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Intro to GWAS

Aim of GWAS

Sample of individuals; given data for all individual:
Many SNPs spead over the whole genome
Phenotypic trait of interest

Maybe information about relatedness of individuals
Maybe data on other traits or environmental factors that may
influence the trait

Question: Which SNPs have an influence on the phenotypic trait?
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Intro to GWAS

Possible problems

correlations btw causal factors and (unlinked) non-causal factors

population structure (due to large sample sizes even modest
structure can lead to false positives)
pleiotropy: e.g. if there is selection for skin color, locus A
influences skin color, locus B influences skin color and eye color,
then GWAS for eye color detects both A and B!

more than one causal factor
ascertainment bias (e.g. cases are sampled from some clinic,
controls somewhere else)
more markers than repetitions (“n� p problem”)
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Intro to GWAS

Some free GWAS software packages

PLINK
http://pngu.mgh.harvard.edu/~purcell/plink/

R packages
GWASTools
http://bioconductor.org/packages/release/bioc/html/

GWASTools.html

Bioconductor package, install in R with
source("http://bioconductor.org/biocLite.R")

biocLite("GWASTools")

GenABEL etc.
http://genabel.org/packages

CRAN package, install in R with
install.packages("GenABEL")
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Genetic Relationships

Different scenarios

Whether we have to compensate for relatedness in the data depends
on the where the indivuduals come from.

Crossing scheme (e.g. in plant breeding): Individuals are F1 (or
Fn) generation of two homozygous individuals
Pedigree is known (up to possible errors)
Individuals are somehow related but pedigree is unknown
Individuals are sampled from large population, but there may be
some population structure
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Genetic Relationships A simple approach: Genomic Control (GC)
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Genetic Relationships A simple approach: Genomic Control (GC)

Genomic Control (GC): Fast and simple method to compensate for
population structure or cryptic relatedness.

Main idea is to multiply test statistic with constant λ to make it fit χ2
1

distribution.

The test statistic is T 2/V , where T measures for a locus the difference
in allele frequencies between cases and controls, and V approximates
the variance of T for the case of neutrality an unrelated samples.
Under the latter conditions, T 2/V is approximately χ2

1-distributed.

Fitting λ is based on the assumption that only few SNPs are in strong
causal association with the test statistic.

11 / 25



Genetic Relationships A simple approach: Genomic Control (GC)

Genomic Control (GC): Fast and simple method to compensate for
population structure or cryptic relatedness.

Main idea is to multiply test statistic with constant λ to make it fit χ2
1

distribution.

The test statistic is T 2/V , where T measures for a locus the difference
in allele frequencies between cases and controls, and V approximates
the variance of T for the case of neutrality an unrelated samples.
Under the latter conditions, T 2/V is approximately χ2

1-distributed.

Fitting λ is based on the assumption that only few SNPs are in strong
causal association with the test statistic.

11 / 25



Genetic Relationships A simple approach: Genomic Control (GC)

Genomic Control (GC): Fast and simple method to compensate for
population structure or cryptic relatedness.

Main idea is to multiply test statistic with constant λ to make it fit χ2
1

distribution.

The test statistic is T 2/V , where T measures for a locus the difference
in allele frequencies between cases and controls, and V approximates
the variance of T for the case of neutrality an unrelated samples.
Under the latter conditions, T 2/V is approximately χ2

1-distributed.

Fitting λ is based on the assumption that only few SNPs are in strong
causal association with the test statistic.

11 / 25



Genetic Relationships A simple approach: Genomic Control (GC)

Genomic Control (GC): Fast and simple method to compensate for
population structure or cryptic relatedness.

Main idea is to multiply test statistic with constant λ to make it fit χ2
1

distribution.

The test statistic is T 2/V , where T measures for a locus the difference
in allele frequencies between cases and controls, and V approximates
the variance of T for the case of neutrality an unrelated samples.
Under the latter conditions, T 2/V is approximately χ2

1-distributed.

Fitting λ is based on the assumption that only few SNPs are in strong
causal association with the test statistic.

11 / 25



Genetic Relationships A simple approach: Genomic Control (GC)

Instead of T 2/V use T 2/(λ · V ), where λ is chosen to make the
distribution fit χ2

1 (up to outliers).

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●

●●●●
●●
●●●●●

●●●●
●
●●●
●●
●●●●●

●●●
●●●

●●
●●

●

●●

●

●
●

●

● ●

0 2 4 6 8

0
5

10
15

Quantiles of chisq_1 distribution

Q
ua

nt
ile

s 
of

 T
^2

/V

→

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●

●●
●●●●●●

●●●●
●●●●

●●●●●●
●●●

●●●
●●●●

●

●●

●

●
●

●

● ●

0 2 4 6 8

0
5

10
15

Quantiles of chisq_1 distribution
Q

ua
nt

ile
s 

of
 T

^2
/(

V
*l

am
bd

a)

The outliers are candidate loci to be associated with the trait.

