Multivariate Statistics in Ecology and Quantitative Genetics
 Some remarks on balanced design and on parameter transformations.

Dirk Metzler \& Noémie Becker

```
http://evol.bio.lmu.de/_statgen
```

2. July 2013

Contents

Balanced Design

Randomized Balanced Block Design

Type I and Type II ANOVA

Transforming the Data

Hypothetical study: 100 LMU students were selected to participate in a 10 km footrace. To motivate the participants, each participant got a release of the tuition fees, and this reward was better, the faster the students ran.

Hypothetical study: 100 LMU students were selected to participate in a 10 km footrace. To motivate the participants, each participant got a release of the tuition fees, and this reward was better, the faster the students ran.

The aim of the study was to assess how the sportiveness depended on gender and smoking behavior. Thus, the students were subdivided into four groups:

	male	female	\sum
smoker	18	9	27
non-smoker	30	43	73
\sum	48	52	100

Hypothetical study: 100 LMU students were selected to participate in a 10 km footrace. To motivate the participants, each participant got a release of the tuition fees, and this reward was better, the faster the students ran.

The aim of the study was to assess how the sportiveness depended on gender and smoking behavior. Thus, the students were subdivided into four groups:

	male	female	\sum
smoker	18	9	27
non-smoker	30	43	73
\sum	48	52	100

(Smoking seems to be gender-specific, $p=0.026$, Fisher's exact test)
> t.test(runtime[smoking=="s"],runtime[smoking=="n"])

Welch Two Sample t-test
data: runtime[smoking == "s"] and runtime[smoking == "n" $\mathrm{t}=0.1102, \mathrm{df}=60.611, \mathrm{p}$-value $=0.9126$
alternative hypothesis: true difference in means is not e 95 percent confidence interval:
-7.522165 8.399714
sample estimates:
mean of x mean of y
91.0688890 .63010

```
> drop1(lm(runtime~smoking+sex),test="F")
Single term deletions
```

Model:
runtime ~ smoking + sex
Df Sum of Sq RSS AIC F value $\operatorname{Pr}(F)$
$\begin{array}{llrrrrrr}\text { <none> } & & & 20570 & 538.64 & & & \\ \text { smoking } & 1 & 1078.7 & 21648 & 541.75 & 5.087 & 0.02635 & * \\ \text { sex } & 1 & 18548.6 & 39118 & 600.92 & 87.469 & 3.356 e-15 & * * *\end{array}$
Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

In another (hypothetical) survey, a balanced design was used, that is, equal numbers of students were selected for the four groups:

In another (hypothetical) survey, a balanced design was used, that is, equal numbers of students were selected for the four groups:

	male	female	\sum
smoker	25	25	50
non-smoker	25	25	50
\sum	50	50	100

In another (hypothetical) survey, a balanced design was used, that is, equal numbers of students were selected for the four groups:

	male	female	\sum
smoker	25	25	50
non-smoker	25	25	50
\sum	50	50	100

Balanced design, but no representative sampling!

```
> drop1(lm(runtime~smoking+sex),test="F")
Single term deletions
Model:
runtime ~ smoking + sex
    Df Sum of Sq RSS AIC F value Pr(F)
<none> 23691 552.77
smoking 1 3084.3 26776 563.01 12.628 0.0005889 ***
sex 1 10648.1 34339 587.89 43.597 2.158e-09 ***
```

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11
> t.test(runtime[smoking=="s"],runtime[smoking=="n"])

Welch Two Sample t-test
data: runtime[smoking == "s"] and runtime[smoking == "n" $\mathrm{t}=2.9669$, $\mathrm{df}=94.736$, p -value $=0.003808$
alternative hypothesis: true difference in means is not e 95 percent confidence interval:
3.67464918 .539956
sample estimates:
mean of x mean of y 101.172390 .0650

Note that the linear model commands
summary (lm(runtime~smoking+sex))
and
drop1(lm(runtime~smoking+sex),test="F")
are neither restricted to represenative sampling nor to balanced design.

But how to interprete the group means?

Representative sampling:
> mean(runtime[sex=="male"]) > mean(runtime[sex=="male"])
[1] 76.99001
[1] 85.29967
> mean(runtime[sex=="female"])> mean(runtime[sex=="female"])
[1] 103.4488 [1] 105.9376
> mean(runtime[smoking=="s"]) > mean(runtime[smoking=="s"])
[1] 91.06888
[1] 101.1723
> mean(runtime[smoking=="n"]) > mean(runtime[smoking=="n"])
[1] 90.6301
[1] 90.065

But how to interprete the group means?

