Multivariate Statistics in Ecology and Quantitative Genetics Linear Regression and Linear Models

Dirk Metzler \& Noémie Becker

http://evol.bio.lmu.de/_statgen

23. Juni 2014

Contents

Univariate linear regression

t-test for linear regression
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies

Cross validation and AIC
Example: Beak sizes and winglengths in Darwin finches
Example: Overfitting
Example: Daphnia

Griffon Vulture
 Gypus fulvus German: Gänsegeier

photo (c) by Jörg Hempel

围 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds

回 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds
- Important for ecological questions: metabolic rate.

回 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds
- Important for ecological questions: metabolic rate.
- metabolic rate can only be measured in the lab

围 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds
- Important for ecological questions: metabolic rate.
- metabolic rate can only be measured in the lab
- can we infer metabolic rate from heart beat frequency?

griffon vulture, 17.05.99, 16 degrees C

griffon vulture, 17.05.99, 16 degrees C

	day	artbpm	tabol			dtemp
1	01.04./02.04.	70.28	11.51	-6	2	-2.0
2	01.04./02.04.	66.13	11.07	-6	2	-2.0
3	01.04./02.04.	58.32	10.56	-6	2	-2.0
4	01.04./02.04.	58.63	10.62	-6	2	-2.0
5	01.04./02.04.	58.05	9.52	-6	2	-2.0
6	01.04./02.04.	66.37	7.19	-6	2	-2.0
7	01.04./02.04.	62.43	8.78	-6	2	-2.0
8	01.04./02.04.	65.83	8.24	-6	2	-2.0
9	01.04./02.04.	47.90	7.47	-6	2	-2.0
10	01.04./02.04.	51.29	7.83	-6	2	-2.0
11	01.04./02.04.	57.20	9.18	-6	2	-2.0
-	-	-	-	-	-	
-	-	-	-	-	-	-
-	-	-	-	-	-	-
(14 different days)						

```
> model <- lm(metabol~heartbpm,data=vulture,
    subset=day=="17.05.")
> summary(model)
Call:
lm(formula = metabol ~ heartbpm, data = vulture, subset = day
    "17.05.")
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.2026 & -0.2555 & 0.1005 & 0.6393 & 1.1834
\end{tabular}
Coefficients:
```

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	-7.73522	0.84543	-9.149	$5.60 \mathrm{e}-08 * * *$
heartbpm	0.27771	0.01207	23.016	$2.98 \mathrm{e}-14$

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11
Residual standard error: 0.912 on 17 degrees of freedom
Multiple R-squared: 0.9689, Adjusted R-squared: 0.9671
F-statistic: 529.7 on 1 and 17 DF, p-value: 2.979e-14

Univariate linear regression

Univariate linear regression

Univariate linear regression

Univariate linear regression

the line must minimize the sum of squared residuals

define the regression line

$$
y=\hat{a}+\hat{b} \cdot x
$$

by minimizing the sum of squared residuals:

$$
(\hat{a}, \hat{b})=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2}
$$

this is based on the model assumption that values a, b exist, such that, for all data points $\left(x_{i}, y_{i}\right)$ we have

$$
y_{i}=a+b \cdot x_{i}+\varepsilon_{i}
$$

whereas all ε_{i} are independent and normally distributed with the same variance σ^{2}.

given data:

\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

given data:

\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

Model: there are values
a, b, σ^{2} such that

$$
\begin{aligned}
y_{1}= & a+b \cdot x_{1}+\varepsilon_{1} \\
y_{2} & =a+b \cdot x_{2}+\varepsilon_{2} \\
y_{3}= & a+b \cdot x_{3}+\varepsilon_{3} \\
\vdots & \vdots \\
y_{n}= & a+b \cdot x_{n}+\varepsilon_{n}
\end{aligned}
$$

given data:			
\mathbf{Y}	\mathbf{X}		
y_{1}	x_{1}		
y_{2}	x_{2}		
y_{3}	x_{3}		
\vdots	\vdots		
y_{n}	x_{n}	\quad	Model: there are values
:---:			
a, b, σ^{2} such that			
$y_{1}=a+b \cdot x_{1}+\varepsilon_{1}$			
$y_{2}=a+b \cdot x_{2}+\varepsilon_{2}$			
$y_{3}=a+b \cdot x_{3}+\varepsilon_{3}$			
\vdots			
\vdots			
$y_{n}=a+b \cdot x_{n}+\varepsilon_{n}$			

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are independent $\sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Model: there are values
a, b, σ^{2} such that

$$
\begin{aligned}
y_{1}= & a+b \cdot x_{1}+\varepsilon_{1} \\
y_{2}= & a+b \cdot x_{2}+\varepsilon_{2} \\
y_{3}= & a+b \cdot x_{3}+\varepsilon_{3} \\
\vdots & \vdots \\
y_{n}= & a+b \cdot x_{n}+\varepsilon_{n}
\end{aligned}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are independent $\sim \mathcal{N}\left(0, \sigma^{2}\right)$.
$\Rightarrow y_{1}, y_{2}, \ldots, y_{n}$ are independent $y_{i} \sim \mathcal{N}\left(a+b \cdot x_{i}, \sigma^{2}\right)$.

Model: there are values
a, b, σ^{2} such that

$$
\begin{aligned}
y_{1}= & a+b \cdot x_{1}+\varepsilon_{1} \\
y_{2}= & a+b \cdot x_{2}+\varepsilon_{2} \\
y_{3}= & a+b \cdot x_{3}+\varepsilon_{3} \\
\vdots & \vdots \\
y_{n}= & a+b \cdot x_{n}+\varepsilon_{n}
\end{aligned}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are independent $\sim \mathcal{N}\left(0, \sigma^{2}\right)$.
$\Rightarrow y_{1}, y_{2}, \ldots, y_{n}$ are independent $y_{i} \sim \mathcal{N}\left(a+b \cdot x_{i}, \sigma^{2}\right)$.
a, b, σ^{2} are unknown, but not random.

