Multivariate Statistics in Ecology and Quantitative Genetics Generalized Linear Models (GLMs)

Dirk Metzler \& Noémie Becker

```
http://evol.bio.lmu.de/_statgen
```

4. July 2013

Contents

Poisson GLMs for counting data Intro to Poisson GLM
Daphnia and Deviance
County size and cancer risk, now with Poisson
Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

Other GLMs

Contents

Poisson GLMs for counting data
Intro to Poisson GLM
Daphnia and Deviance
County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression
Odorant preferences in flies
Sex ratio in ants

Other GLMs

Contents

Poisson GLMs for counting data Intro to Poisson GLM
Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and Iogistic regression
Odorant preferences in flies
Sex ratio in ants

Other GLMs
> daph <- read.table("daphnia_justina.csv",h=T)
> mod1 <- lm(counts~foodlevel+species,data=daph)
> mod2 <- lm(counts~foodlevel*species, data=daph)
> anova(mod1,mod2)
Analysis of Variance Table

Model 1: counts ~ foodlevel + species
Model 2: counts ~ foodlevel * species
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>F)$
$1 \quad 9710.00$
$2 \quad 8176.67 \quad 1 \quad 533.33 \quad 24.151 \quad 0.001172$ **

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11 >

$>$	daph		
	counts	foodlevel	species
1	68	high	magna
2	54	high	magna
3	59	high	magna
4	24	high galeata	
5	27	high galeata	
6	16	high galeata	
7	20	low	magna
8	18	low	magna
9	18	low	magna
10	5	low galeata	
11	8	low galeata	
12	9	low galeata	

The normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is a continuous distribution and thus not suitable to model distributions on small numbers.

The normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is a continuous distribution and thus not suitable to model distributions on small numbers.

The Poisson distribution Pois (λ) is a distribution on $\{0,1,2,3, \ldots\}$.

The normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is a continuous distribution and thus not suitable to model distributions on small numbers.

The Poisson distribution Pois (λ) is a distribution on $\{0,1,2,3, \ldots\}$.
$\mathcal{N}\left(\mu=n \cdot p, \sigma^{2}=n \cdot p \cdot(1-p)\right)$ approximates the binomial distribution $\operatorname{Bin}(n, p)$ if $n \cdot p \cdot(1-p)$ is not too small (rule of thumb: $n \cdot p \cdot(1-p)>9)$, $\operatorname{Pois}(\lambda=n \cdot p)$ gives a better approximation when p is small.

$\mathrm{n}=50, \mathrm{p}=0.4$

$\mathrm{n}=50, \mathrm{p}=0.4$

$n=50, p=0.04$

$n=50, p=0.04$

$n=50, p=0.04$

If Y is $\operatorname{Pois}(\lambda)$-distributed, then

$$
\begin{aligned}
\operatorname{Pr}(Y=k) & =\frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \quad \text { for } k=0,1,2, \ldots \\
\mathbb{E} Y & =\lambda \\
\operatorname{Var}(Y) & =\lambda
\end{aligned}
$$

If Y is $\operatorname{Pois}(\lambda)$-distributed, then

$$
\begin{aligned}
\operatorname{Pr}(Y=k) & =\frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \quad \text { for } k=0,1,2, \ldots \\
\mathbb{E} Y & =\lambda \\
\operatorname{Var}(Y) & =\lambda
\end{aligned}
$$

Is there a linear model with Pois (λ) instead of $\mathcal{N}\left(\mu, \sigma^{2}\right)$?

If Y is $\operatorname{Pois}(\lambda)$-distributed, then

$$
\begin{aligned}
\operatorname{Pr}(Y=k) & =\frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \quad \text { for } k=0,1,2, \ldots \\
\mathbb{E} Y & =\lambda \\
\operatorname{Var}(Y) & =\lambda
\end{aligned}
$$

Is there a linear model with $\operatorname{Pois}(\lambda)$ instead of $\mathcal{N}\left(\mu, \sigma^{2}\right)$?
Yes, the Generalized Linear Model (GLM) of type Poisson.

Remeber the normal linear model:

$$
Y_{i}=b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i}+\varepsilon_{i} \quad \text { with } \varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Remeber the normal linear model:

$$
Y_{i}=b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i}+\varepsilon_{i} \quad \text { with } \varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

or equivalently:

$$
\begin{aligned}
\eta_{i} & =b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i} \\
Y_{i} & \sim \mathcal{N}\left(\eta_{i}, \sigma^{2}\right)
\end{aligned}
$$

η is called the linear predictor.

Remeber the normal linear model:

$$
Y_{i}=b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i}+\varepsilon_{i} \quad \text { with } \varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

or equivalently:

$$
\begin{aligned}
& \eta_{i}=b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i} \\
& Y_{i} \sim \mathcal{N}\left(\eta_{i}, \sigma^{2}\right)
\end{aligned}
$$

η is called the linear predictor.
This also works for the Poisson distribution:

$$
\begin{aligned}
& \eta_{i}=b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i} \\
& Y_{i} \sim \operatorname{Pois}\left(\eta_{i}\right)
\end{aligned}
$$

(but note that the additional σ^{2} is missing!)

Instead of using η directly as parameter of the Poisson distribution, it is common to apply a transformation:

$$
\begin{aligned}
\ell\left(\mu_{i}\right)=\eta_{i} & =b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i} \\
Y_{i} & \sim \operatorname{Pois}\left(\mu_{i}\right)
\end{aligned}
$$

$\ell($.$) is called the link function.$

Instead of using η directly as parameter of the Poisson distribution, it is common to apply a transformation:

$$
\begin{aligned}
\ell\left(\mu_{i}\right)=\eta_{i} & =b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i} \\
Y_{i} & \sim \operatorname{Pois}\left(\mu_{i}\right)
\end{aligned}
$$

$\ell($.$) is called the link function.$
The default link function for Poisson GLMs is log, the natural logarithm.

Instead of using η directly as parameter of the Poisson distribution, it is common to apply a transformation:

$$
\begin{aligned}
\ell\left(\mu_{i}\right)=\eta_{i} & =b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i} \\
Y_{i} & \sim \operatorname{Pois}\left(\mu_{i}\right)
\end{aligned}
$$

$\ell($.$) is called the link function.$
The default link function for Poisson GLMs is log, the natural logarithm.
Thus,

$$
\mathbb{E} Y_{i}=\mu_{i}=e^{\eta_{i}}=e^{b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot x_{k, i}}=e^{b_{0}} \cdot e^{b_{1} \cdot x_{1, i}} \cdots e^{b_{k} \cdot X_{k, i}}
$$

and the Poisson GLM with this default link is multiplicative model rather than an additive one.