Representative sampling:
> mean(runtime[sex=="male"]) > mean(runtime[sex=="male"])
[1] 76.99001
[1] 85.29967
> mean(runtime[sex=="female"])> mean(runtime[sex=="female"])
[1] 103.4488 [1] 105.9376
> mean(runtime[smoking=="s"]) > mean(runtime[smoking=="s"])
[1] 91.06888 [1] 101.1723
> mean(runtime[smoking=="n"]) > mean(runtime[smoking=="n"])
[1] 90.6301
[1] 90.065
In the balanced design, smokers are overrepresented (compared to reality), and females are overrepresented among the smokers and underrepresented among the non-smokers.

Let i be the index for the row of a data table. The data are subdivided into groups and G_{i} is the group row i (or patient i) belongs to; e.g. G_{i} can be the treatment of patient i. Let Y_{i} be the response variable, e.g. the blood pressure of patient i. We can apply an anova to check whether Y depends on G, and the model behind it is:

$$
Y_{i}=b_{G_{i}}+\varepsilon_{i}
$$

where the ε_{i} are assumed to be independent and normally distributed with expectation 0 , and all ε_{i} have the same variance σ^{2}. During the ANOVA we estimate the influence $b_{G_{i}}$ of the group on Y_{i} by the group mean $\widehat{b_{g}}$. Thus, the residuals $r_{i}:=Y_{i}-\widehat{b_{G_{i}}} \approx Y_{i}-b_{G_{i}}=\varepsilon_{i}$ should be approximately normally distributed.

More than one factor can play a role. For example we may take into account that the blood pressure Y_{i} of a patient may depend on the sex S_{i} of the patient. In this case the model behind the anova takes the form

$$
Y_{i}=b_{G_{i}}+c_{S_{i}}+\varepsilon_{i}
$$

$b_{G_{i}}$ depends only on the treatment group and $c_{s_{i}}$ only on the sex of the female. If we also want allow in interaction between the treatment and the sex, we need another variable $d_{G_{i}, s_{i}}$ that may depend on both:

$$
Y_{i}=b_{G_{i}}+c_{S_{i}}+d_{G_{i}, S_{i}}+\varepsilon_{i} .
$$

This makes possible, for example, that a certain treatment has a stronger effect for males than for females.

A balanced design means, that the sample size are the same for each combination of factors. E.g. 10 males and 10 females in each treatment group. Some ANOVA-based method will only work for balanced designs. Therefore, it is preferable to use a balanced design when planning an experiment. If the data, however, are observations from nature, the "design" is usually unbalanced and this has to be taken into account in the analysis.
One of the methods for which you need a balanced design is Tukey's HSD (honest significat differences). From an anova it computes confidence intervals for the pairwise differences between the group means with mulptiple-testing correction (see slides on ANOVA in the EES\&MEME basic statistics course).

Contents

Balanced Design

Randomized Balanced Block Design

Type I and Type II ANOVA

Transforming the Data

Tne npk dataset from the MASS ${ }^{1}$ library: Yield of peas that grew with or without application of nitrogen (N), phosphate (P), and potassium (K).

[^0]Tne npk dataset from the MASS ${ }^{1}$ library: Yield of peas that grew with or without application of nitrogen (N), phosphate (P), and potassium (K).

The pease grew on 6 different fields ("blocks"), each of which was subdivided into four parts with different treatments.

[^1]Tne npk dataset from the MASS ${ }^{1}$ library: Yield of peas that grew with or without application of nitrogen (N), phosphate (P), and potassium (K).

The pease grew on 6 different fields ("blocks"), each of which was subdivided into four parts with different treatments.

We compensate for effects of the block and randomize within and between the blocks.

[^2]Tne npk dataset from the MASS ${ }^{1}$ library: Yield of peas that grew with or without application of nitrogen (N), phosphate (P), and potassium (K).

The pease grew on 6 different fields ("blocks"), each of which was subdivided into four parts with different treatments.

We compensate for effects of the block and randomize within and between the blocks.

Balanced design: Each treatment appears three times.

