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Balanced Design

Hypothetical study: 100 LMU students were selected to
participate in a 10km footrace. To motivate the participants,
each participant got a release of the tuition fees, and this reward
was better, the faster the students ran.

The aim of the study was to assess how the sportiveness
depended on gender and smoking behavior. Thus, the students
were subdivided into four groups:

male female
∑

smoker 18 9 27
non-smoker 30 43 73∑

48 52 100

(Smoking seems to be gender-specific, p = 0.026, Fisher’s
exact test)
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Balanced Design

> t.test(runtime[smoking=="s"],runtime[smoking=="n"])

Welch Two Sample t-test

data: runtime[smoking == "s"] and runtime[smoking == "n"]

t = 0.1102, df = 60.611, p-value = 0.9126

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-7.522165 8.399714

sample estimates:

mean of x mean of y

91.06888 90.63010



Balanced Design

> drop1(lm(runtime~smoking+sex),test="F")

Single term deletions

Model:

runtime ~ smoking + sex

Df Sum of Sq RSS AIC F value Pr(F)

<none> 20570 538.64

smoking 1 1078.7 21648 541.75 5.087 0.02635 *

sex 1 18548.6 39118 600.92 87.469 3.356e-15 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Balanced Design

In another (hypothetical) survey, a balanced design was used,
that is, equal numbers of students were selected for the four
groups:

male female
∑

smoker 25 25 50
non-smoker 25 25 50∑

50 50 100

Balanced design, but no representative sampling!
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Balanced Design

> drop1(lm(runtime~smoking+sex),test="F")

Single term deletions

Model:

runtime ~ smoking + sex

Df Sum of Sq RSS AIC F value Pr(F)

<none> 23691 552.77

smoking 1 3084.3 26776 563.01 12.628 0.0005889 ***

sex 1 10648.1 34339 587.89 43.597 2.158e-09 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Balanced Design

> t.test(runtime[smoking=="s"],runtime[smoking=="n"])

Welch Two Sample t-test

data: runtime[smoking == "s"] and runtime[smoking == "n"]

t = 2.9669, df = 94.736, p-value = 0.003808

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

3.674649 18.539956

sample estimates:

mean of x mean of y

101.1723 90.0650



Balanced Design

Note that the linear model commands

summary(lm(runtime~smoking+sex))

and

drop1(lm(runtime~smoking+sex),test="F")

are neither restricted to represenative sampling nor to balanced
design.



Balanced Design

But how to interprete the group means?

Representative sampling:

> mean(runtime[sex=="male"])

[1] 76.99001

> mean(runtime[sex=="female"])

[1] 103.4488

> mean(runtime[smoking=="s"])

[1] 91.06888

> mean(runtime[smoking=="n"])

[1] 90.6301

Balanced design:

> mean(runtime[sex=="male"])

[1] 85.29967

> mean(runtime[sex=="female"])

[1] 105.9376

> mean(runtime[smoking=="s"])

[1] 101.1723

> mean(runtime[smoking=="n"])

[1] 90.065

In the balanced design, smokers are overrepresented
(compared to reality), and females are overrepresented among
the smokers and underrepresented among the non-smokers.
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Balanced Design

Let i be the index for the row of a data table. The data are
subdivided into groups and Gi is the group row i (or patient i)
belongs to; e.g. Gi can be the treatment of patient i . Let Yi be
the response variable, e.g. the blood pressure of patient i . We
can apply an anova to check whether Y depends on G, and the
model behind it is:

Yi = bGi + εi

where the εi are assumed to be independent and normally
distributed with expectation 0, and all εi have the same variance
σ2. During the ANOVA we estimate the influence bGi of the
group on Yi by the group mean b̂g. Thus, the residuals
ri := Yi − b̂Gi ≈ Yi − bGi = εi should be approximately normally
distributed.



Balanced Design

More than one factor can play a role. For example we may take
into account that the blood pressure Yi of a patient may depend
on the sex Si of the patient. In this case the model behind the
anova takes the form

Yi = bGi + cSi + εi .

bGi depends only on the treatment group and cSi only on the sex
of the female. If we also want allow in interaction between the
treatment and the sex, we need another variable dGi ,Si that may
depend on both:

Yi = bGi + cSi + dGi ,Si + εi .

This makes possible, for example, that a certain treatment has a
stronger effect for males than for females.



Balanced Design

A balanced design means, that the sample size are the same for
each combination of factors. E.g. 10 males and 10 females in
each treatment group. Some ANOVA-based method will only
work for balanced designs. Therefore, it is preferable to use a
balanced design when planning an experiment. If the data,
however, are observations from nature, the “design” is usually
unbalanced and this has to be taken into account in the
analysis.

