted. If another function is called from within the function, then
an environment is created at level 2 and so on. This hierarchical search path ensures that R uses
the object which has been defined latest. Consider the following example:

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 97

> x <- 5

> myfun <- function(do.it=TRUE){

+ if(do.it) x <- 3

+ innerfun <- function() print(x)

+ innerfun()

+ }

> myfun()

[1] 3

> myfun(FALSE)

[1] 5

The workspace contains a variable x. The call of myfun() creates a new environment at position
1 in the search path. If myfun() is called with do.it=TRUE, then a variable x is added to level
1. The call of innerfun() then creates an environment at level 2. At the command print(x),
R looks for a variable x and finds none on level 2 but finds one on level 1 which has the value 3.
So print(x) prints 3. If myfun() is called with do.it=FALSE then no variable x is added to level
1. The call of innerfun() then creates an environment at level 2. At the command print(x), R
looks for a variable x and finds none on level 2 or 1 but finds one on level 0 (the workspace) which
has the value 5. So print(x) prints 5.

A programming style as in myfun() can lead to surprising results as the output depends on the
current configuration of the search path. It is therefore considered as ’bad style’. It is recommended
to always pass variables as arguments. Thereby the code is easier to read and mistakes are avoided.

8.4 Regular expressions

The command scan() reads numeric data from a file. The command readLine() reads lines from
a file. The command writeLine() writes the elements of a character vector as lines into a file.

> cat("TITLE extra line", "2 3 5 7", "11 13 17", file="ex.txt", sep="\n")

> pp <- scan("ex.txt")

Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :

scan() expected ’a real’, got ’TITLE’

> pp <- scan("ex.txt", skip = 1, quiet= TRUE)

> cat("TITLE extra line", "2 3 5.34 7", "11 13 17", file="ex2.txt", sep="\n")

> scan("ex2.txt", skip = 1, quiet= TRUE)

[1] 2.00 3.00 5.34 7.00 11.00 13.00 17.00

> scan("ex.txt", skip = 1)

Read 7 items

[1] 2 3 5 7 11 13 17

> scan("ex.txt", skip = 1, nlines=1) # only 1 line after the skipped one

Read 4 items

[1] 2 3 5 7

> v <- readLines("ex.txt")

> v

[1] "TITLE extra line" "2 3 5 7" "11 13 17"

> writeLines(v,"exout.txt")

> unlink(c("ex.txt","ex2.txt","exout.txt")) # deletes the file

> sequences <- readLines("sequences.txt")

> sequences

> sequences<-sub(" *\$","",sequences) # remove trailing spaces

> sequences

c© M. Hutzenthaler, R course, March 1, 2012

8 ADVANCED TOPICS 98

> sequences<-gsub("U","T",sequences) # substitute all U by T

> regexpr("TAG",sequences) # find first occurrence

[1] 5 2 31 50 15 -1

attr(,"match.length")

[1] 3 3 3 3 3 -1

> gregexpr("TAG",sequences) # find all occurrences

> regexpr("TAG.*TAG",sequences)

[1] 5 2 31 50 15 -1

attr(,"match.length")

[1] 483 579 440 602 917 -1

> sequences

8.5 Outlook: DNA and protein data

A fasta-file has a specific format to store sequence data. The command read.fasta() from the
package seqinr reads fasta-files. The command translate() from the package seqinr translates
nucleic acid sequences into the corresponding peptide sequence.

> install.packages("seqinr") # install package

> library(seqinr)

> nucleo <- read.fasta("norovirus.fas")

> nucleo

> class(nucleo)

[1] "list"

> peptide <- lapply(nucleo,translate)

> peptide

> unlist(sapply(peptide,paste,collapse=""))

> myalign <- t(matrix(unlist(peptide),nrow=189))

>

> allequal <- function(x) {

> sum(x[1]!=x[2:length(x)])==0

> }

>

> countunequal <- function(x) {

> sum(x[1]!=x[2:length(x)])

> }

>

> hasX <- function(x) {

> sum("X"==x[1:length(x)])>0

> }

>

> myalign[,!apply(myalign,2,allequal) & !apply(myalign,2,hasX)]

> names(nucleo)

> myalign[12:19,!apply(myalign,2,allequal) & !apply(myalign,2,hasX)]