[^3]| Block 1 | Block 2 | Block 3 | Block 4 | Block 5 | Block 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PK | N | P | N | NP | NK |
| 49.5 | 59.8 | 62.8 | 62 | 52 | 57.2 |
| NP | NPK | NPK | NPK | - | NP |
| 62.8 | 58.5 | 55.8 | 48.8 | 51.5 | 59 |
| - | K | N | K | NK | PK |
| 46.8 | 55.5 | 69.5 | 45.5 | 49.8 | 53.2 |
| NK | P | K | P | PK | - |
| 57 | 56 | 55 | 44.2 | 48.8 | 56 |

- Note the balance within the blocks: Any substance apears twice in each block.
- Cannot estimate triple interaction N:P:K because it is confounded with block differences.

```
> (npk.aov <- aov(yield~block + N*P*K,data=npk))
Call:
    aov(formula = yield ~ block + N * P * K, data = npk)
Terms:
\begin{tabular}{lrrrrrrr} 
& block & N & P & K & N:P & N:K & P:K \\
Sum of Squares & 343.2950 & 189.2817 & 8.4017 & 95.2017 & 21.2817 & 33.1350 & 0.4817 \\
Deg. of Freedom & 5 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}
Sum of Squares 185.2867
Deg. of Freedom 12
Residual standard error: 3.929447
1 out of 13 effects not estimable
Estimated effects may be unbalanced
```

```
> summary(npk.aov)
```

	Df	Sum Sq	Mean Sq F value	$\operatorname{Pr}(>F)$		
block	5	343.29	68.659	4.4467	0.015939	$*$
N	1	189.28	189.282	12.2587	0.004372	$* *$
P	1	8.40	8.402	0.5441	0.474904	
K	1	95.20	95.202	6.1657	0.028795	$*$
N:P	1	21.28	21.282	1.3783	0.263165	
N:K	1	33.13	33.135	2.1460	0.168648	
P:K	1	0.48	0.482	0.0312	0.862752	
Residuals	12	185.29	15.441			

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. 0.11

Giving p values for variables that are also involved in interaction terms makes sense only if the design is balanced. It refers to a coefficient that is averaged over the different cases of interaction.

From the R manual page of "aov":
" 'aov' is designed for balanced designs, and the results can be hard to interpret without balance: beware that missing values in the response(s) will likely lose the balance."

The command drop1(lm(...), test=' F^{\prime}) does not assume a balanced design and therefore does not report p values for variables that are involved in interactions.
> drop1(lm(yield~block $+(\mathrm{N}+\mathrm{P}+\mathrm{K}) *(\mathrm{~N}+\mathrm{P}+\mathrm{K})$, data=npk), test="F") Single term deletions

Model:
yield ~ block + (N + P + K) * (N + P + K)
Df Sum of Sq RSS AIC F value $\operatorname{Pr}(\mathrm{F})$

<none>			185.29	73.052		
block	5	343.30	528.58	88.211	4.4467	0.01594

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. $0.1 \quad 1$

Contents

Balanced Design

Randomized Balanced Block Design

Type I and Type II ANOVA

Transforming the Data

Be careful with the interpretation of ANOVA tables! The R command anova, applied to a single model gives a so-called "Type I Anova", where each line take only the variables in the lines above into account. Example: Chill coma recovery times measured by different persons on different days for different fly lines.
> anova(model4)
Analysis of Variance Table

Response: log(ccrt)

	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$			
line	1	1.2224	1.22238	13.1486	0.0003812	$* * *$
day	11	2.8471	0.25883	2.7841	0.0023769	$* *$
person	1	0.0850	0.08504	0.9147	0.3402393	

[...]
For example, the p-value 0.0023769 tells how much better the model with line and day can explain the data compared to a model that only takes line into account. Thus, the values assigned to variables depend on the input order.

If you use the R command drop1 with the option test="F", you get a so-called "Type II Anova", in which each line shows the influence of one variable, given the estimates of all other variables.

```
> drop1(model4,test="F")
[...]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{<none> \({ }^{\text {Df }}\) Sum of Sq}} & RSS & AIC F & value & \(\operatorname{Pr}(\mathrm{F})\) \\
\hline & & & 15.618 & -418.91 & & \\
\hline line & 1 & 0.05860 & 15.677 & -420.23 & 0.6304 & 0.428338 \\
\hline day & 11 & 2.47080 & 18.089 & -414.18 & 2.4161 & 0.008177 \\
\hline person & 1 & 0.08504 & 15.703 & -419.92 & 0.9147 & 0.340239 \\
\hline
\end{tabular}
```

For example, the p-value 0.008177 says that a model that takes line, day and person into account explains the data significantly better than a model that uses only line and person.

