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Introduction QTL model assumptions

Example dataset with backcrosses

> library(qtl)

> data(hyper)

> summary(hyper)

Backcross

No. individuals: 250

No. phenotypes: 2

Percent phenotyped: 100 100

No. chromosomes: 20

Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

X chr: X

Total markers: 174

No. markers: 22 8 6 20 14 11 7 6 5 5 14 5 5 5 11 6 12 4 4 4

Percent genotyped: 47.7

Genotypes (%): BB:50.2 BA:49.8



Introduction QTL model assumptions
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par(mfrow=c(1,2))

plot.pxg(hyper,"D4Mit214")

plot.pxg(hyper,"D12Mit20")

par(mfrow=c(1,1))



Introduction QTL model assumptions

Assume that p sites have an influence on the quantitative trait y
of interest and denote an individual’s genotype at these sites by
g = (g1,g2, . . . ,gp)

µg := E(y |g)

σ2
g := var(y |g)

we assume: y |g ∼ N (µg, σ
2
g)

additive model: µg = µ +

p∑
j=1

zj ·∆j ,

whereas zj is 0 or 1 according to the genotype of gj , and ∆j is
the effect of the QTL at position j .



Introduction QTL model assumptions

In a strict sense, epistasis means that the effect of a mutation
can be masked by a mutation at a different loci.

However, in the context of QTL mapping, the word epistasis if
often used to express that there is a non-additive interaction
between two loci. (Problem: whether effects are additive or not
depends on how the trait is scaled.)

Main problem: We do not know where the QTLs are. We only
have genetic markers to determine for several sites whether
they stem from A or B.
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Single-QTL analysis LOD score
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Single-QTL analysis LOD score

Assume a backcross experiment with n F2 individuals
Let y = (y1, . . . , yn) be their phenotypes for the trait of interest.



Single-QTL analysis LOD score

Null hypothesis H0: no QTL
Residual sum of squares under H0:

RSS0 =
n∑

k=1

(yk − ȳ)2

Very simple alternative H1: single QTL at marker position i

y |gi ∼ N (µgi , σ
2)

Likelihood function:

L1(µAA, µAB, σ
2) = Pr(y |QTL marker, µAA, µAB, σ

2)

= Πn
k=1φ(yk ;µgik , σ

2),

whereas φ is the density of the normal distribution and gik is the
genotype of individual k at marker position i .



Single-QTL analysis LOD score

The maximal likelihood under H1 is RSS−n/2
1 , with

RSS1 =
n∑

k=1

(yk − µ̂gik )2 ,

where µgik is the mean trait value over all individuals that have
type gik at marker position i .
The LOD score is the log10 of the likelihood ratio of H1 and H0:

LOD =
n
2

log10

(
RSS0

RSS1

)



Single-QTL analysis LOD score

The LOD score is traditionally used in QTL mapping. However, it
is equivalent to the classical anova F -statistic:

F =
(RSS0 − RSS1)/df
RSS1/(n − df− 1)

=
(
102·LOD/n − 1

)
· n − df− 1

df

LOD =
n
2

log10

(
F · df

n − df + 1
+ 1
)

So, if the marker positions are our candidates for the QTLs we
just perform anovas.
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Single-QTL analysis Interval mapping

I The QTLs may be between the marker positions, and their
genotypes can only be estimated from the markers.

I Let Mk be the multipoint marker genotype of individual k
and g`k its QTL genotype at candidate position `, and

pkj := Pr(g`k = j |Mk ).

(Computation uses recombination rates.)
I Probability density of an individual’s phenotype (at

candidate locus `) is a mixture of normal distribution
densities: ∑

j

pkj · φ(yk ;µj , σ
2)
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Single-QTL analysis Interval mapping

EM algorithm for ML-estimation of µj and σ
Start with initial estimates µ(0)

j and σ(0) and iterate the following
steps for s = 1, . . . ,N:

E-step

w (s)
kj := Pr(g`k = j |Mk , yk , µ

(s−1)
j , σ(s−1))

=
pkjφ(yk ;µ

(s−1)
j , σ(s−1))∑

h pkhφ(yk ;µ
(s−1)
h , σ(s−1))

M-step

µ
(s)
j :=

∑
k

w (s)
kj yi/

∑
h

w (s)
hj

σ(s) :=

√∑
kj

w (s)
kj (yk − µ(s)

gkj )2/n



Single-QTL analysis Interval mapping

The aim of the EM algorithm is that µ(s)
j and σ(s) converge

against the ML estimators µ̂ and σ̂.