Contents

Poisson GLMs for counting data

Intro to Poisson GLM

Daphnia and Deviance

County size and cancer risk, now with Poisson
Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression
Odorant preferences in flies
Sex ratio in ants

Other GLMs
> pmod1 <- glm(counts~foodlevel+species, data=daph, family=poisson)
> summary (pmod1)
[...]
Coefficients:

	Estimate Std. Error z value $\operatorname{Pr}(>\|z\|)$				
(Intercept)	3.1166	0.1105	28.215	$<2 \mathrm{e}-16 * * *$	
foodlevellow	-1.1567	0.1298	-8.910	$<2 \mathrm{e}-16 * * *$	
speciesmagna	0.9794	0.1243	7.878	$3.32 \mathrm{e}-15$	$* * *$

Note that the Poisson model has log as its default link function. Thus, the model pmod1 assumes that the number of Daphnia in row i is Poisson distributed with mean λ_{i}, i.e.
$\operatorname{Pr}(X=k)=\frac{\lambda_{i}^{k}}{k!} e^{-\lambda}$, and

$$
\log \left(\lambda_{i}\right) \approx 3.12-1.15 \cdot I_{\text {lowfoodlevel }}+0.979 \cdot I_{\text {magna }}
$$

Note that the Poisson model has log as its default link function. Thus, the model pmod1 assumes that the number of Daphnia in row i is Poisson distributed with mean λ_{i}, i.e.
$\operatorname{Pr}(X=k)=\frac{\lambda_{i}^{k}}{k!} e^{-\lambda}$, and

$$
\log \left(\lambda_{i}\right) \approx 3.12-1.15 \cdot I_{\text {lowfoodlevel }}+0.979 \cdot I_{\text {magna }}
$$

or, equivalently,
$\lambda_{i} \approx e^{3.12} \cdot e^{-1.15 l_{\text {lowfoodlevel }}} \cdot e^{0.979 /_{\text {magna }}} \approx 22.6 \cdot 0.317^{\text {lowfoodlevel }} \cdot 2.66^{I_{\text {magna }}}$
Thus, this Poisson model assumes multiplicative effects.
> pmod1 <- glm(counts ${ }^{\sim}$ foodlevel+species, data=daph,family=poisson)
> pmod2 <- glm(counts ${ }^{\sim}$ foodlevel*species, data=daph,family=poisson)
> anova(pmod1,pmod2,test="F")

```
> pmod1 <- glm(counts ~}foodlevel+species
                                data=daph,family=poisson)
> pmod2 <- glm(counts~}\mp@subsup{}{}{~}foodlevel*species
                                    data=daph,family=poisson)
> anova(pmod1,pmod2,test="F")
Analysis of Deviance Table
Model 1: counts ~ foodlevel + species
Model 2: counts ~ foodlevel * species
    Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 9 6.1162
2 8 6.0741 1 0.042071 0.0421 0.8375
Warning message:
F-Test not appropriate for family 'poisson'
```

Note:

- The anova command gives us an "analysis of deviance" instead of an analysis of variance!

Note:

- The anova command gives us an "analysis of deviance" instead of an analysis of variance!
- What is a deviance?

Note:

- The anova command gives us an "analysis of deviance" instead of an analysis of variance!
- What is a deviance?
- There is a Warning " F-Test not appropriate for family 'poisson' ".

Note:

- The anova command gives us an "analysis of deviance" instead of an analysis of variance!
- What is a deviance?
- There is a Warning "F-Test not appropriate for family 'poisson' ".
- Why?

Note:

- The anova command gives us an "analysis of deviance" instead of an analysis of variance!
- What is a deviance?
- There is a Warning "F-Test not appropriate for family 'poisson' ".
- Why?
- Which test should we apply?

What is the deviance?

Let $\widehat{b_{0}}, \ldots, \widehat{b_{k}}$ be our fitted model coefficients and

$$
\widehat{\mu_{i}}=\ell^{-1}\left(\widehat{b_{0}}+\widehat{b_{1}} X_{1 i}+\cdots+\widehat{b_{k}} X_{k i}\right)
$$

be the predicted means for all observations. The Likelihood of the fitted parameter values is the probability of the observations assuming the fitted parameter values:

Now we compare this to a saturated Poisson GLM model, i.e. a model with so many parameters such that we can get a perfect fit of $\widetilde{\mu}_{i}=Y_{i}$. This leads to the highest possible likelihood $L(\widetilde{\mu})$.

What is the deviance?

Let $\widehat{b_{0}}, \ldots, \widehat{b_{k}}$ be our fitted model coefficients and

$$
\widehat{\mu_{i}}=\ell^{-1}\left(\widehat{b_{0}}+\widehat{b_{1}} X_{1 i}+\cdots+\widehat{b_{k}} X_{k i}\right)
$$

be the predicted means for all observations. The Likelihood of the fitted parameter values is the probability of the observations assuming the fitted parameter values:

Now we compare this to a saturated Poisson GLM model, i.e. a model with so many parameters such that we can get a perfect fit of $\widetilde{\mu_{i}}=Y_{i}$. This leads to the highest possible likelihood $L(\widetilde{\mu})$.In practice such a model is not desirable because it leads to overfitting.

What is the deviance?

our model: $L(\widehat{\mu})=\frac{\widehat{\mu}_{1} Y_{1}}{Y_{1}!} e^{-\widehat{\mu_{1}}} \cdot \frac{{\widehat{\mu_{2}}}^{Y}}{Y_{2}!} e^{-\widehat{\mu_{2}}} \ldots \frac{{\widehat{\mu_{k}}}^{Y_{k}}}{Y_{k}!} e^{-\widehat{\mu_{k}}}$
saturated model: $L(\widetilde{\mu})=\frac{Y_{1}^{Y_{1}}}{Y_{1}!} e^{-Y_{1}} \cdot \frac{Y_{2}^{Y_{2}}}{Y_{2}!} e^{-Y_{2}} \cdots \frac{Y_{k}^{Y_{k}}}{Y_{k}!} e^{-Y_{k}}$

What is the deviance?

$$
\begin{aligned}
\text { our model: } L(\widehat{\mu}) & =\frac{\widehat{\mu_{1}}}{Y_{1}} e^{-\widehat{\mu_{1}}} \cdot \frac{\widehat{\mu_{2}} Y_{2}}{Y_{2}!} e^{-\widehat{\mu_{2}}} \cdots \frac{\widehat{\mu_{k}} Y_{k}}{Y_{k}!} e^{-\widehat{\mu_{k}}} \\
\text { saturated model: } L(\widetilde{\mu}) & =\frac{Y_{1}^{Y_{1}}}{Y_{1}!} e^{-Y_{1}} \cdot \frac{Y_{2}^{Y_{2}}}{Y_{2}!} e^{-Y_{2}} \cdots \frac{Y_{k} Y_{k}}{Y_{k}!} e^{-Y_{k}}
\end{aligned}
$$

The residual deviance of our model is defined as

$$
2 \cdot[\log (L(\widehat{\mu}))-\log (L(\widetilde{\mu}))] .
$$

What is the deviance?

$$
\begin{aligned}
\text { our model: } L(\widehat{\mu}) & =\frac{\widehat{\mu_{1}}}{Y_{1}} e^{-\widehat{\mu_{1}}} \cdot \frac{\widehat{\mu_{2}} Y_{2}}{Y_{2}!} e^{-\widehat{\mu_{2}}} \cdots \frac{\widehat{\mu_{k}} Y_{k}}{Y_{k}!} e^{-\widehat{\mu_{k}}} \\
\text { saturated model: } L(\widetilde{\mu}) & =\frac{Y_{1}^{Y_{1}}}{Y_{1}!} e^{-Y_{1}} \cdot \frac{Y_{2}^{Y_{2}}}{Y_{2}!} e^{-Y_{2}} \cdots \frac{Y_{k} Y_{k}}{Y_{k}!} e^{-Y_{k}}
\end{aligned}
$$

The residual deviance of our model is defined as

$$
2 \cdot[\log (L(\widehat{\mu}))-\log (L(\widetilde{\mu}))] .
$$

It measures how far our model is away from the theoretical optimum.