12 / 25



Genetic Relationships Structured Association (SA)

Outline

1 Intro to GWAS

2 Genetic Relationships
A simple approach: Genomic Control (GC)
Structured Association (SA)
Regression Control
Principal Component (PC) Adjustment
Estimating kinship
Mixed Regression Models

13 / 25



Genetic Relationships Structured Association (SA)

Software: e.g. PLINK
SA assumes that population consists of subpopulations (“islands”)

Population structure can be estimated from ∼ 100 SNPs e.g. with
software STRUCTURE, assuming that each island is in
Hardy-Weinberg equilibrium

1
1

2
2

3
3

4
4

6
6

with “admiture” option, individual genomes are admixed from
different island
stratified tests are applied, i.e. search for significant associations
of trait and loci within the islands
island model is not always suitable for human populations
SA does not explicitely account for pedigree-level relationships

14 / 25



Genetic Relationships Structured Association (SA)

Software: e.g. PLINK
SA assumes that population consists of subpopulations (“islands”)
Population structure can be estimated from ∼ 100 SNPs e.g. with
software STRUCTURE, assuming that each island is in
Hardy-Weinberg equilibrium

1
1

2
2

3
3

4
4

6
6

with “admiture” option, individual genomes are admixed from
different island
stratified tests are applied, i.e. search for significant associations
of trait and loci within the islands
island model is not always suitable for human populations
SA does not explicitely account for pedigree-level relationships

14 / 25



Genetic Relationships Structured Association (SA)

Software: e.g. PLINK
SA assumes that population consists of subpopulations (“islands”)
Population structure can be estimated from ∼ 100 SNPs e.g. with
software STRUCTURE, assuming that each island is in
Hardy-Weinberg equilibrium

1
1

2
2

3
3

4
4

6
6

with “admiture” option, individual genomes are admixed from
different island

stratified tests are applied, i.e. search for significant associations
of trait and loci within the islands
island model is not always suitable for human populations
SA does not explicitely account for pedigree-level relationships

14 / 25



Genetic Relationships Structured Association (SA)

Software: e.g. PLINK
SA assumes that population consists of subpopulations (“islands”)
Population structure can be estimated from ∼ 100 SNPs e.g. with
software STRUCTURE, assuming that each island is in
Hardy-Weinberg equilibrium

1
1

2
2

3
3

4
4

6
6

with “admiture” option, individual genomes are admixed from
different island
stratified tests are applied, i.e. search for significant associations
of trait and loci within the islands

island model is not always suitable for human populations
SA does not explicitely account for pedigree-level relationships

14 / 25



Genetic Relationships Structured Association (SA)

Software: e.g. PLINK
SA assumes that population consists of subpopulations (“islands”)
Population structure can be estimated from ∼ 100 SNPs e.g. with
software STRUCTURE, assuming that each island is in
Hardy-Weinberg equilibrium

1
1

2
2

3
3

4
4

6
6

with “admiture” option, individual genomes are admixed from
different island
stratified tests are applied, i.e. search for significant associations
of trait and loci within the islands
island model is not always suitable for human populations

SA does not explicitely account for pedigree-level relationships

14 / 25



Genetic Relationships Structured Association (SA)

Software: e.g. PLINK
SA assumes that population consists of subpopulations (“islands”)
Population structure can be estimated from ∼ 100 SNPs e.g. with
software STRUCTURE, assuming that each island is in
Hardy-Weinberg equilibrium

1
1

2
2

3
3

4
4

6
6

with “admiture” option, individual genomes are admixed from
different island
stratified tests are applied, i.e. search for significant associations
of trait and loci within the islands
island model is not always suitable for human populations
SA does not explicitely account for pedigree-level relationships

14 / 25



Genetic Relationships Regression Control
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Genetic Relationships Regression Control

GLM with phenotypic trait as target variable
use ∼ 100 widely spaced, putatively neutral SNPs as regression
covariates
these covariates are informative about the underlying pedigree
and are supposed to eliminate its effect in regression-based test
with locus of interest

to avoid overfitting apply backward selection and regularization
(shrinkage) to these covariates
in absence of ascertainment bias similar performance as GC and
SA
computationally faster than SA
more robust to ascertainment bias than GC
allow flexibility of regression methods
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Genetic Relationships Principal Component (PC) Adjustment

Outline

1 Intro to GWAS

2 Genetic Relationships
A simple approach: Genomic Control (GC)
Structured Association (SA)
Regression Control
Principal Component (PC) Adjustment
Estimating kinship
Mixed Regression Models

17 / 25



Genetic Relationships Principal Component (PC) Adjustment

Principal Component Adjustment

similar to regression control, but uses PCA (instead of backward
selection and regularization) to avoid overfitting
well-founded for island models
not clear how well it works for more complex cryptic relatedness

18 / 25



Genetic Relationships Estimating kinship
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Genetic Relationships Estimating kinship

Kinship coefficients based on marker data

Kinship coefficient Kij of two individuals i and j : probability of two
alleles, one drawn from i and the other drawn from j are identical by
descent (IBD), i.e. both stem from the same recent ancestor.