> myalign[4:11,!apply(myalign,2,allequal) & !apply(myalign,2,hasX)]

> myalign[,apply(myalign,2,countunequal)>1 & !apply(myalign,2,hasX)]

> library(help="seqinr") # all commands in seqinr

c© M. Hutzenthaler, R course, March 1, 2012

B CUSTOMIZING R 99

Appendix

A Save and load workspace and command history

If you close your R session, then all variables and objects are deleted unless you answer ”Save
workspace image?” with ”yes”. You can store all variables with the command save.image() and
load them in the next R session with load():

> save.image("workspace42.Rdata") # store workspace in current working directory

> # next session:

> load("workspace42.Rdata") # only works if current working directory is correct

> getwd()

[1] "C:/"

> setwd("C:/R") # change working directory if necessary

> save.image("C:/R/workspace42.Rdata")# store workspace in specified directory

> # next session:

> load("C:/R/workspace42.Rdata") # works always (if file exists)

Also the commands you typed in could be gone in the next R session. Save the history of your
commands with savehistory():

> savehistory("commands42.Rhistory")

store command history in current working directory

> # next session:

> loadhistory("commands42.Rhistory")

only works if current working directory is correct

B Customizing R

If you wish to have self-written commands available at the startup of R, then you might want to
customize R as follows, see ?Startup for more details. If there exists a file ”.Rprofile” in the current
directory or in the user’s home directory, then it is sourced at startup of every R session, that is,

> source("./.Rprofile")

and the same command with ”./” replaced by user’s home directory are executed automatically at
the beginning of every R session.

There are two special functions which are often defined in ’.Rprofile’. These two functions are
’.First’ and ’.Last’ and are executed at the beginning and at the end of an R session, respectively.
Moreover you might want to set options for the R session with the command options() in ’.Rprofile’.
Here is an example for ’.Rprofile’:

.First <- function() { cat("\n Welcome to R!\n\n") }

.Last <- function() { cat("\n Goodbye!\n\n") }

set.seed(1234) # set the seed of the random number generator

options(digits=5) # see ?print

options(error=recover) # Call recover() whenever an error occurs

In addition R searches for ’.Renviron’ in the current working directory and in the user’s home
directory. The environment file contains lines in the form ’name=value’ and used to set environment
variables. For example if ’.Renviron’ consists of the following line

c© M. Hutzenthaler, R course, March 1, 2012

C DEBUGGING 100

LANGUAGE=en

then the language of the R session is set to English so that all warnings and all error messages are
printed in English.

C Debugging

The simplest debugging method is to print text and variables in order to see where the error
occured and in what state the variables where in. However, this simple debugging method is not
always successful.

R provides the following debugging tools.

browser() Starts the browser

debug(),undebug() A function is executed in the browser

dump.frames() Save all variable values at error time

debugger() View values of variables at error time

traceback() Show in which function the error occured

trace(),untrace() Insert debugging code during run-time

The commands ’c’, ’n’, ’where’ and ’Q’ are used within the browser in addition to all regular R
commands. Here is an example.

> fun2 <- function(x, s) {

+ return(x[[s]] + 5)

+ }

> fun1 <- function(x) {

+ y <- x+1

+ return(fun2(y,s=-5))

+ }

> fun1(1:5)

Error in x[[s]] : attempt to select more than one element

> traceback()

2: fun2(y, s = -2)

1: fun1(1:5)

The coammnd traceback() shows that the error occured in function fun2 which has been called
from function fun1.

After debug(fun2), every call of fun2 is executed in the browser.

> debug(fun2)

> fun1(1:5)

debugging in: fun2(y, s = -2)

debug: {

return(x[[s]] + 5)

}

attr(,"srcfile")

funerror.R

Browse[1]> ls() # list all objects

[1] "s" "x"

c© M. Hutzenthaler, R course, March 1, 2012

C DEBUGGING 101

Browse[1]> x # print the value of x

[1] 2 3 4 5 6

Browse[1]> where # where are we?

where 1: fun2(y, s = -2)

where 2: fun1(1:5)

Browse[1]> n # execute next command

debug: return(x[[s]] + 5)