We estimate a and b by computing

$$
(\hat{a}, \hat{b}):=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2} .
$$

We estimate a and b by computing

$$
(\hat{a}, \hat{b}):=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2} .
$$

Theorem
Compute \hat{a} and \hat{b} by

$$
\hat{b}=\frac{\sum_{i}\left(y_{i}-\bar{y}\right) \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i} y_{i} \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

and

$$
\hat{a}=\bar{y}-\hat{b} \cdot \bar{x} .
$$

We estimate a and b by computing

$$
(\hat{a}, \hat{b}):=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2} .
$$

Theorem
Compute an and \hat{b} by

$$
\hat{b}=\frac{\sum_{i}\left(y_{i}-\bar{y}\right) \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i} y_{i} \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

and

$$
\hat{a}=\bar{y}-\hat{b} \cdot \bar{x} .
$$

Please keep in mind:

The line $y=\hat{a}+\hat{b} \cdot x$ goes through the center of gravity of the cloud of points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.

	day	artbpm	tabol			dtemp
1	01.04./02.04.	70.28	11.51	-6	2	-2.0
2	01.04./02.04.	66.13	11.07	-6	2	-2.0
3	01.04./02.04.	58.32	10.56	-6	2	-2.0
4	01.04./02.04.	58.63	10.62	-6	2	-2.0
5	01.04./02.04.	58.05	9.52	-6	2	-2.0
6	01.04./02.04.	66.37	7.19	-6	2	-2.0
7	01.04./02.04.	62.43	8.78	-6	2	-2.0
8	01.04./02.04.	65.83	8.24	-6	2	-2.0
9	01.04./02.04.	47.90	7.47	-6	2	-2.0
10	01.04./02.04.	51.29	7.83	-6	2	-2.0
11	01.04./02.04.	57.20	9.18	-6	2	-2.0
-	-	-	-	-	-	
-	-	-	-	-	-	-
-	-	-	-	-	-	-
(14 different days)						

```
> model <- lm(metabol~heartbpm,data=vulture,
    subset=day=="17.05.")
```

> summary (model)
Call:
lm(formula $=$ metabol \sim heartbpm, data $=$ vulture,
subset $=$ day $==$ "17.05.")

Residuals:

Min	1Q	Median	3Q	Max
-2.2026	-0.2555	0.1005	0.6393	1.1834

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	-7.73522	0.84543	-9.149	$5.60 \mathrm{e}-08$

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. 0.11 Residual standard error: 0.912 on 17 degrees of freedom Multiple R-squared: 0.9689, Adjusted R-squared: 0.9671 F-statistic: 529.7 on 1 and 17 DF, p-value: $2.979 \mathrm{e}-14$

Contents

Univariate linear regression

t-test for linear regression
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies

Cross validation and AIC
Example: Beak sizes and winglengths in Darwin finches
Example: Overfitting
Example: Daphnia

t-test for \hat{b}

Estimate σ^{2} by

$$
s^{2}=\frac{\sum_{i}\left(y_{i}-\hat{a}-\hat{b} \cdot x_{i}\right)^{2}}{n-2} .
$$

Then,

$$
\frac{\hat{b}-b}{s / \sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}
$$

is t-distributed with $n-2$ degrees of freedom. Thus, we can apply a t-test to test the null-hypothesis $b=0$.

Contents

Univariate linear regression
t-test for linear regression

Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies

Cross validation and AIC
Example: Beak sizes and winglengths in Darwin finches
Example: Overfitting
Example: Daphnia

Multivariate Regression

Multivariate Regression Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$.

Multivariate Regression Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$. Observations:

$$
\begin{aligned}
Y_{1} & , X_{11}, X_{21}, \ldots, X_{m 1} \\
Y_{2} & , \\
\vdots & X_{12}, X_{22}, \ldots, X_{m 2} \\
\vdots & \vdots \\
Y_{n} & , X_{1 n}, X_{2 n}, \ldots, X_{m n}
\end{aligned}
$$

Multivariate Regression Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$. Observations:

$$
\begin{aligned}
Y_{1} & , X_{11}, X_{21}, \ldots, X_{m 1} \\
Y_{2} & , \\
\vdots & X_{12}, X_{22}, \ldots, X_{m 2} \\
\vdots & \vdots \\
Y_{n} & , X_{1 n}, X_{2 n}, \ldots, X_{m n}
\end{aligned}
$$

Model: $Y=a+b_{1} \cdot X_{1}+b_{2} \cdot X_{2}+\cdots+b_{m} \cdot X_{m}+\varepsilon$

Multivariate Regression

Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$.
Observations:

$$
\begin{aligned}
Y_{1} & , X_{11}, X_{21}, \ldots, X_{m 1} \\
Y_{2} & , \\
\vdots & X_{12}, X_{22}, \ldots, X_{m 2} \\
\vdots & \vdots \\
Y_{n} & , X_{1 n}, X_{2 n}, \ldots, X_{m n}
\end{aligned}
$$

Model: $Y=a+b_{1} \cdot X_{1}+b_{2} \cdot X_{2}+\cdots+b_{m} \cdot X_{m}+\varepsilon$
Equation system to determine $a, b_{1}, b_{2}, \ldots, b_{m}$:

$$
\begin{array}{ccccccccccccc}
Y_{1} & = & a & + & b_{1} \cdot X_{11} & + & b_{2} \cdot X_{21} & + & \ldots & + & b_{m} \cdot X_{m 1} & + & \varepsilon_{1} \\
Y_{2} & = & a & + & b_{1} \cdot X_{12} & + & b_{2} \cdot X_{22} & + & \ldots & + & b_{m} \cdot X_{m 2} & + & \varepsilon_{2} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
Y_{n} & =a & a & b_{1} \cdot X_{1 n} & + & b_{n} \cdot X_{2 n} & + & \ldots & + & b_{m} \cdot X_{m n} & + & \varepsilon_{n}
\end{array}
$$

Model:

$$
\begin{array}{ccccccccccccc}
Y_{1} & = & a & + & b_{1} \cdot X_{11} & + & b_{2} \cdot X_{21} & + & \ldots & + & b_{m} \cdot X_{m 1} & + & \varepsilon_{1} \\
Y_{2} & = & a & + & b_{1} \cdot X_{12} & + & b_{2} \cdot X_{22} & + & \ldots & + & b_{m} \cdot X_{m 2} & + & \varepsilon_{2} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
Y_{n} & = & a & + & b_{1} \cdot X_{1 n} & + & b_{n} \cdot X_{2 n} & + & \ldots & + & b_{m} \cdot X_{m n} & + & \varepsilon_{n}
\end{array}
$$

target variable Y
explanatory variables $X_{1}, X_{2}, \ldots, X_{m}$ parameter to be estimated a, b_{1}, \ldots, b_{m} independent normally distributed pertubations $\varepsilon_{1}, \ldots, \varepsilon_{m}$ with unknown variance σ^{2}.