Back to the footrace example with non-balanced design:

> summary(aov(runtime~sex+smoking))

	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$		
sex	1	17473.7	17473.7	82.400	$1.316 \mathrm{e}-14 * * *$
smoking	1	1078.7	1078.7	5.087	$0.02635 *$
Residuals	97	20569.7	212.1		

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. $0.1 \quad 1$ > summary(aov(runtime~smoking+sex))

Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

smoking	1	3.8	3.8	0.0179	0.8939	
sex	1	18548.6	18548.6	87.4693	$3.356 \mathrm{e}-15$	$* * *$
Residuals	97	20569.7	212.1			

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

But for the dataset with balanced design (for which aov is more appropriate) the input order does not matter even for Type I anova:
> summary(aov(runtime~sex+smoking))
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

sex	1	10648.1	10648.1	43.597	$2.158 \mathrm{e}-09$	${ }^{* * *}$
smoking	1	3084.3	3084.3	12.628	0.0005889	$* * *$
Residuals	97	23691.2	244.2			

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11 > summary(aov(runtime~smoking+sex))

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	
smoking	1	3084.3	3084.3	12.628	0.0005889	$* * *$
sex	1	10648.1	10648.1	43.597	$2.158 \mathrm{e}-09$	$* * *$
Residuals	97	23691.2	244.2			

Signif. codes: 0 *** $0.001 * * 0.01 * 0.05$. $0.1 \quad 1$

Contents

Balanced Design

Randomized Balanced Block Design

Type I and Type II ANOVA

Transforming the Data

It is often important to rescale (i.e. transform) the data. For example, if a comparison between fitted values (group means) and the residuals show that the larger values have larger standard deviations, this may mean that the random error ist rather multiplicative than additive (as it should be). In this case, a log transform may help. Sometimes, there is a good explantation why a certain transformation should be applied. Sometimes the Box-Cox-Transform can help, which can take various shapes, depending on a parameter to be optimized. Other transformations are also possible, not only for the target variable but also for explanatory variables in regression models.

Back to the example with chill coma recovery times with simulated data motivated by

围 N. Svetec, A. Werzner, R. Wilches, P. Pavlidis, J.M. Alvarez-Castro, K.W. Broman, D. Metzler, W. Stephan (2011) Identification of X-linked quantitative trait loci affecting cold tolerance in Drosophila melanogaster and fine mapping by selective sweep analysis.
Molecular Ecology 20(3):530-544
> fly <- read.table("CCRT.txt",h=T)
> str (fly)
'data.frame': 182 obs. of 7 variables:
\$ line : Factor w/ 2 levels "A","B": 111111111
\$ day : Factor w/ 12 levels "May10", "May11",..: 1212
\$ box : int $4444444444 \ldots$
\$ ISO : int $222222222 \ldots$.
\$ day.no: int $12121112121211111211 \ldots$
\$ person: Factor w/ 2 levels "A","B": 221222112 \$ ccrt : int $41523716333719454139 \ldots$

```
> drop1(model,test="F")
Single term deletions
```

Model:
ccrt ~ line + box + day + person
Df Sum of Sq RSS AIC F value $\operatorname{Pr}(F)$
$\begin{array}{lrrrrrr}\text { <none> } & & & 19046 & 874.41 & & \\ \text { line } & 1 & 58.22 & 19105 & 872.97 & 0.5135 & 0.47460 \\ \text { box } & 0 & 0.00 & 19046 & 874.41 & & \\ \text { day } & 10 & 2300.77 & 21347 & 875.17 & 2.0294 & 0.03318 * \\ \text { person } & 1 & 98.55 & 19145 & 873.35 & 0.8693 & 0.35250\end{array}$
Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11


```
> model2 <- lm(log(ccrt) ~line+box+day+person,fly)
> drop1(model2,test="F")
Single term deletions
```

Model:

Df Sum of $\mathrm{Sq} \quad$ RSS AIC F value $\operatorname{Pr}(F)$

| <none> | | | 15.618 | -418.91 | | | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| line | 1 | 0.05860 | 15.677 | -420.23 | 0.6304 | 0.428338 | |
| box | 0 | 0.00000 | 15.618 | -418.91 | | | |
| day | 10 | 2.45864 | 18.077 | -412.30 | 2.6446 | 0.005096 | $* *$ |
| person | 1 | 0.08504 | 15.703 | -419.92 | 0.9147 | 0.340239 | |

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

Popular Transformations

Box-Cox-Transformations

Box-Cox transformations

boxcox(ccrt~line+box+day+person,data=fly)

[^0]: ${ }^{1}$ Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth edition. Springer

[^1]: ${ }^{1}$ Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth edition. Springer

[^2]: ${ }^{1}$ Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth edition. Springer

[^3]: ${ }^{1}$ Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth edition. Springer