- The deviance is approximately χ_{df}^{2} distributed, where df is the degrees of freedom of our model.
- The deviance is approximately χ_{df}^{2} distributed, where df is the degrees of freedom of our model.
- Thus, the deviance should be of the same order of magnitude as df.
- The deviance is approximately χ_{df}^{2} distributed, where df is the degrees of freedom of our model.
- Thus, the deviance should be of the same order of magnitude as df.
- Check this to assess the fit of the mode!!
- The deviance is approximately χ_{df}^{2} distributed, where df is the degrees of freedom of our model.
- Thus, the deviance should be of the same order of magnitude as df.
- Check this to assess the fit of the model!

Analysis of deviance:

If D_{1} and D_{2} are the deviances of models M_{1} with p_{1} parameters and M_{2} with p_{2} parameters, and M_{1} is nested in M_{2} (i.e. the parameters of M_{1} are a subset of the parameters of M_{2}), then $D_{1}-D_{2}$ is approximately $\chi_{p_{2}-p_{1}}^{2}$-distributed.

- The deviance is approximately χ_{df}^{2} distributed, where df is the degrees of freedom of our model.
- Thus, the deviance should be of the same order of magnitude as df.
- Check this to assess the fit of the model!

Analysis of deviance:

If D_{1} and D_{2} are the deviances of models M_{1} with p_{1} parameters and M_{2} with p_{2} parameters, and M_{1} is nested in M_{2} (i.e. the parameters of M_{1} are a subset of the parameters of M_{2}), then $D_{1}-D_{2}$ is approximately $\chi_{p_{2}-p_{1}}^{2}$-distributed.
This Test is the classical likelihood-ratio test. (Note that $D_{1}-D_{2}$ is $2 x$ the log of the likelihood-ratio of the two models.)
> pmod1 <- glm(counts ${ }^{\sim}$ foodlevel+species, data=daph,family=poisson)
> pmod2 <- glm(counts ${ }^{\sim}$ foodlevel*species, data=daph,family=poisson)
> anova(pmod1,pmod2,test="Chisq")

Analysis of Deviance Table

Model 1: counts ~ foodlevel + species
Model 2: counts ~ foodlevel * species
Resid. Df Resid. Dev Df Deviance $P(>|C h i|)$
1
96.1162

2
8
$6.0741 \quad 1 \quad 0.042071$
0.8375

Why not the F-test?

Why not the F-test?
 Remember that we did not estimate a variance σ^{2} for the Poisson distribution.

Why not the F-test?
Remember that we did not estimate a variance σ^{2} for the Poisson distribution.
There is an F-distribution approximation of a rescaled $D_{1}-D_{2}$ for GLMs in which an extra variance parameter is estimated.

Why not the F-test?
Remember that we did not estimate a variance σ^{2} for the Poisson distribution.
There is an F-distribution approximation of a rescaled $D_{1}-D_{2}$ for GLMs in which an extra variance parameter is estimated.
Example: overdispersed Poisson, also called quasipoisson GLM. Here, $\mathbb{E} Y_{i}=\mu_{i}$ but $\operatorname{Var} Y_{i}=\phi \cdot \mu_{i}$ with the dispersion parameter $\phi>1$.

Why not the F-test?
Remember that we did not estimate a variance σ^{2} for the Poisson distribution.
There is an F-distribution approximation of a rescaled $D_{1}-D_{2}$ for GLMs in which an extra variance parameter is estimated.
Example: overdispersed Poisson, also called quasipoisson GLM. Here, $\mathbb{E} Y_{i}=\mu_{i}$ but $\operatorname{Var} Y_{i}=\phi \cdot \mu_{i}$ with the dispersion parameter $\phi>1$.
This is often used to model the influence of unknown external factors.

Why not the F-test?
Remember that we did not estimate a variance σ^{2} for the
Poisson distribution.
There is an F-distribution approximation of a rescaled $D_{1}-D_{2}$ for GLMs in which an extra variance parameter is estimated.
Example: overdispersed Poisson, also called quasipoisson GLM . Here, $\mathbb{E} Y_{i}=\mu_{i}$ but $\operatorname{Var} Y_{i}=\phi \cdot \mu_{i}$ with the dispersion parameter $\phi>1$.
This is often used to model the influence of unknown external factors.
Since the dispersion parameter is estimated, one can apply an F approximation in the analysis of deviance.

Why not the F-test?
Remember that we did not estimate a variance σ^{2} for the
Poisson distribution.
There is an F-distribution approximation of a rescaled $D_{1}-D_{2}$ for GLMs in which an extra variance parameter is estimated.
Example: overdispersed Poisson, also called quasipoisson GLM . Here, $\mathbb{E} Y_{i}=\mu_{i}$ but $\operatorname{Var} Y_{i}=\phi \cdot \mu_{i}$ with the dispersion parameter $\phi>1$.
This is often used to model the influence of unknown external factors.
Since the dispersion parameter is estimated, one can apply an F approximation in the analysis of deviance. But also χ^{2} is still an option.

```
> qpmod1 <- glm(counts~foodlevel+species,data=daph,
                                    family=quasipoisson)
> qpmod2 <- glm(counts~foodlevel*species,data=daph,
                                    family=quasipoisson)
> anova(qpmod1,qpmod2,test="F")
Analysis of Deviance Table
```

Model 1: counts ~ foodlevel + species
Model 2: counts ~ foodlevel * species
Resid. Df Resid. Dev Df Deviance F Pr (>F)
1
2
96.1162
$\begin{array}{llllll}8 & 6.0741 & 1 & 0.042071 & 0.0572 & 0.817\end{array}$
> anova(qpmod1,qpmod2,test="Chisq") Analysis of Deviance Table

Model 1: counts ~ foodlevel + species
Model 2: counts ~ foodlevel * species
Resid. Df Resid. Dev Df Deviance P(>|Chil)

1	9	6.1162			
2	8	6.0741	1	0.042071	0.811

> expect <- predict(pmod1,type="response")
> sim <- rpois(12,expect)
> smod1 <- lm(sim~foodlevel+species,data=daph)
> smod2 <- lm(sim~foodlevel*species,data=daph)
> anova(smod1,smod2)

```
> expect <- predict(pmod1,type="response")
> sim <- rpois(12,expect)
> smod1 <- lm(sim~}foodlevel+species,data=daph)
> smod2 <- lm(sim~foodlevel*species,data=daph)
> anova(smod1,smod2)
Analysis of Variance Table
Model 1: sim ~ foodlevel + species
Model 2: sim ~ foodlevel * species
    Res.Df RSS Df Sum of Sq F Fr (>F)
1 9 1289.42
2 8 109.33 1 1180.1 86.348 1.464e-05 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```


What is the problem? Normal distribution assumption or additivity?

What is the problem? Normal distribution assumption or additivity?

How about a multiplicative linear model?

> expect <- predict(pmod1,type="response")
> sim <- rpois(12,expect)
> smod1 <- lm(log(sim) ~foodlevel+species,data=daph)
> smod2 <- lm(log(sim) ~foodlevel*species,data=daph)
> anova(smod1,smod2)
> expect <- predict(pmod1,type="response")
> sim <- rpois(12,expect)
> smod1 <- lm(log(sim) ~foodlevel+species,data=daph)
> smod2 <- lm(log(sim)~foodlevel*species,data=daph)
> anova(smod1,smod2)

Analysis of Variance Table

This solves the biggest problem, but what does the model say?