Contents

Univariate linear regression
t-test for linear regression
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies

Cross validation and AIC
Example: Beak sizes and winglengths in Darwin finches
Example: Overfitting
Example: Daphnia

- Which factors influence the species richness on sandy beaches?
- Data from the dutch National Institute for Coastal and Marine Management Rijkswaterstaat/RIKZ
- see also

固 Zuur, leno, Smith (2007) Analysing Ecological Data. Springer

	richness	angle2	NAP	grainsize	humus	week
1	11	96	0.045	222.5	0.05	1
2	10	96	-1.036	200.0	0.30	1
3	13	96	-1.336	194.5	0.10	1
4	11	96	0.616	221.0	0.15	1
.
.
21	3	21	1.117	251.5	0.00	4
22	22	21	-0.503	265.0	0.00	4
23	6	21	0.729	275.5	0.10	4
.
.
43	3	96	-0.002	223.0	0.00	3
44	0	96	2.255	186.0	0.05	3
45	2	96	0.865	189.5	0.00	3

Meaning of the Variables

richness Number of species that were found in a plot. angle2 slope of the beach a the plot

NAP altitude of the plot compared to the mean sea level.
grainsize average diameter of sand grains
humus fraction of organic material
week in which of 4 was this plot probed.
(many more variables in original data set)

Model 0:

$$
\begin{gathered}
\text { richness }=a+b_{1} \cdot \text { angle } 2+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
+b_{4} \cdot \text { humus }+\varepsilon
\end{gathered}
$$

Model 0:

richness $=a+b_{1} \cdot$ angle $2+b_{2} \cdot$ NAP $+b_{3} \cdot$ grainsize + $+b_{4} \cdot$ humus $+\varepsilon$

```
in R notation:
richness ~ angle2 + NAP + grainsize + humus
```

```
> modell0 <- lm(richness ~ angle2+NAP+grainsize+humus,
+ data = rikz)
> summary(modell0)
Call:
lm(formula = richness ~ angle2 + NAP + grainsize + humus, dat;
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-4.6851 & -2.1935 & -0.4218 & 1.6753 & 13.2957
\end{tabular}
Coefficients:
```

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	18.35322	5.71888	3.209	0.00262	$* *$
angle2	-0.02277	0.02995	-0.760	0.45144	
NAP	-2.90451	0.59068	-4.917	$1.54 \mathrm{e}-05 \quad * * *$	
grainsize	-0.04012	0.01532	-2.619	$0.01239 \quad *$	
humus	11.77641	9.71057	1.213	0.23234	

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11 Residual standard error: 3.644 on 40 degrees of freedom

- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- The p value $\operatorname{Pr}(>|t|)$ refers to the null hypothesis that the true parameter value may be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- The p value $\operatorname{Pr}(>|t|)$ refers to the null hypothesis that the true parameter value may be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- The p value $\operatorname{Pr}(>|t|)$ refers to the null hypothesis that the true parameter value may be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- Is there a significant week effect?
- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- The p value $\operatorname{Pr}(>|t|)$ refers to the null hypothesis that the true parameter value may be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- Is there a significant week effect?
- Not the number 1,2,3,4 of the week should be multiplied with a coefficient. Instead, the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a parameter that describes how much the species richness is increased compared to week 1.
- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- The p value $\operatorname{Pr}(>|t|)$ refers to the null hypothesis that the true parameter value may be 0, i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- Is there a significant week effect?
- Not the number 1,2,3,4 of the week should be multiplied with a coefficient. Instead, the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a parameter that describes how much the species richness is increased compared to week 1.
- In R this is done by changing week into a factor.

Model 0:
richness $=a+b_{1} \cdot$ angle $2+b_{2} \cdot$ NAP $+b_{3} \cdot$ grainsize + $+b_{4} \cdot$ humus +

$$
b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4}+\varepsilon
$$

$I_{\text {week }=k}$ is a so-called indicator variable which is 1 if week $=k$ and 0 otherwise.

Model 0:

$$
\begin{aligned}
\text { richness }=a & +b_{1} \cdot \text { angle2 }+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
& +b_{4} \cdot \text { humus }+ \\
& b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4}+\varepsilon
\end{aligned}
$$

$I_{\text {week }=k}$ is a so-called indicator variable which is 1 if week $=k$ and 0 otherwise.
e.g. b_{6} describes by how much the species richness in an average plot probed in week 3 is increased compared to week 1.

Model 0:

$$
\begin{aligned}
\text { richness }=a & +b_{1} \cdot \text { angle2 }+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
& +b_{4} \cdot \text { humus }+ \\
& b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4}+\varepsilon
\end{aligned}
$$

$I_{\text {week }=k}$ is a so-called indicator variable which is 1 if week $=k$ and 0 otherwise.
e.g. b_{6} describes by how much the species richness in an average plot probed in week 3 is increased compared to week 1.
in R notation:
richness ~ angle2 + NAP + grainsize + humus +
factor(week)

```
> modell <- lm(richness ~ angle2+NAP+grainsize+humus
+ +factor(week), data = rikz)
> summary(modell)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

| (Intercept) | 9.298448 | 7.967002 | 1.167 | 0.250629 |
| :--- | ---: | ---: | ---: | ---: | :--- |
| angle2 | 0.016760 | 0.042934 | 0.390 | 0.698496 |
| NAP | -2.274093 | 0.529411 | -4.296 | 0.000121 |$* * *$

- Obviously, in weeks 2 and 3 significantly less species were found than in week 1, which is our reference point here.
- Obviously, in weeks 2 and 3 significantly less species were found than in week 1, which is our reference point here.
- The estimated Intercept is thus the expected species richness in week 1 in a plot where all other parameters take the value 0 .
- Obviously, in weeks 2 and 3 significantly less species were found than in week 1, which is our reference point here.
- The estimated Intercept is thus the expected species richness in week 1 in a plot where all other parameters take the value 0 .
- An alternative representation without Intercept takes 0 as reference point.

