Multivariate Statistics in Ecology and Quantitative Genetics Generalized Linear Models (GLMs)

Dirk Metzler & Martin Hutzenthaler

http://evol.bio.lmu.de/_statgen

23. July 2012

Poisson GLMs for counting data

Intro to Poisson GLM Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios

Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

Poisson GLMs for counting data

Intro to Poisson GLM Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios

Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

Poisson GLMs for counting data Intro to Poisson GLM

Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios

Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

> daph <- read.table("daphnia_justina.csv",h=T)
> mod1 <- lm(counts~foodlevel+species,data=daph)
> mod2 <- lm(counts~foodlevel*species,data=daph)
> anova(mod1,mod2)
Analysis of Variance Table

Model 1: counts ~ foodlevel + species
Model 2: counts ~ foodlevel * species
Res.Df RSS Df Sum of Sq F Pr(>F)
1 9 710.00
2 8 176.67 1 533.33 24.151 0.001172 **
--Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
>

> daph

	counts	foodlevel	species
1	68	high	magna
2	54	high	magna
3	59	high	magna
4	24	high	galeata
5	27	high	galeata
6	16	high	galeata
7	20	low	magna
8	18	low	magna
9	18	low	magna
10	5	low	galeata
11	8	low	galeata
12	9	low	galeata

The normal distribution $\mathcal{N}(\mu, \sigma^2)$ is a continuous distribution and thus not suitable to model distributions on small numbers.

The normal distribution $\mathcal{N}(\mu, \sigma^2)$ is a continuous distribution and thus not suitable to model distributions on small numbers.

The Poisson distribution $Pois(\lambda)$ is a distribution on $\{0, 1, 2, 3, \dots\}$.

The normal distribution $\mathcal{N}(\mu, \sigma^2)$ is a continuous distribution and thus not suitable to model distributions on small numbers.

The Poisson distribution $Pois(\lambda)$ is a distribution on $\{0, 1, 2, 3, ...\}$.

 $\mathcal{N}(\mu = n \cdot p, \sigma^2 = n \cdot p \cdot (1 - p))$ approximates the binomial distribution Bin(n,p) if $n \cdot p \cdot (1 - p)$ is not too small (rule of thumb: $n \cdot p \cdot (1 - p) > 9$), $Pois(\lambda = n \cdot p)$ gives a better approximation when p is small.

n=50, p=0.4

n=50, p=0.4

n=50, p=0.04

n=50, p=0.04

n=50, p=0.04

If *Y* is $Pois(\lambda)$ -distributed, then

$$Pr(Y = k) = \frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \quad \text{for } k = 0, 1, 2, \dots$$
$$\mathbb{E}Y = \lambda$$
$$Var(Y) = \lambda$$

If *Y* is $Pois(\lambda)$ -distributed, then

$$Pr(Y = k) = \frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \quad \text{for } k = 0, 1, 2, \dots$$
$$\mathbb{E}Y = \lambda$$
$$Var(Y) = \lambda$$

Is there a linear model with $Pois(\lambda)$ instead of $\mathcal{N}(\mu, \sigma^2)$?

If *Y* is $Pois(\lambda)$ -distributed, then

$$Pr(Y = k) = \frac{\lambda^{k}}{k!} \cdot e^{-\lambda} \quad \text{for } k = 0, 1, 2, \dots$$
$$\mathbb{E}Y = \lambda$$
$$Var(Y) = \lambda$$

Is there a linear model with $Pois(\lambda)$ instead of $\mathcal{N}(\mu, \sigma^2)$?

Yes, the Generalized Linear Model (GLM) of type Poisson.

Remeber the normal linear model:

$$Y_i = b_0 + b_1 \cdot X_{1,i} + \dots + b_k \cdot X_{k,i} + \varepsilon_i$$
 with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

Remeber the normal linear model:

$$Y_i = b_0 + b_1 \cdot X_{1,i} + \dots + b_k \cdot X_{k,i} + \varepsilon_i$$
 with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

or equivalently:

$$\begin{aligned} \eta_i &= b_0 + b_1 \cdot X_{1,i} + \dots + b_k \cdot X_{k,i} \\ Y_i &\sim \mathcal{N}(\eta_i, \sigma^2) \end{aligned}$$

 η is called the *linear predictor*.