```
> lmod1 <- lm(log(counts) \({ }^{\text {foodlevel+species, data=daph) }}\)
[...]
Coefficients:
    Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
(Intercept) \(3.0946 \quad 0.1028 \quad 30.1042 .41 \mathrm{e}-10\) ***
foodlevellow -1.1450 0.1187 -9.646 4.83e-06 ***
speciesmagna \(0.9883 \quad 0.1187 \quad 8.3261 .61 \mathrm{e}-05\) ***
[...]
Residual standard error: 0.2056 on 9 degrees of freedom
[...]
```

prediction of log-linear model

Constant Leverage:
Residuals vs Factor Levels


```
> summary(pmod1)
[..]
glm(formula = counts ~ foodlevel + species,
    family = poisson, data = daph)
[..]
\begin{tabular}{lrrrrr} 
& Estimate Std. Error z value \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & 3.1166 & 0.1105 & 28.215 & \(<2 \mathrm{e}-16 * * *\) \\
foodlevellow & -1.1567 & 0.1298 & -8.910 & \(<2 \mathrm{e}-16 * * *\) \\
speciesmagna & 0.9794 & 0.1243 & 7.878 & \(3.32 \mathrm{e}-15 * * *\)
\end{tabular} [..]
(Dispersion parameter for poisson family taken to be 1) [..]
Residual deviance: 6.1162 on 9 degrees of freedom AIC: 70.497
```


Since the variance is proportional to the expectation value in the Poisson model, usual residuals are not so informatative.

Since the variance is proportional to the expectation value in the Poisson model, usual residuals are not so informatative.

Instead use deviance residuals. Let d_{i} be the contribution of observation i (row i in the data table) to the Deviance, then the deviance residual of observation i is

$$
\operatorname{sign}\left(Y_{i}-\widehat{\mu}_{i}\right) \cdot \sqrt{d_{i}} .
$$

Since the variance is proportional to the expectation value in the Poisson model, usual residuals are not so informatative.

Instead use deviance residuals. Let d_{i} be the contribution of observation i (row i in the data table) to the Deviance, then the deviance residual of observation i is

$$
\operatorname{sign}\left(Y_{i}-\widehat{\mu}_{i}\right) \cdot \sqrt{d_{i}} .
$$

The deviance residuals are the default residuals given by R for GLMs. They have similar properties as the standard residuals in the normal linear model.

Since the variance is proportional to the expectation value in the Poisson model, usual residuals are not so informatative.

Instead use deviance residuals. Let d_{i} be the contribution of observation i (row i in the data table) to the Deviance, then the deviance residual of observation i is

$$
\operatorname{sign}\left(Y_{i}-\widehat{\mu}_{i}\right) \cdot \sqrt{d_{i}}
$$

The deviance residuals are the default residuals given by R for GLMs. They have similar properties as the standard residuals in the normal linear model.
In the following plot obtained with plot(pmod1) the word "residual" always refers to deviance residuals.

Contents

Poisson GLMs for counting data
Intro to Poisson GLM
Daphnia and Deviance
County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression
Odorant preferences in flies
Sex ratio in ants

Other GLMs

In the lecture about linear regression we analysed a data set to find out whether the county size (number of females living in a county) has an effect on the risk of dying by breast cancer. Since the response variable in this data set are deaths counts, it seems natural to fit a Poisson GLM.
> str (canc)
'data.frame': 301 obs. of 2 variables:
\$ deaths : int $1034341555 \ldots$
\$ inhabitants: int $445559677681746869950976 \ldots$

First trial:

$>\operatorname{modO}<-$ glm(deaths ${ }^{\sim}$ inhabitants, data=canc,family=poisson)
$>$ summary (mod0)

Call:
glm(formula = deaths \sim inhabitants, family = poisson, data $=$ canc)

Deviance Residuals:

Min	1Q	Median	3Q	Max
-13.8783	-2.6449	-0.8845	1.8160	6.9909

Coefficients:

| | Estimate | Std. Error z value | $\operatorname{Pr}(>\|z\|)$ | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | $2.961 \mathrm{e}+00$ | $1.320 \mathrm{e}-02$ | 224.2 | $<2 \mathrm{e}-16 * * *$ |
| inhabitants $4.044 \mathrm{e}-05$ | $3.374 \mathrm{e}-07$ | 119.9 | $<2 \mathrm{e}-16 * * *$ | |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . $0.1 \quad 1$

Before we complain about the large residual deviance... we ask ourselves whether this is a plausible model.

Before we complain about the large residual deviance... we ask ourselves whether this is a plausible model.
Let D_{i} be the expected number of deaths in county i and S_{i} its size. Then the model assumes

$$
\log \left(D_{i}\right)=a+b \cdot S_{i}
$$

Before we complain about the large residual deviance... we ask ourselves whether this is a plausible model.
Let D_{i} be the expected number of deaths in county i and S_{i} its size. Then the model assumes

$$
\log \left(D_{i}\right)=a+b \cdot S_{i}
$$

or, equivalently,

$$
D_{i}=e^{a+b \cdot s_{i}}=e^{a} \cdot\left(e^{s_{i}}\right)^{b}
$$

Before we complain about the large residual deviance... we ask ourselves whether this is a plausible model.
Let D_{i} be the expected number of deaths in county i and S_{i} its size. Then the model assumes

$$
\log \left(D_{i}\right)=a+b \cdot S_{i}
$$

or, equivalently,

$$
D_{i}=e^{a+b \cdot S_{i}}=e^{a} \cdot\left(e^{s_{i}}\right)^{b}
$$

this is not a plausible model.

Solution: take the log of S_{i}.

$$
\log \left(D_{i}\right)=a+b \cdot \log \left(S_{i}\right)
$$

Solution: take the log of S_{i}.

$$
\log \left(D_{i}\right)=a+b \cdot \log \left(S_{i}\right)
$$

or, equivalently,

$$
D_{i}=e^{a+b \cdot \log \left(S_{i}\right)}=e^{a} \cdot\left(e^{\log \left(S_{i}\right)}\right)^{b}
$$

Solution: take the log of S_{i}.

$$
\log \left(D_{i}\right)=a+b \cdot \log \left(S_{i}\right)
$$

or, equivalently,

$$
D_{i}=e^{a+b \cdot \log \left(S_{i}\right)}=e^{a} \cdot\left(e^{\log \left(S_{i}\right)}\right)^{b}=e^{a} \cdot S_{i}^{b}
$$

Solution: take the log of S_{i}.

$$
\log \left(D_{i}\right)=a+b \cdot \log \left(S_{i}\right)
$$

or, equivalently,

$$
D_{i}=e^{a+b \cdot \log \left(S_{i}\right)}=e^{a} \cdot\left(e^{\log \left(S_{i}\right)}\right)^{b}=e^{a} \cdot S_{i}^{b}
$$

If $b=1$, then e^{a} is just the individual risk to die by breast cancer (during the time span of the survey).
> mod1 <- glm(deaths ${ }^{\sim} \log (i n h a b i t a n t s)$, data=canc,family=poisson)
> summary (mod1)
[..]

| | Estimate | Std. Error z value | $\operatorname{Pr}(>\|z\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -5.531496 | 0.093003 | -59.48 | $<2 \mathrm{e}-16 \quad * * *$ |
| log (inhabitants) | 0.988350 | 0.009406 | 105.08 | $<2 \mathrm{e}-16 \quad * * *$ |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12994.06 on 300 degrees of freedom Residual deviance: 785.85 on 299 degrees of freedom AIC: 2282.9

```
> mod1 <- glm(deaths ~log(inhabitants),data=canc,family=poisson)
> summary(mod1)
[..]
(Intercept) \(-5.5314960 .093003-59.48<2 \mathrm{e}-16 * * *\)
\(\log\) (inhabitants) \(0.988350 \quad 0.009406105 .08<2 e-16\) ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 12994.06 on 300 degrees of freedom
Residual deviance: 785.85 on 299 degrees of freedom
AIC: 2282.9
```

Too much residual deviance for $\mathrm{df}=299 \Rightarrow$ Let's allow for
overdispersion!