```
> modell.alternativ <- lm(richness ~ angle2+NAP+
+ grainsize+humus+factor(week)-1, data = rikz)
> summary(modell.alternativ)
```

Coefficients:

angle2	0.016760	0.042934	0.390	0.698496
NAP	-2.274093	0.529411	-4.296	0.000121

the p values refer to the question whether the four intercepts for the different weeks are significantly different from 0 . The four p values refer to the null hypotheses that the additive parameter of a week is 0 .

How do we test whether there is a difference between the weeks?

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1.

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1 . However, the p value refers to the situation of single testing.

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1 . However, the p value refers to the situation of single testing.

If we perform pairwise test for the weeks, we end up with $\binom{4}{2}=6$ tests.

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1 . However, the p value refers to the situation of single testing.

If we perform pairwise test for the weeks, we end up with $\binom{4}{2}=6$ tests.

Bonferroni correction: Multiply each p value with the number of tests performed, in our case 6.

Bonferroni correction

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.

Bonferroni correction

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.
Example: If you perform 20 tests where the null hypothesis is actually true, then on average 1 test will falsly reject the null hypothesis on the 5% level.

Bonferroni correction

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.
Example: If you perform 20 tests where the null hypothesis is actually true, then on average 1 test will falsly reject the null hypothesis on the 5% level.
Bonferroni correction: Multiply all p values with the number of tests performed. Reject the null hypotheses where the result is still smaller than the significance level.

Bonferroni correction

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.
Example: If you perform 20 tests where the null hypothesis is actually true, then on average 1 test will falsly reject the null hypothesis on the 5% level.
Bonferroni correction: Multiply all p values with the number of tests performed. Reject the null hypotheses where the result is still smaller than the significance level.
Disadvantage: Conservative: Often, the null hypothies cannot be rejected even it is not true (type-2-error).

Alternative: Test whether there is a week effect by using an analysis of variance (anova) to compare a model with week effect to a model without week effect.

Alternative: Test whether there is a week effect by using an analysis of variance (anova) to compare a model with week effect to a model without week effect.

Only works for nested models, i.e. the simpler model can be obtained by restricting some parameters of the richer model to certain values or equations. In our case: "all week summands are equal".

```
> modell0 <- lm(richness ~ angle2+NAP+grainsize+humus,
+ data = rikz)
> modell <- lm(richness ~ angle2+NAP+grainsize+humus
+ +factor(week), data = rikz)
> anova(modell0, modell)
Analysis of Variance Table
Model 1: richness ~ angle2 + NAP + grainsize + humus
Model 2: richness ~ angle2 + NAP + grainsize + humus + factor
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 40 531.17
2 37 353.66 3 177.51 6.1902 0.00162 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```


We reject the null hypothesis that the weeks have no effect with a p-value of 0.00162 .

We reject the null hypothesis that the weeks have no effect with a p-value of 0.00162 .

But wait! We can only do that if the more complex model fits well to the data. We check this graphically.

plot(modell)

Probes 22, 42, and 9 are considered as outliers.

Probes 22, 42, and 9 are considered as outliers.

Can we explain this by taking more parameters into account or are these real outliers, which are atypical and must be analysed separately.

Is there an interaction between NAP and angle2?

Is there an interaction between NAP and angle2?

richness $=a+b_{1} \cdot$ angle $2+b_{2} \cdot$ NAP $+b_{3} \cdot$ grainsize + $+b_{4}$. humus +

$$
+b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4}
$$

$$
b_{8} \cdot \text { angle2 } \cdot \text { NAP }+\varepsilon
$$

in R notation:
richness \sim angle2 + NAP + angle2:NAP+grainsize + humus

+ factor(week)

Is there an interaction between NAP and angle2?
richness $=a+b_{1} \cdot$ angle $2+b_{2} \cdot$ NAP $+b_{3} \cdot$ grainsize + $+b_{4} \cdot$ humus + $+b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }}=4$ $b_{8} \cdot$ angle2 \cdot NAP $+\varepsilon$
in R notation:
richness ~ angle2 + NAP + angle2:NAP+grainsize + humus

+ factor(week)
short-cut:
richness \sim angle2*NAP+grainsize + humus + factor(week)

```
> modell3 <- lm(richness ~ angle2*NAP+grainsize+humus
+ +factor(week), data = rikz)
> summary(modell3)
[...]
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

| (Intercept) | 10.438985 | 8.148756 | 1.281 | 0.208366 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| angle2 | 0.007846 | 0.044714 | 0.175 | 0.861697 |
| NAP | -3.011876 | 1.099885 | -2.738 | $0.009539 ~ * *$ |
| grainsize | 0.001109 | 0.021236 | 0.052 | 0.958658 |
| humus | 0.387333 | 8.754526 | 0.044 | 0.964955 |
| factor(week)2 | -7.444863 | 1.839364 | -4.048 | 0.000262 |$* * *$

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05,0.1, \frac{1}{\underline{\underline{E}}}$

Different types of ANOVA tables

If you apply the R command anova to a single model, the variables are added consecutively in the same order as in the command. Each p value refers to the test whether the model gets significantly better by adding the variable to only those that are listed above the variable. In contrast to this, the p values that are given by summary or by dropterm from the MASS library always compare the model to a model where only the corresponding variable is set to 0 and all other variables can take any values. The p values given by anova thus depend on the order in which the variables are given in the command. This is not the case for summary and dropterm. The same options exist in other software packages, sometimes under the names "type I analysis" and "type II analysis".

The same model is specified twice:
> modellA <- lm(richness ~ angle2+NAP+humus
$+\quad+f a c t o r(w e e k)+g r a i n s i z e, d a t a=r i k z)$
> modellB <- lm(richness ~ angle2+grainsize
$+\quad+N A P+h u m u s+f a c t o r(w e e k)$, data $=r i k z)$
Look at the p-valus of grainsize