Remeber the normal linear model:

$$Y_i = b_0 + b_1 \cdot X_{1,i} + \dots + b_k \cdot X_{k,i} + \varepsilon_i$$
 with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

or equivalently:

$$\begin{aligned} \eta_i &= b_0 + b_1 \cdot X_{1,i} + \dots + b_k \cdot X_{k,i} \\ Y_i &\sim \mathcal{N}(\eta_i, \sigma^2) \end{aligned}$$

 η is called the *linear predictor*.

This also works for the Poisson distribution:

$$\begin{aligned} \eta_i &= b_0 + b_1 \cdot X_{1,i} + \dots + b_k \cdot X_{k,i} \\ Y_i &\sim \operatorname{Pois}(\eta_i) \end{aligned}$$

(but note that the additional σ^2 is missing!)

Instead of using η directly as parameter of the Poisson distribution, it is common to apply a transformation:

$$\ell(\mu_i) = \eta_i = b_0 + b_1 \cdot X_{1,i} + \dots + b_k \cdot X_{k,i}$$

$$Y_i \sim \operatorname{Pois}(\mu_i)$$

 $\ell(.)$ is called the *link function*.

Instead of using η directly as parameter of the Poisson distribution, it is common to apply a transformation:

$$\ell(\mu_i) = \eta_i = b_0 + b_1 \cdot X_{1,i} + \dots + b_k \cdot X_{k,i}$$

$$Y_i \sim \operatorname{Pois}(\mu_i)$$

 $\ell(.)$ is called the *link function*.

The default link function for Poisson GLMs is log, the natural logarithm.

Instead of using η directly as parameter of the Poisson distribution, it is common to apply a transformation:

$$\ell(\mu_i) = \eta_i = b_0 + b_1 \cdot X_{1,i} + \dots + b_k \cdot X_{k,i}$$

$$Y_i \sim \operatorname{Pois}(\mu_i)$$

 $\ell(.)$ is called the *link function*.

The default link function for Poisson GLMs is log, the natural logarithm.

Thus,

$$\mathbb{E} Y_i = \mu_i = e^{\eta_i} = e^{b_0 + b_1 \cdot X_{1,i} + \dots + b_k \cdot X_{k,i}} = e^{b_0} \cdot e^{b_1 \cdot X_{1,i}} \cdots e^{b_k \cdot X_{k,i}}$$

and the Poisson GLM with this default link is multiplicative model rather than an additive one.

Poisson GLMs for counting data Intro to Poisson GLM Daphnia and Deviance

County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios

Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

```
> pmod1 <- glm(counts~foodlevel+species,data=daph,</pre>
                                        family=poisson)
> summary(pmod1)
[...]
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.1166
                          0.1105 28.215 < 2e-16 ***
foodlevellow -1.1567
                          0.1298 -8.910 < 2e-16 ***
speciesmagna 0.9794
                          0.1243 7.878 3.32e-15 ***
[...]
```

Note that the Poisson model has log as its default link function. Thus, the model pmod1 assumes that the number of Daphnia in row *i* is Poisson distributed with mean λ_i , i.e.

 $\Pr(X = k) = \frac{\lambda_i^k}{k!} e^{-\lambda}$, and

 $\log{(\lambda_i)} \approx 3.12 - 1.15 \cdot \textit{I}_{\rm lowfoodlevel} + 0.979 \cdot \textit{I}_{\rm magna}$

Note that the Poisson model has log as its default link function. Thus, the model pmod1 assumes that the number of Daphnia in row *i* is Poisson distributed with mean λ_i , i.e.