```
> mod2 <- glm(deaths~ log(inhabitants),data=canc,family=quasipoisson
> summary(mod2)
[...]
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.53150 0.14865 -37.21 <2e-16 ***
log(inhabitants) 0.98835 0.01503 65.75 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for quasipoisson family taken to be 2.554585)
\begin{tabular}{rr} 
Null deviance: & 12994.06 on 300 \\
Residual deviance: & 785.85 on 299 \\
degrees of freedom \\
Rreedom
\end{tabular}
```

```
> mod2 <- glm(deaths~ log(inhabitants),data=canc,family=quasipoisson
> summary(mod2)
[...]
(Intercept) -5.53150 \(0.14865-37.21<2 e-16 * * *\)
log(inhabitants) 0.98835 0.01503 65.75 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for quasipoisson family taken to be 2.554585)
\begin{tabular}{rrll} 
Null deviance: & 12994.06 on 300 & degrees of freedom \\
Residual deviance: & 785.85 & on 299 & degrees of freedom
\end{tabular}
What does the highly significant \(p\)-value for log(inhabitants) say?
```

```
> mod2 <- glm(deaths~log(inhabitants),data=canc,family=quasipoisson
> summary(mod2)
[...]
(Intercept) \(-5.53150 \quad 0.14865-37.21 \quad<2 e-16 * * *\)
log(inhabitants) 0.98835 0.01503 65.75 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for quasipoisson family taken to be 2.554585)
Null deviance: 12994.06 on 300 degrees of freedom
Residual deviance: 785.85 on 299 degrees of freedom
What does the highly significant \(p\)-value for log(inhabitants) say? It says that the coefficient \(b\) is significantly different from 0.
```

```
> mod2 <- glm(deaths }\mp@subsup{}{}{~}log(inhabitants),data=canc,family=quasipoisson
> summary(mod2)
[...]
(Intercept) -5.53150 \(0.14865-37.21<2 e-16 * * *\)
log(inhabitants) 0.98835 0.01503 65.75 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for quasipoisson family taken to be 2.554585)
\begin{tabular}{rr} 
Null deviance: & 12994.06 on 300 \\
Residual deviance: & 785.85 on 299 \\
degrees of freedom \\
Rreedom
\end{tabular}
What does the highly significant \(p\)-value for log(inhabitants) say? It says that the coefficient \(b\) is significantly different from 0 .
But our question is rather whether \(b\) is significantly different from 1 !
```

Trick: Fit a model

$$
\log \left(D_{i}\right)=a+\log \left(S_{i}\right)+b \cdot \log \left(S_{i}\right)
$$

Trick: Fit a model

$$
\log \left(D_{i}\right)=a+\log \left(S_{i}\right)+b \cdot \log \left(S_{i}\right)
$$

which is equivalent to

$$
D_{i}=e^{a} \cdot S_{i} \cdot S_{i}^{b}
$$

Trick: Fit a model

$$
\log \left(D_{i}\right)=a+\log \left(S_{i}\right)+b \cdot \log \left(S_{i}\right)
$$

which is equivalent to

$$
D_{i}=e^{a} \cdot S_{i} \cdot S_{i}^{b} .
$$

Then the question is whether b is significantly different from 0 .

Trick: Fit a model

$$
\log \left(D_{i}\right)=a+\log \left(S_{i}\right)+b \cdot \log \left(S_{i}\right)
$$

which is equivalent to

$$
D_{i}=e^{a} \cdot S_{i} \cdot S_{i}^{b} .
$$

Then the question is whether b is significantly different from 0 .
in R: use the command offset to tell R not to estimate a coefficient for the first $\log \left(S_{i}\right)$

```
> mod3 <- glm(deaths~offset(log(inhabitants))+log(inhabitants),
                                    data=canc,family=quasipoisson)
> summary(mod3)
[...]
Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.53150 0.14865 -37.212 <2e-16 ***
log(inhabitants) -0.01165 0.01503 -0.775 0.439
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for quasipoisson family taken to be 2.554585)
```

```
> mod3 <- glm(deaths~offset(log(inhabitants))+log(inhabitants),
                        data=canc,family=quasipoisson)
> summary(mod3)
[...]
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & -5.53150 & 0.14865 & -37.212 & \(<2 \mathrm{e}-16\)
\end{tabular}\(* * *\)
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for quasipoisson family taken to be 2.554585)
Thus, the expected number of deaths seems to be just proportional to the number of inhabitants. No signicant dependence of the death rate on the county size was found.
```


Another way of testing this:

```
> mod4 <- glm(deaths~offset(log(inhabitants)),
                                data=canc,family=quasipoisson)
> anova(mod4,mod3,test="F")
Analysis of Deviance Table
Model 1:
deaths ~ offset(log(inhabitants))
Model 2:
deaths ~ offset(log(inhabitants)) + log(inhabitants)
    Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 300 787.38
2 299 7 7 % .85 1 1.5315 0.5995 0.4394
```


Contents

Poisson GLMs for counting data
Intro to Poisson GLM
Daphnia and Deviance
County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

Other GLMs

Contents

Poisson GLMs for counting data Intro to Poisson GLM
 Daphnia and Deviance
 County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression
Odorant preferences in flies
Sex ratio in ants

Other GLMs

> str (fly)
'data.frame': 756 obs. of 7 variables:
\$ odorant: Factor w/ 3 levels "30CO2", "CO2",..: 2222
\$ resp : int 12125495511 ...
\$ air : int $29282517 \quad 364238131925 \ldots$
\$ PI : logi NA NA NA NA NA NA ...
\$ sex : Factor w/ 2 levels "females","males": 2222
\$ day : int $111111112222 \ldots$
\$ species: Factor w/ 11 levels "ana","atr","ere",..: 55

Model

In experiment i (row i of the data table) there are n_{i} flies. Each of these flies decided independently of all other to go to the odorant with probability p_{i} and, thus, to go to the fresh air with probability ($1-p_{i}$).

Model

In experiment i (row i of the data table) there are n_{i} flies. Each of these flies decided independently of all other to go to the odorant with probability p_{i} and, thus, to go to the fresh air with probability ($1-p_{i}$).
Thus, the number Y_{i} of flies which went to the odorant is binomially distributed:

$$
Y_{i} \sim \operatorname{bin}\left(n_{i}, p_{i}\right)
$$

Model

In experiment i (row i of the data table) there are n_{i} flies. Each of these flies decided independently of all other to go to the odorant with probability p_{i} and, thus, to go to the fresh air with probability ($1-p_{i}$).

Thus, the number Y_{i} of flies which went to the odorant is binomially distributed:

$$
\begin{aligned}
Y_{i} & \sim \operatorname{bin}\left(n_{i}, p_{i}\right) \\
\operatorname{Pr}\left(Y_{i}=k\right) & =\binom{n_{i}}{k} \cdot p_{i}^{k} \cdot\left(1-p_{i}\right)^{n_{i}-k}
\end{aligned}
$$

Model

In experiment i (row i of the data table) there are n_{i} flies. Each of these flies decided independently of all other to go to the odorant with probability p_{i} and, thus, to go to the fresh air with probability ($1-p_{i}$).
Thus, the number Y_{i} of flies which went to the odorant is binomially distributed:

$$
\begin{aligned}
Y_{i} & \sim \operatorname{bin}\left(n_{i}, p_{i}\right) \\
\operatorname{Pr}\left(Y_{i}=k\right) & =\binom{n_{i}}{k} \cdot p_{i}^{k} \cdot\left(1-p_{i}\right)^{n_{i}-k} \\
\mathbb{E} Y_{i} & =n_{i} \cdot p_{i}
\end{aligned}
$$

Model

In experiment i (row i of the data table) there are n_{i} flies. Each of these flies decided independently of all other to go to the odorant with probability p_{i} and, thus, to go to the fresh air with probability ($1-p_{i}$).
Thus, the number Y_{i} of flies which went to the odorant is binomially distributed:

$$
\begin{aligned}
Y_{i} & \sim \operatorname{bin}\left(n_{i}, p_{i}\right) \\
\operatorname{Pr}\left(Y_{i}=k\right) & =\binom{n_{i}}{k} \cdot p_{i}^{k} \cdot\left(1-p_{i}\right)^{n_{i}-k} \\
\mathbb{E} Y_{i} & =n_{i} \cdot p_{i} \\
\operatorname{Var} Y_{i} & =n_{i} \cdot p_{i} \cdot\left(1-p_{i}\right)
\end{aligned}
$$

Model

In experiment i (row i of the data table) there are n_{i} flies. Each of these flies decided independently of all other to go to the odorant with probability p_{i} and, thus, to go to the fresh air with probability ($1-p_{i}$).

Thus, the number Y_{i} of flies which went to the odorant is binomially distributed:

$$
\begin{aligned}
Y_{i} & \sim \operatorname{bin}\left(n_{i}, p_{i}\right) \\
\operatorname{Pr}\left(Y_{i}=k\right) & =\binom{n_{i}}{k} \cdot p_{i}^{k} \cdot\left(1-p_{i}\right)^{n_{i}-k} \\
\mathbb{E} Y_{i} & =n_{i} \cdot p_{i} \\
\operatorname{Var} Y_{i} & =n_{i} \cdot p_{i} \cdot\left(1-p_{i}\right)
\end{aligned}
$$

How does p_{i} depend on the odorant and on the species?

Binomial GLM with logit link

Similar as in Poisson GLMs we assume:

$$
\ell\left(p_{i}\right)=\eta_{i}=b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i}
$$

Binomial GLM with logit link

Similar as in Poisson GLMs we assume:

$$
\ell\left(p_{i}\right)=\eta_{i}=b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i}
$$

The default link of the Binomial GLM is the logit link:

$$
\eta=\operatorname{logit}(p)=\log (p /(1-p))
$$

Binomial GLM with logit link

Similar as in Poisson GLMs we assume:

$$
\ell\left(p_{i}\right)=\eta_{i}=b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i}
$$

The default link of the Binomial GLM is the logit link:

$$
\eta=\operatorname{logit}(p)=\log (p /(1-p))
$$

Its inverse is the logistic function

$$
p=\frac{1}{1+e^{-\eta}}
$$

Binomial GLM with logit link

Similar as in Poisson GLMs we assume:

$$
\ell\left(p_{i}\right)=\eta_{i}=b_{0}+b_{1} \cdot X_{1, i}+\cdots+b_{k} \cdot X_{k, i}
$$

The default link of the Binomial GLM is the logit link:

$$
\eta=\operatorname{logit}(p)=\log (p /(1-p))
$$

Its inverse is the logistic function

$$
p=\frac{1}{1+e^{-\eta}}
$$

Binomial GLM with the logit link is also called logistic regression.

The logistic function 1/(1+exp(-eta))

Likelihood and Deviance

If $\widehat{p_{1}}, \ldots, \widehat{p_{k}}$ are the estimated p_{i} in our model, then the likelihood of the fitted parameters is

$$
\begin{aligned}
& L(\widehat{p})=\binom{n_{1}}{Y_{1}} \widehat{p}_{1} Y_{1}\left(1-\widehat{p_{1}}\right)^{n_{1}-Y_{1}} \cdot\binom{n_{2}}{Y_{2}} \widehat{p}_{2}^{Y_{2}}\left(1-\widehat{p_{2}}\right)^{n_{2}-Y_{2}} \ldots \\
& \ldots\binom{n_{k}}{Y_{k}} \widehat{p}_{k} Y_{k}\left(1-\widehat{p_{k}}\right)^{n_{k}-Y_{k}}
\end{aligned}
$$

Using this likelihood, the deviance and the deviance residuals are defined like in the Poisson GLM.

Analysis of deviance and overdispersion

Note that, like in the Poisson model, $\operatorname{Var} Y_{i}=n_{i} \cdot p_{i} \cdot\left(1-p_{i}\right)$ is fixed for given $\mathbb{E} Y_{i}=n_{i} p_{i}$. Thus, the χ^{2} approximation should be used in the anaysis of deviance.

Analysis of deviance and overdispersion

Note that, like in the Poisson model, $\operatorname{Var} Y_{i}=n_{i} \cdot p_{i} \cdot\left(1-p_{i}\right)$ is fixed for given $\mathbb{E} Y_{i}=n_{i} p_{i}$. Thus, the χ^{2} approximation should be used in the anaysis of deviance.
There is an overdispersed binomial GLM (available in R with the option family=quasibinomial) with an additional dispersion parameter. For these models one can use both χ^{2} approximation and F approximations in analyses of deviance.

Contents

Poisson GLMs for counting data Intro to Poisson GLM Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression Odorant preferences in flies

Sex ratio in ants

Other GLMs


```
> modelbin <- glm(cbind(resp,air) ~(sex+species)*odorant+day,
+ subset=odorant!="oct",
+ data=fly,family=binomial)
> summary(modelbin)
Call:
glm(formula = cbind(resp, air) ~ (sex + species) * odorant +
    day, family = binomial, data = fly,
    subset = odorant != "oct")
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-3.3735	-0.9693	-0.1187	0.7240	4.4994

Coefficients:

| (Intercept) | -1.376503 | 0.123901 | -11.110 | $<2 e-16$ | $* * *$ |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| sexmales | 0.131066 | 0.053810 | 2.436 | 0.014863 | |$*$

speciesmel	-1.128202	0.164920	-6.841	$7.87 e-12$	**
speciespse	1.318299	0.143279	9.201	$<2 \mathrm{e}-16$	***
speciessec	-0.518238	0.143658	-3.607	0.000309	***
speciessim	0.427407	0.136345	3.135	0.001720	**
speciestei	-0.266130	0.144181	-1.846	0.064921	
speciesvir	0.424609	0.173881	2.442	0.014608	*
speciesyak	-0.454361	0.170760	-2.661	0.007795	**
odorantC02	-0.922118	0.171020	-5.392	6.97e-08	
day	-0.008059	0.014922	-0.540	0.589129	
sexmales:odorantC02	-0.023450	0.067791	-0.346	0.729408	
speciesatr:odorantC02	1.180104	0.194524	6.067	$1.31 \mathrm{e}-09$	***
speciesere:odorantCO2	1.473309	0.200023	7.366	$1.76 \mathrm{e}-13$	***
speciesmau:odorantC02	1.214336	0.222429	5.459	$4.78 \mathrm{e}-08$	***
speciesmel:odorantCO2	1.530291	0.219269	6.979	$2.97 \mathrm{e}-12$	***
speciespse:odorantC02	0.384300	0.195086	1.970	0.048849	*
speciessec:odorantC02	2.046612	0.194380	10.529	$<2 \mathrm{e}-16$	***
speciessim:odorantCO2	1.369519	0.189228	7.237	$4.57 \mathrm{e}-13$	***

```
\begin{tabular}{llllll} 
speciestei:odorantCO2 & 1.033078 & 0.199579 & 5.176 & \(2.26 \mathrm{e}-07\) & \(* * *\) \\
speciesvir:odorantCO2 & 1.262574 & 0.225086 & 5.609 & \(2.03 \mathrm{e}-08\) & \(* * *\) \\
speciesyak:odorantCO2 & 1.919994 & 0.215587 & 8.906 & \(<2 \mathrm{e}-16\) & \(* * *\)
\end{tabular}
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2429.1 on 663 degrees of freedom
Residual deviance: 1187.1 on 639 degrees of freedom
AIC: 3430.7
Number of Fisher Scoring iterations: 4
```

A residual deviance of 1187.1 on 639 degrees of freedom is very high and indicates that the model parameters cannot fully explain the data.