```
> anova(modellA)
Analysis of Variance Table
```

Response: richness

| | Df | Sum Sq Mean Sq F value | $\operatorname{Pr}(>F)$ | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| angle2 | 1 | 124.86 | 124.86 | 13.0631 | 0.0008911 | $* * *$ |
| NAP | 1 | 319.32 | 319.32 | 33.4071 | $1.247 e-06$ | $* * *$ |
| humus | 1 | 35.18 | 35.18 | 3.6804 | 0.0627983 | . |
| factor (week) | 3 | 268.51 | 89.50 | 9.3638 | $9.723 e-05$ | $* * *$ |
| grainsize | 1 | 0.11 | 0.11 | 0.0114 | 0.9155704 | |
| Residuals | 37 | 353.66 | 9.56 | | | |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

```
> anova(modellB)
Analysis of Variance Table
```

Response: richness
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

angle2	1	124.86	124.86	13.0631	0.00089	$* * *$
grainsize	1	35.97	35.97	3.7636	0.06003	.
NAP	1	390.11	390.11	40.8127	$1.8 \mathrm{e}-07$	$* * *$
humus	1	19.53	19.53	2.0433	0.16127	
factor (week)	3	177.51	59.17	6.1902	0.00162	$* *$
Residuals	37	353.66	9.56			

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

```
> library(MASS)
> dropterm(modellA,test="F")
Single term deletions
```

Model:

Df Sum of Sq RSS AIC F Value $\operatorname{Pr}(F)$
<none>

angle2	1	1.46	355.12	106.96	0.15	0.6984
NAP	1	176.37	530.03	124.98	18.45	0.0001

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11
> dropterm(modellB,test="F")
Single term deletions

Model:
richness ~ angle2 + grainsize + NAP + humus + factor(week Df Sum of Sq RSS AIC F Value $\operatorname{Pr}(F)$

<none>			353.66	108.78			
angle2	1	1.46	355.12	106.96	0.15	0.6984	
grainsize	1	0.11	353.77	106.79	0.01	0.9155	
NAP	1	176.37	530.03	124.98	18.45	0.0001	$* * *$
humus	1	0.03	353.70	106.78	0.003565	0.9527	
factor (week)	177.51	531.17	121.08	6.19	0.0016 **		

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

> summary(modellA)

[...]
Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$	
(Intercept)	9.298448	7.967002	1.167	0.2506
angle2	0.016760	0.042934	0.390	0.6984
NAP	-2.274093	0.529411	-4.296	0.0001

> summary (modellB)
[...]
Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	9.298448	7.967002	1.167	0.2506
angle2	0.016760	0.042934	0.390	0.6984
grainsize	0.002249	0.021066	0.107	0.9155
NAP	-2.274093	0.529411	-4.296	$0.0001 * * *$
humus	0.519686	8.703910	0.060	0.9527
factor (week)2	-7.065098	1.761492	-4.011	$0.0002 * * *$
factor(week)3	-5.719055	1.827616	-3.129	$0.0034 * *$
factor (week)4	-1.481816	2.720089	-0.545	0.5891

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

Contents

Univariate linear regression
t-test for linear regression
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies

Cross validation and AIC
Example: Beak sizes and winglengths in Darwin finches
Example: Overfitting
Example: Daphnia

For young anorexia patients the effect of family therapy (FT) and cognitive behavioral therapy (CBT) is compared to a control group (Cont) by comparing the weight before (Prewt) and after (Postwt) the treatment (Treat).

囯 Hand, D. J., Daly, F., McConway, K., Lunn, D. and Ostrowski, E. eds (1993) A Handbook of Small Data Sets. Chapman \& Hall

Model Im1 There is a linear relation with the pre-weight. Each treatment changes the weight by a value that depends on the treatment but not on the Preweight.
Model Im2 Interaction between Treatment und Preweight: The effect of the pre-weight depends on the kind of treatment.


```
> lm1 <- lm(Postwt Prewt+Treat,anorexia)
> lm2 <- lm(Postwt~Prewt*Treat,anorexia)
> anova(lm1,lm2)
Analysis of Variance Table
```

Model 1: Postwt ~ Prewt + Treat
Model 2: Postwt ~ Prewt * Treat
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>F)$
1683311.3
2662844.82466 .55 .41120 .006666 **
Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11
result: the more complex model fits significantly better than the nested model.
result: the more complex model fits significantly better than the nested model.
interpretation: The role of the weight before the treatment depends on the type of the treatment.
result: the more complex model fits significantly better than the nested model.
interpretation: The role of the weight before the treatment depends on the type of the treatment. or: The difference between effects of the treatments depends on the weight before the treetment.

Contents

Univariate linear regression
t-test for linear regression
Multivariate Regression
Example: species richness on sandy beaches Example: Success of different therapies

Cross validation and AIC
Example: Beak sizes and winglengths in Darwin finches Example: Overfitting
Example: Daphnia

Contents

Univariate linear regression
t-test for linear regression
Multivariate Regression
Example: species richness on sandy beaches Example: Success of different therapies

Cross validation and AIC
Example: Beak sizes and winglengths in Darwin finches
Example: Overfitting
Example: Daphnia

> You find a beak of a Darwin finch. The beak is 14 mm long and 10 mm high. How accurately can you predict the winglength of the bird?

> You find a beak of a Darwin finch. The beak is 14 mm long and 10 mm high. How accurately can you predict the winglength of the bird?

Your "training data" are the winglengths (WingL), beak heights (BeakH) and beak lengths (N.UBkL) of 46 Darwin finches.