One of the methods for which you need a balanced design is
Tukey’s HSD (honest significat differences). From an anova it
computes confidence intervals for the pairwise differences
between the group means with mulptiple-testing correction (see
slides on ANOVA in the EES&MEME basic statistics course).
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Randomized Balanced Block Design

Tne npk dataset from the MASS1 library: Yield of peas that grew
with or without application of nitrogen (N), phosphate (P), and
potassium (K).

The pease grew on 6 different fields (“blocks”), each of which
was subdivided into four parts with different treatments.

We compensate for effects of the block and randomize within
and between the blocks.

Balanced design: Each treatment appears three times.

1Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S.
Fourth edition. Springer
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Randomized Balanced Block Design

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
PK N P N NP NK

49.5 59.8 62.8 62 52 57.2
NP NPK NPK NPK — NP

62.8 58.5 55.8 48.8 51.5 59
— K N K NK PK

46.8 55.5 69.5 45.5 49.8 53.2
NK P K P PK —
57 56 55 44.2 48.8 56

I Note the balance within the blocks: Any substance apears
twice in each block.

I Cannot estimate triple interaction N:P:K because it is
confounded with block differences.



Randomized Balanced Block Design

> (npk.aov <- aov(yield~block + N*P*K,data=npk))

Call:

aov(formula = yield ~ block + N * P * K, data = npk)

Terms:

block N P K N:P N:K P:K

Sum of Squares 343.2950 189.2817 8.4017 95.2017 21.2817 33.1350 0.4817

Deg. of Freedom 5 1 1 1 1 1 1

Residuals

Sum of Squares 185.2867

Deg. of Freedom 12

Residual standard error: 3.929447

1 out of 13 effects not estimable

Estimated effects may be unbalanced



Randomized Balanced Block Design

> summary(npk.aov)

Df Sum Sq Mean Sq F value Pr(>F)

block 5 343.29 68.659 4.4467 0.015939 *

N 1 189.28 189.282 12.2587 0.004372 **

P 1 8.40 8.402 0.5441 0.474904

K 1 95.20 95.202 6.1657 0.028795 *

N:P 1 21.28 21.282 1.3783 0.263165

N:K 1 33.13 33.135 2.1460 0.168648

P:K 1 0.48 0.482 0.0312 0.862752

Residuals 12 185.29 15.441

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Randomized Balanced Block Design

Giving p values for variables that are also involved in interaction
terms makes sense only if the design is balanced. It refers to a
coefficient that is averaged over the different cases of
interaction.

From the R manual page of “aov”:

“ ‘aov’ is designed for balanced designs, and the results can be
hard to interpret without balance: beware that missing values in
the response(s) will likely lose the balance.”

The command drop1(lm(...),test=’F’) does not assume a
balanced design and therefore does not report p values for
variables that are involved in interactions.



Randomized Balanced Block Design

> drop1(lm(yield~block +(N+P+K)*(N+P+K),data=npk),test="F")

Single term deletions

Model:

yield ~ block + (N + P + K) * (N + P + K)

Df Sum of Sq RSS AIC F value Pr(F)

<none> 185.29 73.052

block 5 343.30 528.58 88.211 4.4467 0.01594 *

N:P 1 21.28 206.57 73.662 1.3783 0.26317

N:K 1 33.14 218.42 75.001 2.1460 0.16865

P:K 1 0.48 185.77 71.115 0.0312 0.86275

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Type I and Type II ANOVA

Be careful with the interpretation of ANOVA tables! The R command
anova, applied to a single model gives a so-called “Type I Anova”,
where each line take only the variables in the lines above into account.
Example: Chill coma recovery times measured by different persons on
different days for different fly lines.

> anova(model4)

Analysis of Variance Table

Response: log(ccrt)

Df Sum Sq Mean Sq F value Pr(>F)

line 1 1.2224 1.22238 13.1486 0.0003812 ***

day 11 2.8471 0.25883 2.7841 0.0023769 **

person 1 0.0850 0.08504 0.9147 0.3402393

[...]

For example, the p-value 0.0023769 tells how much better the model
with line and day can explain the data compared to a model that only
takes line into account. Thus, the values assigned to variables depend
on the input order.



Type I and Type II ANOVA

If you use the R command drop1 with the option test=“F”, you
get a so-called “Type II Anova”, in which each line shows the
influence of one variable, given the estimates of all other
variables.

> drop1(model4,test="F")

[...]