A residual deviance of 1187.1 on 639 degrees of freedom is very high and indicates that the model parameters cannot fully explain the data.
\Rightarrow Fit an overdispersed model!

A residual deviance of 1187.1 on 639 degrees of freedom is very high and indicates that the model parameters cannot fully explain the data.
\Rightarrow Fit an overdispersed model!
There is a price we have to pay for overdispersion: Since it is not a clearly defined distribution, AIC is not available for model selection.

A residual deviance of 1187.1 on 639 degrees of freedom is very high and indicates that the model parameters cannot fully explain the data.
\Rightarrow Fit an overdispersed model!
There is a price we have to pay for overdispersion: Since it is not a clearly defined distribution, AIC is not available for model selection.

Select parameters

1. that seem important to you from the biological context
2. or have low p-values.
```
> model <- glm(cbind(resp,air) ~(sex+species)*odorant+day,
+ subset=odorant!="oct",
+ data=fly,family=quasibinomial)
> drop1(model,test="F")
Single term deletions
Model:
cbind(resp, air) ~ (sex + species) * odorant + day
    Df Deviance F value Pr(F)
<none>
day
sex:odorant
species:odorant 10 1431.1 13.1365 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> model2 <- update(model,~.-day)
> drop1(model2,test="F")
Single term deletions
```

Model:
cbind(resp, air) ~ sex + species + odorant + sex:odorant
Df Deviance F value $\operatorname{Pr}(F)$
<none> 1187.3
sex:odorant 11187.50 .06730 .7953
species:odorant $10 \quad 1432.613 .2215<2 \mathrm{e}-16$ ***
Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

```
> model3 <- update(model2,~.-sex:odorant)
> drop1(model3,test="F")
Single term deletions
```

Model:
cbind(resp, air) ~ sex + species + odorant + species:odor
Df Deviance F value $\operatorname{Pr}(F)$
<none> 1187.5
sex $\quad 1 \quad 1200.0 \quad 6.7785 \quad 0.00944$ **
species:odorant $10 \quad 1432.713 .2366<2 e-16$ ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

```
> model4 <- glm(cbind(resp,air) ~sex+species+odorant
+ +species:odorant+species:sex,
+ subset=odorant!="oct",
+ data=fly,family=quasibinomial)
> anova(model3,model4,test="F")
Analysis of Deviance Table
Model 1: cbind(resp, air) ~ sex + species + odorant + spe
Model 2: cbind(resp, air) ~ sex + species + odorant + spe
species:sex
    Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 641 1187.5
2 631 1157.1 10 30.395 1.7232 0.072 .
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> drop1(model4,test="F")
Single term deletions
```

Model:
cbind(resp, air) ~ sex + species + odorant + species:odor
species:sex
Df Deviance F value $\operatorname{Pr}(F)$
<none> 1157.1
species:odorant $10 \quad 1402.913 .4043<2 e-16$ ***
sex:species $10 \quad 1187.51 .65750 .08708$.
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

> Residuals vs Fitted
> Predicted values

Scale-Location

Residuals vs Leverage

estimated probability of choosing 30CO2
with 95% confidence bands

estimated probability of choosing CO2

with 95% confidence bands


```
> newdata <- data.frame(species=rep(levels(fly$species),4),
    odorant=rep(levels(fly$odorant)[1:2],rep(22,2)),
    sex=rep(rep(levels(fly$sex),2),rep(11,4)))
> newdata
    species odorant sex
        ana 30CO2 females
        atr 30C02 females
        ere 30CO2 females
    mau 30C02 females
    mel 30C02 females
    pse 30CO2 females
    sec 30CO2 females
    sim 30C02 females
    tei 30C02 females
    vir 30CO2 females
    yak 30CO2 females
12 ana 30C02 males
13 atr 30C02 males
14 ere 30C02 males
15 mau 30C02 males
16 mel 30CO2 males
```

23	ana	C02 females	
24	atr	C02 females	
25	ere	C02 females	
26	mau	C02 females	
27	mel	C02 females	
28	pse	C02 females	
29	sec	C02 females	
30	sim	C02 females	
31	tei	C02 females	
32	vir	C02 females	
33	yak	C02 females	
34	ana	C02	males
35	atr	C02	males
36	ere	C02	males
37	mau	C02	males
38	mel	C02	males
39	pse	C02	males
40	sec	C02	males
41	sim	C02	males
42	tei	C02	males
43	vir	C02	males

> predict (model4, newdata, type="link")					
1	2	3	4	5	
-1.58789551	-1.14469372	-1.26487696	-1.14101650	-2.76586374	-0.1077
7	8	9	10	11	
-1.90097360	-0.91699408	-1.72012424	-0.89185179	-1.78389658	-1.0172
13	14	15	16	17	
-1.06650110	-1.29566564	-1.25030454	-2.16842944	0.08781449	-1.7959
19	20	21	22	23	
-0.91001993	-1.47044203	-0.89969326	-1.78744176	-2.55428808	-0.9039
25	26	27	28	29	
-0.72774118	-0.85332683	-2.19052045	-0.65510800	-0.78579246	-0.4694
31	32	33	34	35	
-1.61457993	-0.59147161	-0.80167681	-1.98367468	-0.82573216	-0.7585
37	38	39	40	41	
-0.96261487	-1.59308615	-0.45953795	-0.68077358	-0.46245135	-1.3648
43	44				
-0.59931308	-0.80522198				

> predict(model4, newdata, type="response")					
1	2	3	4	5	6
0.16968019	0.24145963	0.22013549	0.24213378	0.05919695	0.47308714

Compute an approx. 95\% confidence range

```
> case <- data.frame(species="mel",odorant="CO2",sex="males")
> (pred <- predict(model4,case,type="link",se.fit=TRUE) )
$fit
-1.593086
$se.fit
[1] 0.1327248
$residual.scale
[1] 1.328106
> invlink <- function(x) { ## inverse link function
+ 1/(1+exp(-x))
+ }
> invlink(pred$fit) ## prediction
0.1689501
> invlink(pred$fit-2*pred$se.fit) ## lower bound
0.1348738
> invlink(pred$fit+2*pred$se.fit) ## upper bound
0.2095506
```

This can be done simultaneously for a whole data frame (e.g. newdata) instead just for one on case (in our example mel/CO2/males)

This can be done simultaneously for a whole data frame (e.g. newdata) instead just for one on case (in our example mel/CO2/males)
Should be done on the linear predictor ("link") scale and not on the response scale because it is based on a normal distribution approximation, which is only (more or less) valid on the linear predictor scale. (Remember: for a normal distribution, > 95\% are within the 2σ-bounds around the mean.)