```
> modH <- lm(WingL~BeakH)
> summary(modH)
Call:
lm(formula = WingL ~ BeakH)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-7.1882 & -2.5327 & -0.2796 & 1.8325 & 16.2702
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr (>|t|)
(Intercept) 49.78083 1.33103 37.40 <2e-16 ***
BeakH \(1.76284 \quad 0.09961 \quad 17.70<2 e-16 * * *\)
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 3.868 on 44 degrees of freedom
Multiple R-squared: 0.8768, Adjusted R-squared: 0.874
F-statistic: 313.2 on 1 and 44 DF, p-value: < 2.2e-16
> predict(modH,newdata=data.frame(BeakH=10))
    1
67.40924
```

```
> modL <- lm(WingL~N.UBkL)
> summary(modL)
Call:
lm(formula = WingL ~ N.UBkL)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-7.1321 & -3.3974 & 0.4737 & 2.2966 & 18.2299
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr (>|t|)
(Intercept) 41.5371 2.2884 18.15 <2e-16 ***
N.UBkL 2.5460 0.1875 13.58 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 4.838 on 44 degrees of freedom
Multiple R-squared: 0.8074, Adjusted R-squared: 0.803
F-statistic: 184.4 on 1 and 44 DF, p-value: < 2.2e-16
> predict(modL,newdata=data.frame(N.UBkL=14))
    1
77.18117
```

```
> modHL <- lm(WingL ~ BeakH+N.UBkL)
> summary(modHL)
Call:
lm(formula = WingL ~ BeakH + N.UBkL)
```

Residuals:

Min	1Q	Median	3Q	Max
-7.3185	-2.5022	-0.2752	1.5352	16.5893

Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	48.1740	2.2572	21.343	$<2 \mathrm{e}-16$	$* * *$
BeakH	1.5133	0.2999	5.047	$8.69 \mathrm{e}-06$	$* * *$
N.UBkL	0.3984	0.4513	0.883	0.382	

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. $0.1 \quad 1$
Residual standard error: 3.878 on 43 degrees of freedom
Multiple R-squared: 0.879, Adjusted R-squared: 0.8734
F-statistic: 156.2 on 2 and 43 DF, p-value: < $2.2 \mathrm{e}-16$
> predict(modHL, newdata=data.frame(BeakH=10,N.UBkL=14))
1
68.88373

Which of the three predictions $67.4 \mathrm{~mm}, 77.2 \mathrm{~mm}$ und 68.9 mm for the winglength is most reliable?

Which of the three predictions $67.4 \mathrm{~mm}, 77.2 \mathrm{~mm}$ und 68.9 mm for the winglength is most reliable?
In the model modHL (with beak length and height) the influence of beak length is not significant.

Which of the three predictions $67.4 \mathrm{~mm}, 77.2 \mathrm{~mm}$ und 68.9 mm for the winglength is most reliable?
In the model modHL (with beak length and height) the influence of beak length is not significant.

We can not draw conclusion from non-significance. Beak length could still improve the prediction.

Which of the three predictions $67.4 \mathrm{~mm}, 77.2 \mathrm{~mm}$ und 68.9 mm for the winglength is most reliable?
In the model modHL (with beak length and height) the influence of beak length is not significant.

We can not draw conclusion from non-significance. Beak length could still improve the prediction. Is it always good to use as much data as possible?

Which of the three predictions $67.4 \mathrm{~mm}, 77.2 \mathrm{~mm}$ und 68.9 mm for the winglength is most reliable?
In the model modHL (with beak length and height) the influence of beak length is not significant.
We can not draw conclusion from non-significance. Beak length could still improve the prediction.
Is it always good to use as much data as possible?
This could lead to "overfitting": If too many parameters are available, the model will learn all the little details of the data including random fluctions. It will learn just memorize the trainig data. This may corrupt the model's predictions for new data.

We could judge the models by the standard deviation of the ε_{i}, which we estimate by the standard deviation of the residuals r_{i}.

We could judge the models by the standard deviation of the ε_{i}, which we estimate by the standard deviation of the residuals r_{i}. We must account for the different number d of model parameters, because we lose one degree of freedom for each estimated parameter:

$$
\widehat{\sigma}_{\epsilon}=\sqrt{\frac{1}{n-d} \sum_{i} r_{i}^{2}}=\sigma_{r} \cdot \sqrt{\frac{n-1}{n-d}} .
$$

We could judge the models by the standard deviation of the ε_{i}, which we estimate by the standard deviation of the residuals r_{i}. We must account for the different number d of model parameters, because we lose one degree of freedom for each estimated parameter:

$$
\widehat{\sigma}_{\epsilon}=\sqrt{\frac{1}{n-d} \sum_{i} r_{i}^{2}}=\sigma_{r} \cdot \sqrt{\frac{n-1}{n-d}} .
$$

These values are reported in R by the command "summary": modH:
Residual standard error: 3.868 on 44 degrees of freedom modL:
Residual standard error: 4.838 on 44 degrees of freedom modHL:
Residual standard error: 3.878 on 43 degrees of freedom

Another possibility to judge the prediction error of a model is cross validation (aka Jackknife).

Another possibility to judge the prediction error of a model is cross validation (aka Jackknife).

The idea is: Remove one of the 46 birds from the dataset and fit the model to the other 45 . How well can the model predict the winglength of the omitted bird?

Another possibility to judge the prediction error of a model is cross validation (aka Jackknife).

The idea is: Remove one of the 46 birds from the dataset and fit the model to the other 45 . How well can the model predict the winglength of the omitted bird?
Repeat this for all 46 birds.

Another possibility to judge the prediction error of a model is cross validation (aka Jackknife).

The idea is: Remove one of the 46 birds from the dataset and fit the model to the other 45 . How well can the model predict the winglength of the omitted bird?
Repeat this for all 46 birds.
We have to decide how we measure the error. How to judge a model with many medium errors compared to a model with rare large errors? We use (the square root of) the sum of squared errors.
prederrorHL <- numeric()
for (i in 1:46) \{
selection <- rep(TRUE,46)
selection[i] <- FALSE
modHL. R <- lm(WingL~N.UBkL+BeakH, data=finchdata, subset=selection)
prederrorHL[i]=WingL[i]-predict(modHL.R,finchdata[i,]) \}

	Height	Length	Height and Length
σ (Residuals)	3.83	4.78	3.79

	Height	Length	Height and Length
σ (Residuals)	3.83	4.78	3.79
$d=$ (Number Parameters)	2	2	3

	Height	Length	Height and Length
σ (Residuals)	3.83	4.78	3.79
$d=($ Number Parameters $)$	2	2	3
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3.87

	Height	Length	Height and Length
$\sigma=($ Residuals $)$	3.83	4.78	3.79
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3
cross validation.	3.96	4.97	3.87

	Height	Length	Height and Length
$\sigma=($ Residuals $)$	3.83	4.78	3.79
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3
cross validation.	3.96	4.97	3.87
AIC	259.0	279.5	260.1

	Height	Length	Height and Length
$\sigma=($ Residuals $)$	3.83	4.78	3.79
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3
cross validation.	3.96	4.97	3.87
AIC	259.0	279.5	260.1
BIC	264.4	285.0	267.4

	Height	Length	Height and Length
$\sigma=($ Rumbesiduals $)$	3.83	4.78	3.79
σ (Residuals $) \cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3
cross validation.	3.96	4.97	3.87
AIC	259.0	279.5	260.977
BIC	264.4	285.0	267.4

Akaike's Information Criterion:

$$
\text { AIC }=-2 \cdot \log L+2 \cdot(\text { NumberofParameters })
$$

	Height	Length	Height and Length
$\sigma=($ Rumberiduals $)$	3.83	4.78	3.79
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3
cross validation.	3.96	4.97	3.87
AIC	259.0	279.5	3.977
BIC	264.4	285.0	260.1

Akaike's Information Criterion:

$$
\text { AIC }=-2 \cdot \log L+2 \cdot(\text { NumberofParameters })
$$

Bayesian Information Criterion:

$$
\text { BIC }=-2 \cdot \log L+\log (n) \cdot(\text { NumberofParameters })
$$

	Height	Length	Height and Length
$\sigma=($ Rumbiduals	3.83	4.78	3.79
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3
cross validation.	3.96	4.97	3.87
AIC	259.0	279.5	2.977
BIC	264.4	285.0	267.4

Akaike's Information Criterion:

$$
\text { AIC }=-2 \cdot \log L+2 \cdot(\text { NumberofParameters })
$$

Bayesian Information Criterion:

$$
\text { BIC }=-2 \cdot \log L+\log (n) \cdot(\text { NumberofParameters })
$$

For $n \geq 8$ holds $\log (n)>2$ and BIC penalizes every additional parameter harder than AIC. (As always, log is the natural logarithm.)

Low values of AIC and BIC favor the model.

Low values of AIC and BIC favor the model. (At least in R. There may be programs that show AIC and BIC with inverse sign)

Low values of AIC and BIC favor the model. (At least in R. There may be programs that show AIC and BIC with inverse sign)
AIC is based on the idea to approximate the prediction error (which is exact under certain conditions).

Low values of AIC and BIC favor the model. (At least in R. There may be programs that show AIC and BIC with inverse sign)
AIC is based on the idea to approximate the prediction error (which is exact under certain conditions).
BIC approximates (up to a constant) the log of the posterior probability of the model, where all models are a priori assumed to be equally probable.

	height	length	height and length
σ (Residuals)	3.83	4.78	3.79
$d=($ Number of parameters $)$	2	2	3
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.87	4.84	3.88
cross validation.	26.56	33.34	26.68
AIC	259.0	279.5	260.1
BIC	264.4	285.0	267.4
It seems best to use only the beak height.			

Problem with extensive model selection

 If you have optimized the model e.g. by AIC and than compute p-values with the same data, you find too much significance.
Problem with extensive model selection

 If you have optimized the model e.g. by AIC and than compute p-values with the same data, you find too much significance. We explore this with a little simulation:```
A <- as.factor(rep(c("a","b","c"),c(40,40,40)))
B <- as.factor(rep(rep(c("w","x","y","z"),c(10,10,10,10)),3))
C <- as.factor(rep(c("p","q","r"),40))
D <- as.factor(rep(rep(c("m","n"),c(5,5)),12))
X <- rnorm(120,10,2)
library(MASS)
p <- numeric()
q <- numeric()
for(i in 1:1000) {
 X <- rnorm(120,10,2)
 p[i] <- anova(lm(X~1),lm(X~A*B*C*D))$"Pr(>F)"[[2]]
 q[i] <- anova(lm(X~1),stepAIC(lm(X~A*B*C*D)))$"Pr(>F)"[[2]]
}
```