Df Sum of Sq RSS AIC F value Pr(F)

<none> 15.618 -418.91

line 1 0.05860 15.677 -420.23 0.6304 0.428338

day 11 2.47080 18.089 -414.18 2.4161 0.008177 **

person 1 0.08504 15.703 -419.92 0.9147 0.340239

For example, the p-value 0.008177 says that a model that takes
line, day and person into account explains the data significantly
better than a model that uses only line and person.



Type I and Type II ANOVA

Back to the footrace example with non-balanced design:

> summary(aov(runtime~sex+smoking))

Df Sum Sq Mean Sq F value Pr(>F)

sex 1 17473.7 17473.7 82.400 1.316e-14 ***

smoking 1 1078.7 1078.7 5.087 0.02635 *

Residuals 97 20569.7 212.1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> summary(aov(runtime~smoking+sex))

Df Sum Sq Mean Sq F value Pr(>F)

smoking 1 3.8 3.8 0.0179 0.8939

sex 1 18548.6 18548.6 87.4693 3.356e-15 ***

Residuals 97 20569.7 212.1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Type I and Type II ANOVA

But for the dataset with balanced design (for which aov is more
appropriate) the input order does not matter even for Type I
anova:
> summary(aov(runtime~sex+smoking))

Df Sum Sq Mean Sq F value Pr(>F)

sex 1 10648.1 10648.1 43.597 2.158e-09 ***

smoking 1 3084.3 3084.3 12.628 0.0005889 ***

Residuals 97 23691.2 244.2

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> summary(aov(runtime~smoking+sex))

Df Sum Sq Mean Sq F value Pr(>F)

smoking 1 3084.3 3084.3 12.628 0.0005889 ***

sex 1 10648.1 10648.1 43.597 2.158e-09 ***

Residuals 97 23691.2 244.2

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Transforming the Data

It is often important to rescale (i.e. transform) the data. For
example, if a comparison between fitted values (group means)
and the residuals show that the larger values have larger
standard deviations, this may mean that the random error ist
rather multiplicative than additive (as it should be). In this case,
a log transform may help. Sometimes, there is a good
explantation why a certain transformation should be applied.
Sometimes the Box-Cox-Transform can help, which can take
various shapes, depending on a parameter to be optimized.
Other transformations are also possible, not only for the target
variable but also for explanatory variables in regression models.



Transforming the Data

Back to the example with chill coma recovery times with
simulated data motivated by

N. Svetec, A. Werzner, R. Wilches, P. Pavlidis,
J.M. Alvarez-Castro, K.W. Broman, D. Metzler, W. Stephan
(2011) Identification of X-linked quantitative trait loci
affecting cold tolerance in Drosophila melanogaster and fine
mapping by selective sweep analysis.
Molecular Ecology 20(3):530-544



Transforming the Data

> fly <- read.table("CCRT.txt",h=T)

> str(fly)

’data.frame’: 182 obs. of 7 variables:

$ line : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...

$ day : Factor w/ 12 levels "May10","May11",..: 12 12 11 12 12 12 11 11 12 11 ...

$ box : int 4 4 4 4 4 4 4 4 4 4 ...

$ ISO : int 2 2 2 2 2 2 2 2 2 2 ...

$ day.no: int 12 12 11 12 12 12 11 11 12 11 ...

$ person: Factor w/ 2 levels "A","B": 2 2 1 2 2 2 1 1 2 1 ...

$ ccrt : int 41 52 37 16 33 37 19 45 41 39 ...



Transforming the Data

> drop1(model,test="F")

Single term deletions

Model:

ccrt ~ line + box + day + person

Df Sum of Sq RSS AIC F value Pr(F)

<none> 19046 874.41

line 1 58.22 19105 872.97 0.5135 0.47460

box 0 0.00 19046 874.41

day 10 2300.77 21347 875.17 2.0294 0.03318 *

person 1 98.55 19145 873.35 0.8693 0.35250

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Transforming the Data
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Transforming the Data

> model2 <- lm(log(ccrt)~line+box+day+person,fly)

> drop1(model2,test="F")

Single term deletions

Model:

log(ccrt) ~ line + box + day + person

Df Sum of Sq RSS AIC F value Pr(F)

<none> 15.618 -418.91

line 1 0.05860 15.677 -420.23 0.6304 0.428338

box 0 0.00000 15.618 -418.91

day 10 2.45864 18.077 -412.30 2.6446 0.005096 **

person 1 0.08504 15.703 -419.92 0.9147 0.340239

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Transforming the Data

Popular Transformations
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Transforming the Data

Box-Cox-Transformations
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Transforming the Data

boxcox(ccrt∼line+box+day+person,data=fly)
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