Then, the LOD score can be computed:

LOD = log10

(
Πi
∑

j pijφ(yi ; µ̂j , σ̂
2)

Πiφ(yi ; µ̂0, σ̂2
0)

)
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Single-QTL analysis Interval mapping

## calculate p_{kj}

hyper <- calc.genoprob(hyper,step=1,error.prob=0.001)

out.em <- scanone(hyper,method="em")

plot(out.em)
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Single-QTL analysis Interval mapping

Sometimes EM can be very slow.
Haley-Knott (HK) regression is a fast approximation:
For each point on the grid calculate pkj = Pr(gi = j |M) and
estimate µj and σ by fitting a linear model

yk |Mk ∼ N

∑
j

pkjµj , σ
2



Extended Haley-Knott (EHK) regression: Takes into account that
pkj and µj have an influence on the variance:

yk |Mk ∼ N

∑
j

pkjµj ,
∑

j

pkj

(
µj −

∑
h

pkhµh

)2

+ σ2
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Single-QTL analysis Interval mapping

out.hk <- scanone(hyper,method="hk")

plot(out.em,out.hk,col=c("blue","red"))

0

2

4

6

8

Chromosome

lo
d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X



Single-QTL analysis Interval mapping

out.ehk <- scanone(hyper,method="ehk")

plot(out.em,out.hk,out.ehk,col=c("blue","red","green"),lty=c(1,1,2))
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Single-QTL analysis Interval mapping

Which LOD scores are significant?

Assess this by a permutation test: shuffle the phenotype column.
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Single-QTL analysis Interval mapping

## next command will take time

out.hk.perm <- scanone(hyper,method="hk",n.perm=1000)

plot(out.hk)
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Single-QTL analysis Interval mapping

## this will take even longer:

out.perm <- scanone(hyper,n.perm=1000)

plot(out.perm)

maximum LOD score

F
re

qu
en

cy

0 1 2 3 4

0
10

20
30

40
50



More than one QTL

Contents

Introduction
Crossing Schemes
QTL model assumptions

Single-QTL analysis
LOD score
Interval mapping

More than one QTL



More than one QTL

Composite Interval Mapping While searching for a QTL in one
interval use other markers as proxies for nearby
QTLs. Thus, markers are used as covariates.
Specify maximal number of covariates and how far
they should be away from the interval under
examination.

two-QTL models search for interacting pairs of QTLs. Same
methods like in 1-QTL model: EM, HK, EHK

multiple QTLs When candidate loci are found, fit regression
models allowing for interactions and do variable
selection.



More than one QTL

out.cim <- cim(hyper)

plot(out.cim)
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More than one QTL

out2 <- scantwo(hyper) ## takes quite long

plot(out2)



More than one QTL

out2.hk <- scantwo(hyper,method="hk") ## much faster

plot(out2.hk)



More than one QTL

plot(out2.hk,chr=c(4,6,15))



More than one QTL

> hyper <- sim.geno(hyper,step=2,n.draws=128,err=0.001)

> qtl <- makeqtl(hyper,chr=c(1,4,6,15),pos=c(68.3,30,60,18))

> qtl

QTL object containing imputed genotypes, with 128 imputations.

name chr pos n.gen

Q1 1@67.8 1 67.8 2

Q2 4@30.0 4 30.0 2

Q3 6@60.0 6 60.0 2

Q4 15@17.5 15 17.5 2



More than one QTL

plot(qtl)
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More than one QTL

> out.fq <- fitqtl(hyper,qtl=qtl,formula= y~(Q1+Q2+Q3+Q4)^2)

> summary(out.fq)

fitqtl summary

Method: multiple imputation

Model: normal phenotype

Number of observations : 250

Full model result

----------------------------------

Model formula: y ~ Q1 + Q2 + Q3 + Q4 + Q1:Q2 + Q1:Q3 + Q1:Q4 + Q2:Q3 + Q2:Q4 +

Q3:Q4

df SS MS LOD %var Pvalue(Chi2) Pvalue(F)

Model 10 6113.512 611.35116 23.05306 34.60034 0 0

Error 239 11555.425 48.34906

Total 249 17668.936

Drop one QTL at a time ANOVA table:

----------------------------------

df Type III SS LOD %var F value Pvalue(Chi2) Pvalue(F)

1@67.8 4 1548.22 6.8258 8.7624 8.0054 0.000 4.51e-06 ***

4@30.0 4 3184.90 13.2152 18.0254 16.4683 0.000 6.23e-12 ***

6@60.0 4 1671.00 7.3321 9.4573 8.6403 0.000 1.58e-06 ***

15@17.5 4 1504.34 6.6437 8.5140 7.7785 0.000 6.57e-06 ***

1@67.8:4@30.0 1 79.45 0.3720 0.4496 1.6432 0.191 0.201

1@67.8:6@60.0 1 50.96 0.2389 0.2884 1.0540 0.294 0.306

1@67.8:15@17.5 1 57.42 0.2691 0.3250 1.1877 0.266 0.277

4@30.0:6@60.0 1 54.02 0.2532 0.3057 1.1172 0.280 0.292

4@30.0:15@17.5 1 29.70 0.1393 0.1681 0.6143 0.423 0.434

6@60.0:15@17.5 1 1071.15 4.8124 6.0623 22.1544 0.000 4.26e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



More than one QTL
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More than one QTL

I Candidate loci and interactions found by scanone and
scantwo can then be used in multiple QTL analysis.

I Then, p-values from multiple QTL analysis are not reliable
because not multiple-testing corrected. Massive
multiple-testing problem is caused by preselection by
scanone and scantwo.

I If two QTL are close to each other with only few marker loci
inbetween, scanone may falsely indicate strong evidence
for one QTL between the two.
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