## Histogram of $p$



Histogram of $q$


## Save model selection and checking if you have lots of data

1. Divide the data randomly into 3 subsets A, B, C, where A may contain half of the data, and B and C a quarter each.
2. Fit each candidate model to the data subset $A$.
3. Assess the accuracy of these fitted models with data subset B. Let M be the best model in this contest.
4. Assess the accuracy of $M$ again and also its $p$-values, this time with dataset C .

Graphical methods are also very important in model fitting, especially applied to residuals. Plot resudials against variables. If this uncovers dependencies, they should be added to the model.

## Contents

Univariate linear regression
t-test for linear regression
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Cross validation and AIC
Example: Beak sizes and winglengths in Darwin finches

## Example: Overfitting

Example: Daphnia

## Overfitting

What is the value of y for $\mathrm{x}=0$ ?


## Overfitting

What is the value of y for $\mathrm{x}=0$ ?


## Overfitting

What is the value of y for $\mathrm{x}=\mathbf{0}$ ?


## Overfitting

What is the value of y for $\mathrm{x}=0$ ?

$\operatorname{lm}(\mathrm{y} \sim \operatorname{poly}(\mathrm{x}, 2))$ is the same as $\operatorname{lm}\left(\mathrm{y} \sim \mathrm{x}+\mathrm{I}\left(\mathrm{x}^{2}\right)\right)$

## Overfitting

What is the value of y for $\mathrm{x}=0$ ?