Browse[1]> n

Error in x[[s]] : attempt to select more than one element

> undebug(fun2) # from now on, do not debut ’fun2’

c© M. Hutzenthaler, R course, March 1, 2012

Index

˜ , 39, 55
< −, 7
.First, 99
.GlobalEnv, 95, 96
.Last, 99
.Renviron, 100
.Rprofile, 99
:, 96
::, 96
;, 6
==, 7
?, 7
??, 7
[[]], 24
[], 10
$, 26
@, 93
%*%, 44
%.%, 44
%in%, 44
%notin%, 44
%subset%, 44

abline(), 41
abs(), 6
acos(), 6
acosh(), 6
add, 40, 56
adj, 56
all(), 12
alpha, 44
alternative, 68
ann, 56
Anova, 82
ansari.test(), 69
any(), 12
aov(), 69
apply(), 77
arrows(), 42
as.character(), 15
as.complex(), 15
as.logical(), 15
as.matrix(), 13
as.numeric(), 15
asin(), 6
asinh(), 6
ask, 56

atan(), 6
atanh(), 6
atop(), 44
attach(), 27
attr(), 91
attributes(), 91
available.packages(), 5
axes, 41
axis(), 41

barchart(), 54
barplot(), 40, 52
bartlett.test(), 69
base, 5
beta distribution, 17
bg, 56
bgroup(), 44
binom.test(), 69
binomial distribution, 17
bitmap(), 51
bmp(), 51
box- and whisker plot, 21
Box.test(), 69
boxplot(), 20, 52
break, 70
browser(), 100
bty, 56
bwplot(), 54
byrow, 13

c(), 9
cat(), 8, 88
Cauchy distribution, 17
cbind(), 14
ceiling(), 6
cex, 41, 57
cex.axis, 57
cex.lab, 57
cex.main, 57
cex.sub, 57
charmatch(), 88
chi-squared distribution, 17
chisq.test(), 69
choose(), 6
cin, 57
class, 15
class(), 16, 90, 91

102

INDEX 103

cloud(), 54
coef(), 80
coefficient of determination, 81
coerce, 15
col, 57
col.axis, 57
col.lab, 57
col.main, 57
col.sub, 57
colClasses, 36
colors(), 57
colours(), 57
command history, 99
contingency table, 64
contour(), 52
contourplot(), 54
coplot, 55
coplot(), 52, 55
cor(), 20
cor.test(), 69
cos(), 6
cosh(), 6
cov(), 20
cra, 57
crt, 57
csi, 57
cumprod(), 53
cumsum(), 53
cxy, 57

dashed, 18
data type, 15
data(), 37, 53, 66, 67
data.frame(), 26
datasets, 5
date(), 9
dbeta(), 17
dbinom, 19
dcauchy(), 17
debug(), 100
debugger(), 100
dec, 33
degrees of freedom, 69
demo(), 44, 54
densityplot(), 54
deparse(), 88
detach(), 28, 96
dev.copy(), 51
dev.copy2eps(), 51
dev.copy2pdf(), 51

dev.cur(), 51
dev.list(), 51
dev.new(), 50
dev.next(), 51
dev.off(), 50
dev.prev(), 51
dev.print, 50
dev.set(), 50
dexp(), 17
df(), 17
dgamma(), 17
dgeom(), 17
dhyper(), 17
diag(), 14
dim(), 13
din, 57
dir(), 72
displaystyle(), 44
dlnorm(), 17
dlogis(), 17
dmultinom(), 17
dmvnorm(), 17
dnbinom(), 17
dnorm(), 17
dotchart(), 52
dotplot(), 54
download.packages(), 5
dpois(), 17
dsignrank(), 17
dt(), 17
dump.frames(), 100
dunif(), 20
duplicated(), 11
dweibull(), 17
dwilcox(), 17

ecdf(), 9, 20
edit(), 31
err, 57
error, 100
eval(), 89
example(), 7
exp(), 6
explanatory variable, 78
exponential distribution, 17
expression(), 42