If p is the frequency of allele A and xi and xj count the A alleles (0,1, or
2) of i and j , then

Cov(xi , xj) = 4p(1− p)Kij .

Thus, Kij can be estimated from genome-wide covariances of allele
counts:

K̂ij =
1
L

L∑
`=1

(xi` − 2p`) · (xj` − 2p`)

4p`(1− p`)

where L is the number of loci and p` is the frequency of allele A at
locus `. (At each locus we choose one allele and call it A).

20 / 25



Genetic Relationships Estimating kinship

Kinship coefficients based on marker data

Kinship coefficient Kij of two individuals i and j : probability of two
alleles, one drawn from i and the other drawn from j are identical by
descent (IBD), i.e. both stem from the same recent ancestor.

If p is the frequency of allele A and xi and xj count the A alleles (0,1, or
2) of i and j , then

Cov(xi , xj) = 4p(1− p)Kij .

Thus, Kij can be estimated from genome-wide covariances of allele
counts:

K̂ij =
1
L

L∑
`=1

(xi` − 2p`) · (xj` − 2p`)

4p`(1− p`)

where L is the number of loci and p` is the frequency of allele A at
locus `. (At each locus we choose one allele and call it A).

20 / 25



Genetic Relationships Estimating kinship

Kinship coefficients based on marker data

Kinship coefficient Kij of two individuals i and j : probability of two
alleles, one drawn from i and the other drawn from j are identical by
descent (IBD), i.e. both stem from the same recent ancestor.

If p is the frequency of allele A and xi and xj count the A alleles (0,1, or
2) of i and j , then

Cov(xi , xj) = 4p(1− p)Kij .

Thus, Kij can be estimated from genome-wide covariances of allele
counts:

K̂ij =
1
L

L∑
`=1

(xi` − 2p`) · (xj` − 2p`)

4p`(1− p`)

where L is the number of loci and p` is the frequency of allele A at
locus `. (At each locus we choose one allele and call it A).

20 / 25



Genetic Relationships Estimating kinship

To refine the estimates of p` and K we can iteratively apply the
formulas

p̂` =

∑
ij

(
K̂−1

)
ij

xj`∑
ij

(
K̂−1

)
ij

and

K̂ij =
1
L

L∑
`=1

(xi` − 2p̂`) · (xj` − 2p̂`)

4p̂`(1− p̂`)
.

For human populations ∼ 100.000 SNPs are usually required to obtain
reasonable estimates of K .
So far we have not accounted for LD btw. markers. This can be done
with hidden-Markov models (HMMs).
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Genetic Relationships Mixed Regression Models
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Genetic Relationships Mixed Regression Models

E[yi |δi ] = α+ xiβ + δi

yi is the trait of interest for individual i
xi genotype of individual i at loci of interest
δi is the polygenetic contribution of all other loci (“small,

additive, genetic effects distributed across the genome”).

 δ1
...
δn

 =: δ ∼ N
(
~0,2σ2h2K

)

K is the kinship matrix
h2 is the narrow sense heritability of the trait (proportion of

variation due to additive polygenetic effects)

yi − (α+ xiβ + δi) ∼ N
(
~0, σ2(1− h2)I

)
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Genetic Relationships Mixed Regression Models

Software

EMMA allows fast likelihood-ratio tests with linear mixed models

H.M. Kang et al. (2008) Efficient control of population
structure in model organism association mapping.
Genetics 178, 1709–1723

GenABEL contains the command GRAMMAR, which uses an even
faster approximative method and may thus have reduced
power.

Y.S. Aulchenko,D.-J. de Koning, C. Haley (2007)
Genomewide Rapid Association Using Mixed Model
and Regression: A Fast and Simple Method For
Genomewide Pedigree-Based Quantitative Trait Loci
Association Analysis
Genetics 177, 577–585
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Genetic Relationships Mixed Regression Models

“[. . . ] the common apporoach of ‘correcting for population structure’
may be misguided”.

A. Platt, B.J. Vilhámsson, M. Nordborg (2010) Conditions under
which genome-wide association studies will be positively
misleading
Genetics 186(3), 1045–1052

Accounting for population structure and kinship does not avoid false
positives due to pleiotropy, multiple causal factors or epistasis.
Suggest to rather correct for confounding effects in general.
Among methods based on the idea that effects of K should be
corrected, those are more robust that don’t infer K from island model
but estimate confounding effects K directly from data, e.g.

J. Yu et al. (2006) A unified mixed-model method for association
mapping that accounts for multiple levels of relatedness.
Nat. Genet. 38, 203–208
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