Contents

Poisson GLMs for counting data Intro to Poisson GLM
 Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression Odorant preferences in flies

Sex ratio in ants

Other GLMs
: S. Foitzik, I.M. Kureck, M.H. Rüger, D. Metzler (2010) Alternative reproductive tactics and the influence of local competition on sex allocation in the ant Hypoponera opacior. Behavioral Ecology and Sociobiology, to appear. How does the ratio of queens and males produced by an ant nest depend on the nest size?

- Winged sexuals were observed in June, unwinged sexuals in August.
- New queens and workers have more genetic material in common than new males and workers.
- Queens are larger than males and thus more costly to produce.
- Other factors: local resource competition, local mate competition...

Variables in the ants data set.

Nest.size number of workers in the nest
Puppen pupae produced by the nest
New.Males new males produced by the nest
New.Queens new queens produced by the nest
month 6=June, 8=August
(Many more variables in full dataset)
> str (ants)
'data.frame': 229 obs. of 5 variables:

\$ Nest.size : int 39652541894710 ...
\$ New. Males : int $0130002200 \ldots$
\$ New. Queens: int $1390202100 \ldots$
\$ month \quad : int $6666666666 \ldots$
> attach(ants)
> productivity <- (Puppen + New.Males + New.Queens)/ (Nest.size)

```
> MO <- glm(cbind(New.Queens,New.Males)~(as.factor(month)
+ +Nest.size+productivity)^2,family=binomial)
> summary(MO)
[...]
    Estimate Std. Error z value Pr (>|z|)
(Intercept)
as.factor(month)8
Nest.size
productivity
    -0.428 0.3175 -1.3 0.1776
    -0.205 0.3664 -0.5 0.5757
    0.066 0.0177 3.7 0.0001 ***
    0.002 0.0178 0.1 0.8670
as.factor(month)8:Nest.size
    -0.030 0.0171 -1.8 0.0710.
as.factor(month)8:productivity -0.016 0.0165 -0.9 0.3225
Nest.size:productivity }\quad-0.000 0.0007 -0.5 0.5988
[..]
    Null deviance: 494.61 on 138 degrees of freedom
Residual deviance: 354.96 on }132\mathrm{ degrees of freedom
    (10 observations deleted due to missingness)
AIC: 529.5
```

We already have lots of parameters and interactions in the model, but the residual deviance of 354.96 is still to high for 132 degrees of freedom.

We already have lots of parameters and interactions in the model, but the residual deviance of 354.96 is still to high for 132 degrees of freedom.
\Rightarrow Use overdispersed binomial (quasibinomial).

```
> M1 <- glm(cbind(New.Queens,New.Males)~(as.factor(month)
+ +Nest.size+productivity)^2,family=quasibinomial)
> summary(M1)
[..]
(Intercept)
as.factor(month)8
Nest.size
productivity
as.factor(month)8:Nest.size
as.factor(month)8:productivity
Nest.size:productivity
    Estimate Std. Error t value Pr(>|t|)
    -0.4281 0.470 -0.9 0.36
    -0.2050 0.542 -0.3 0.70
        0.0667 0.026 2.5 0.01 *
        0.0029 0.026 0.1 0.91
        -0.0309 0.025 -1.2 0.22
\begin{tabular}{llll}
-0.0003 & 0.001 & -0.3 & 0.72
\end{tabular}
```

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. $0.1 \quad 1$
(Dispersion parameter for quasibinomial family 2.190267)
Null deviance: 494.61 on 138 degrees of freedom
Residual deviance: 354.96 on 132 degrees of freedom
(10 observations deleted due to missingness)
AIC: NA

- Less significance now.
- Residual deviance still the same, but no reason to worry for overdispersed models
- AIC not available anymore; that's a real pity!

```
> drop1(M1,test="F")
Single term deletions
Model:
cbind(New.Queens, New.Males) ~ (as.factor(month)
    + Nest.size + productivity)^2
    Df Deviance F value Pr(F)
<none> 354.96
as.factor(month):Nest.size 1 358.39 1.2754 0.2608
as.factor(month):productivity 1 355.94 0.3642 0.5472
Nest.size:productivity 1
```


Model selection when AIC is not available.

- Apply backward model selection strategy: apply drop1 and remove the variable with the highest p-value. Apply drop1 on the reduced model and repeat this again and again until you only variables are left which are significant or almost significant.
- Variables will not be removed if they are involved in interactions, because drop1 won't show those variables.
- Do not remove a variable if there is a good biological reason why it should be in the model.
> M2 <- update(M1, ~.-as.factor (month): productivity)
> drop1(M2,test="F")
Single term deletions
Model:
cbind(New.Queens, New.Males) ~ as.factor(month)
+ Nest.size + productivity + as.factor(month):Nest.si
+ Nest.size:productivity
Df Deviance F value $\operatorname{Pr}(F)$
<none>
as.factor(month):Nest.size $1 \quad 358.86 \quad 1.09110 .2981$
$\begin{array}{llllll}\text { Nest.size:productivity } & 1 & 355.96 & 0.0067 & 0.9349\end{array}$

```
> M3 <- update(M2,~.-Nest.size:productivity)
> drop1(M3,test="F")
Single term deletions
Model:
cbind(New.Queens, New.Males) ~ as.factor(month) +
    Nest.size + productivity +
    as.factor(month):Nest.size
    Df Deviance F value Pr(F)
<none>
productivity
as.factor(month):Nest.size 1 359.40 1.2952 0.2571
                                    355.96
    1 358.57 0.9832 0.3232
```

```
> M4 <- update(M3, ~.-productivity )
> drop1(M4,test="F")
Single term deletions
Model:
cbind(New.Queens, New.Males) ~ as.factor(month) +
    Nest.size + as.factor(month):Nest.size
                                    Df Deviance F value Pr(F)
<none>
as.factor(month):Nest.size 1 360.07 0.5626 0.4545
```

```
> M5 <- update(M4,~.-as.factor(month):Nest.size)
> drop1(M5,test="F")
Single term deletions
Model:
cbind(New.Queens, New.Males) ~ as.factor(month) + Nest.size
    Df Deviance F value Pr(F)
<none> 
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> summary(M5)
Call:
glm(formula = cbind(New.Queens, New.Males) ~ as.factor(month) +
    Nest.size, family = quasibinomial)
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-3.5049	-0.8569	0.0000	0.3521	4.2843

Coefficients:

(Intercept)	-0.156142	0.236048	-0.661	0.509	
as.factor(month) 8	-0.839253	0.202793	-4.138	$6.10 \mathrm{e}-05$	$* * *$
Nest.size	0.045656	0.009749	4.683	$6.76 \mathrm{e}-06$	$* * *$


```
plot(Nest.size[month==6],
    New.Queens [month==6]/(New.Males[month==6] +New.Queens[month==6]),
    main="June", log="x", xlab="Nest size",
    ylab="N of new queens / N of new sexuals")
hypotheticaljune <- data.frame(month=6,Nest.size=0:200)
pred <- predict(M5,hypotheticaljune,type="link",se.fit=TRUE)
lines(0:200,1/(1+exp(-pred$fit)),lwd=3)
lines(0:200,1/(1+exp(-(pred$fit+2*pred$se.fit))))
lines(0:200,1/(1+exp(-(pred$fit-2*pred$se.fit))))
```


Contents

Poisson GLMs for counting data Intro to Poisson GLM
Daphnia and Deviance
County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

Other GLMs

GLMs and their links (canonical links first)

Poisson $\log (\mu), \mu, \sqrt{\mu}$
binomial logit, probit, cloglog
gaussian μ
Gamma $-1 / \mu, \mu, \log (\mu)$
inverse gaussian $-2 / \mu^{2}$
Also interesting: negative binomial as alternative to overdispersed Poisson.