F-distribution, 17
factor(), 35
factorial(), 6

c© M. Hutzenthaler, R course, March 1, 2012

INDEX 104

family, 57
fg, 58
fig, 58
file.choose(), 32
fill, 33
fin, 58
Fisher’s exact test, 65
fist quartile, 20
fligner.test(), 69
floor(), 6
font, 58
font.axis, 58
font.lab, 58
font.main, 58
font.sub, 58
for(), 70
format(), 8, 88
formatC, 88
frac, 44
friedman.test(), 69
function(), 73

gamma distribution, 17
generic, 91
geometric distribution, 17
getClass(), 94
getS3method(), 91
getSlots(), 94
getwd(), 32, 72, 99
graphics.off(), 50
grep(), 88
grepexpr(), 88
grepl(), 88
gsub(), 88

help(), 7
help.search(), 7
help.start(), 7
Hershey, 44
high-level plots, 36
hist(), 9, 20, 52
histogram(), 54
history, 99
hypergeometric distribution, 17

identify, 45
if(), 70
ifelse(), 70
image(), 52
Inf, 30

infinity, 44
inherits(), 91
install.packages(), 5
installed.packages(), 5
integer division, 6
integral(), 44
interactive graphics, 36
intercept, 79
interquartile distance, 21
interquartile range, 21
is.character(), 16
is.complex(), 16
is.logical(), 16
is.matrix(), 14
is.na(), 29
is.numeric(), 16
is.object(), 91

jpeg(), 51

Kolmogorov-Smirnov test, 69
kruskal.test(), 69
ks.test(), 69

lab, 58
lapply(), 77
las, 58
lattice, 53
legend(), 41
lend, 58
length(), 11
levelplot(), 54
levels(), 35
levene.test(), 69
lheight, 58
library, 5
lim(), 44
linear regression, 78
lines(), 41
list(), 24
ljoin, 58
lm(), 79
lmitre, 59
load(), 99
loadhistory(), 99
locator, 44
log, 41
log(), 6
log-normal distribution, 17
log10(), 6

c© M. Hutzenthaler, R course, March 1, 2012

INDEX 105

log2(), 6
logistic distribution, 17
low-level plots, 36
ls(), 96
lty, 59
lwd, 59

mai, 59
main, 40, 59
Mann-Whitney test, 69
mantelhaen.test(), 69
mapply(), 77
mar, 59
match(), 88
matrix multiplication, 14
matrix(), 12
mauchly.test(), 69
max(), 6
mcnemar.test(), 69
mean(), 20
median, 20
median(), 20
merge(), 29
methods(), 91
mex, 59
mfcol, 59
mfg, 59
mfrow, 49, 59
mgp, 60
min(), 6
mode(), 16, 25, 90
modulo division, 6
mood.test(), 69
mosaicplot(), 52
mtext(), 42, 49
multinormal distribution, 17
multiplot, 49
multivariate normal distribution, 17

NA, 29
na.rm, 30
nabla, 44
NaN, 30
nchar(), 88
negative binomial distribution, 17
new, 60
new(), 94
next, 70
normal distribution, 17
NULL, 31

null device, 50
null hypothesis, 62

oma, 60
omd, 60
omega, 44
omi, 60
options(), 99
order(), 11
outlier, 22
over(), 44

p-value, 62
p.arrows(), 42
pairs(), 52, 54
panel, 55
panel.smooth, 55
par(), 41
parallel(), 54
parse(), 88
partialdiff, 44
paste(), 44, 88
pbeta(), 17
pbinom, 19
pcauchy(), 17
pch, 60
pchisq(), 17
pdf(), 51
Pearson, 66
persp(), 52, 53
pexp(), 17
pf(), 17
pgamma(), 17
pgeom(), 17
phyper(), 17
pictex(), 51
pie(), 52
piechart(), 54
pin, 60
plnorm(), 17
plogis(), 17
plot(), 8, 37
plot.new(), 42, 50
plotmath, 44, 54
plt, 60
pmatch(), 88
pmultinom(), 17
pmvnorm(), 17
pnbinom(), 17
pnorm(), 18

c© M. Hutzenthaler, R course, March 1, 2012

INDEX 106

points(), 41
Poisson distribution, 17
poisson.test(), 69
polygon(), 42
postscript(), 51
power of test, 68
power.fisher.test(), 68
power.t.test(), 68
ppois(), 17
predict(), 80
pretty(), 42
print(), 8, 91
print.default(), 93
print.factor(), 93
prod(), 6, 44
prop.test(), 69
prototype(), 94
ps, 60
psignrank(), 17
pt(), 17
pty, 60
punif(), 20
pweibull(), 17
pwilcox(), 17