$\operatorname{lm}(y \sim \operatorname{poly}(x, 7)))$

## Contents

## Univariate linear regression

t-test for linear regression
Multivariate Regression
Example: species richness on sandy beaches Example: Success of different therapies

Cross validation and AIC
Example: Beak sizes and winglengths in Darwin finches Example: Overfitting

Example: Daphnia

Question: Is there a difference between Daphnia magna and Daphnia galeata in their reaction on food supply?

Question: Is there a difference between Daphnia magna and Daphnia galeata in their reaction on food supply?

Data from Justina Wolinska's ecology course for Bachelor students.
> daph <- read.table("daphnia_justina.csv",h=T)
> daph
counts foodlevel species

| 1 | 68 | high | magna |
| :--- | ---: | ---: | ---: |
| 2 | 54 | high | magna |
| 3 | 59 | high | magna |
| 4 | 24 | high | galeata |
| 5 | 27 | high | galeata |
| 6 | 16 | high | galeata |
| 7 | 20 | low | magna |
| 8 | 18 | low | magna |
| 9 | 18 | low | magna |
| 10 | 5 | low | galeata |
| 11 | 8 | low | galeata |
| 12 | 9 | low | galeata |

```
> mod1 <- lm(counts~foodlevel+species,data=daph)
> mod2 <- lm(counts~foodlevel*species,data=daph)
> anova(mod1,mod2)
Analysis of Variance Table
```

Model 1: counts ~ foodlevel + species
Model 2: counts ~ foodlevel * species
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>F)$
$1 \quad 9710.00$
$2 \quad 8176.671 \quad 533.3324 .151 \quad 0.001172$ **
Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11
> summary (mod2)
[...]
Coefficients:

| (Intercept) | 22.33 | 2.713 | 8.232 | $3.55 \mathrm{e}-05$ | *** |
| :--- | ---: | ---: | ---: | ---: | ---: |
| countslow | -15.00 | 3.837 | -3.909 | 0.00449 | $* *$ |
| foodlevelmagna | 38.00 | 3.837 | 9.904 | $9.12 \mathrm{e}-06$ | *** |
| countslow: foodlevelmagna | -26.67 | 5.426 | -4.914 | 0.00117 | ** |

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. 0.11

Residual standard error: 4.699 on 8 degrees of freedom Multiple R-squared: 0.9643, Adjusted R-squared: 0.9509 F-statistic: 71.95 on 3 and 8 DF, p-value: 3.956e-06

Result: the more complex model, in which different species react differently to low food level, fits significantly better.

Result: the more complex model, in which different species react differently to low food level, fits significantly better.

But does it fit well enough...?


```
> mod3 <- lm(log(counts) ~foodlevel+species,data=daph)
> mod4 <- lm(log(counts) ~foodlevel*species,data=daph)
> anova(mod3,mod4)
Analysis of Variance Table
Model 1: log(counts) ~ foodlevel + species
Model 2: log(counts) ~ foodlevel * species
 Res.Df RSS Df Sum of Sq F Pr (>F)
1 9 0.38041
2 8 0.37856 1 0.0018545 0.0392 0.848
```

```
> summary(mod3)
Call:
lm(formula = log(counts) ~ foodlevel + species, data = daph)
Residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-0.34017 & -0.05915 & 0.02622 & 0.13153 & 0.24762
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0946 0.1028 30.104 2.41e-10 ***
foodlevellow -1.1450 0.1187 -9.646 4.83e-06 ***
speciesmagna 0.9883 0.1187 8.326 1.61e-05 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.2056 on 9 degrees of freedom
Multiple R-squared: 0.9475, Adjusted R-squared: 0.9358
F-statistic: 81.19 on 2 and 9 DF, p-value: 1.743e-06
```





## The qqplot looks better now but not really good.

The qqplot looks better now but not really good.
The reason is perhaps that the values of the target variable counts were small integers such that the normal distribution assumption is dubious.

The qqplot looks better now but not really good.
The reason is perhaps that the values of the target variable counts were small integers such that the normal distribution assumption is dubious.

Instead of the normal linear model we can fit a log transformed generalized linear model of type Poisson. We will see this in a few days.

The qqplot looks better now but not really good.
The reason is perhaps that the values of the target variable counts were small integers such that the normal distribution assumption is dubious.
Instead of the normal linear model we can fit a log transformed generalized linear model of type Poisson. We will see this in a few days.

For now we only compare the models with normality assumptions.

```
> AIC(mod1,mod2,mod3,mod4)
 df AIC
mod1 4 91.0188246
mod2 5 76.3268216
mod3 4 0.6376449
mod4 5 2.5790019
```

The log-linear models clearly have better AIC values than the linear models with untransformed data. But one should not compare AIC values between models with different (or differently scaled) target variable.

```
> AIC(mod1,mod2,mod3,mod4)
 df AIC
mod1 4 91.0188246
mod2 5 76.3268216
mod3 4 0.6376449
mod4 5 2.5790019
```

The log-linear models clearly have better AIC values than the linear models with untransformed data. But one should not compare AIC values between models with different (or differently scaled) target variable.

The interaction in model mod4 is not only non-significant, the model mod3 without interaction also has the better AIC values.

## So we favor mod3:

$$
\log (\text { counts })=3.09-1.14 \cdot I_{\text {low food }}+0.99 \cdot I_{\text {magna }}+\varepsilon
$$

So we favor mod3:

$$
\log (\text { counts })=3.09-1.14 \cdot I_{\text {low food }}+0.99 \cdot I_{\text {magna }}+\varepsilon
$$

By applying the e function we obtain:

$$
\text { counts }=21.98 \cdot 0.32^{\text {1ow food }} \cdot 2.69^{\text {/magna }} \cdot e^{\varepsilon}
$$

prediction of log-linear model

no. of Daphnia

But is it reasonable at all to assume normal distribution when the data are counts $0,1,2, \ldots$ ?

But is it reasonable at all to assume normal distribution when the data are counts $0,1,2, \ldots$ ?

We will come back to this dataset when we discuss GLMs.