q(), 91
qbeta(), 17
qbinom(), 19
qcauchy(), 17
qchisq(), 17
qexp(), 17
qf(), 17
qgamma(), 17
qgeom(), 17
qhyper(), 17
qlnorm(), 17
qlogis(), 17
qmultinom(), 17
qmvnorm(), 17
qnbinom(), 17
qnorm(), 18
qpois(), 17
qq(), 54
qqline(), 52
qqmath(), 54
qqnorm(), 52
qqplot(), 52
qsignrank(), 17
qt(), 17
quade.test(), 69

quantile, 20
quantile(), 20
quartile, 20
quartz(), 51
qunif(), 17
qweibull(), 17
qwilcox(), 17

r squared, 81
rank(), 11
rbeta(), 17
rbind(), 14
rbinom(), 19
rcauchy(), 17
rchisq(), 17
read.csv(), 34
read.csv2(), 34
read.delim(), 34
read.delim2(), 34
read.fasta(), 98
read.table(), 31, 32, 34
readLine(), 97
recover(), 100
regexpr(), 88
regression, 78
rep(), 9
repeat(), 70
residual, 80
response variable, 78
return(), 73
rev(), 11
rexp(), 17
rf(), 17
rfs(), 54
rgamma(), 17
rgeom(), 17
rhyper(), 17
rlnorm(), 17
rlogis(), 17
rm(), 96
rmultinom(), 17
rmvnorm(), 17
rnbinom(), 17
RNGkind(), 24
rnorm(), 18
rotate.cloud(), 54
rotate.persp(), 54
rotate.wireframe(), 54
round(), 6
row.names, 33

c© M. Hutzenthaler, R course, March 1, 2012

INDEX 107

rpois(), 17
Rscript, 73
rsignrank(), 17
r2, 81
rt(), 17
runif(), 17
rweibull(), 17
rwilcox(), 17

S3, 90
S4, 93
sample(), 71
sapply(), 77
save.image(), 99
savehistory(), 99
scan(), 97
scriptstyle(), 44
sd(), 20
search(), 95
second quartile, 20
seed, 24
sep, 33
seq(), 9
seqinr, 98
SetClass(), 93
setClass(), 94
setMethod(), 94
setwd(), 32, 72, 99
sfsmisc, 42
shapiro.test(), 69
show(), 93, 94
signature(), 94
signif(), 6
significance level, 62
sin(), 6
sinh(), 6
slop, 79
slot(), 94
slotNames(), 94
smo, 60
solid, 45
sort(), 11
source(), 72
Spearman, 67
split(), 28
splom(), 54
sprintf(), 88
sqrt(), 6, 44
srt, 60
Startup, 99

stats, 5
stop(), 73
str(), 27, 35
stripplot(), 54
strsplit(), 88
student’s t-distribution, 17
sub, 40, 60
sub(), 88
submatrix, 12
subset(), 28
substring(), 88
subvector, 9
sum(), 6, 44
summary(), 20, 27, 35, 83
summary.aov(), 83
system.time(), 76

t(), 13
t.test(), 69
table(), 40
tan(), 6
tanh(), 6
tapply(), 77
tck, 60
tcl, 60
text(), 41
third quartile, 21
tiff(), 51
title(), 41
tmd(), 54
tolower(), 88
toupper(), 88
trace(), 100
traceback(), 100
translate(), 98
trellis.device(), 53
trunc(), 6
type, 40, 60

unclass(), 91
undebug(), 100
uniform distribution, 17
union(), 44
unique(), 11
unsplit(), 28
untrace(), 100
update.packages(), 5
usr, 61

var(), 20

c© M. Hutzenthaler, R course, March 1, 2012

INDEX 108

var.test(), 69

Weibull distribution, 17
which(), 12
which.max(), 12
which.min(), 12
while(), 70
whiskers, 21
wilcox.test(), 69
Wilcoxon rank sum statistic, 17
Wilcoxon signed rank statistic, 17
windows(), 51
wireframe(), 53
write.csv(), 34
write.csv2(), 34
write.table(), 31
writeLine(), 97

X11(), 51
xaxp, 61
xaxs, 61
xaxt, 61
xfig(), 51
xlab, 40, 61
xlog, 61
xpd, 61
xyplot(), 54

yaxp, 61
yaxs, 62
yaxt, 62
ylab, 40, 62
ylog, 62

c© M. Hutzenthaler, R course, March 1, 2012