 $\Pr(X = k) = \frac{\lambda_i^k}{k!} e^{-\lambda}$, and

$$\log (\lambda_i) \approx 3.12 - 1.15 \cdot I_{\text{lowfoodlevel}} + 0.979 \cdot I_{\text{magna}}$$

or, equivalently,

 $\lambda_i \approx e^{3.12} \cdot e^{-1.15^{I_{\rm lowfoodlevel}}} \cdot e^{0.979^{I_{\rm magna}}} \approx 22.6 \cdot 0.317^{I_{\rm lowfoodlevel}} \cdot 2.66^{I_{\rm magna}}$

Thus, this Poisson model assumes multiplicative effects.

> pmod1 <- glm(counts~foodlevel+species,</pre>

data=daph,family=poisson)

> pmod2 <- glm(counts~foodlevel*species,</pre>

data=daph,family=poisson)

> anova(pmod1,pmod2,test="F")

```
> anova(pmod1,pmod2,test="F")
```

```
Analysis of Deviance Table
```

Model 1: counts ~ foodlevel + species Model 2: counts ~ foodlevel * species Resid. Df Resid. Dev Df Deviance F Pr(>F) 1 9 6.1162 2 8 6.0741 1 0.042071 0.0421 0.8375 Warning message: F-Test not appropriate for family 'poisson'

The anova command gives us an "analysis of deviance" instead of an analysis of variance!

- The anova command gives us an "analysis of deviance" instead of an analysis of variance!
- What is a deviance?

- The anova command gives us an "analysis of deviance" instead of an analysis of variance!
- What is a deviance?
- There is a Warning "F-Test not appropriate for family 'poisson' ".

- The anova command gives us an "analysis of deviance" instead of an analysis of variance!
- What is a deviance?
- There is a Warning "F-Test not appropriate for family 'poisson' ".
- Why?

- The anova command gives us an "analysis of deviance" instead of an analysis of variance!
- What is a deviance?
- There is a Warning "F-Test not appropriate for family 'poisson' ".
- Why?
- Which test should we apply?

What is the deviance? Let $\hat{b_0}, \ldots, \hat{b_k}$ be our fitted model coefficients and

$$\widehat{\mu_i} = \ell^{-1} \left(\widehat{b_0} + \widehat{b_1} X_{1i} + \dots + \widehat{b_k} X_{ki} \right)$$

be the predicted means for all observations. The Likelihood of the fitted parameter values is the probability of the observations assuming the fitted parameter values:

$$L(\widehat{\mu}) = \frac{\widehat{\mu_1}^{Y_1}}{Y_1!} e^{-\widehat{\mu_1}} \cdot \frac{\widehat{\mu_2}^{Y_2}}{Y_2!} e^{-\widehat{\mu_2}} \cdots \frac{\widehat{\mu_k}^{Y_k}}{Y_k!} e^{-\widehat{\mu_k}}$$

Now we compare this to a *saturated* Poisson GLM model, i.e. a model with so many parameters such that we can get a perfect fit of $\tilde{\mu}_i = Y_i$. This leads to the highest possible likelihood $L(\tilde{\mu})$.

What is the deviance? Let $\hat{b_0}, \ldots, \hat{b_k}$ be our fitted model coefficients and

$$\widehat{\mu}_i = \ell^{-1} \left(\widehat{b_0} + \widehat{b_1} X_{1i} + \dots + \widehat{b_k} X_{ki} \right)$$

be the predicted means for all observations. The Likelihood of the fitted parameter values is the probability of the observations assuming the fitted parameter values:

$$L(\widehat{\mu}) = \frac{\widehat{\mu_1}^{Y_1}}{Y_1!} e^{-\widehat{\mu_1}} \cdot \frac{\widehat{\mu_2}^{Y_2}}{Y_2!} e^{-\widehat{\mu_2}} \cdots \frac{\widehat{\mu_k}^{Y_k}}{Y_k!} e^{-\widehat{\mu_k}}$$

Now we compare this to a *saturated* Poisson GLM model, i.e. a model with so many parameters such that we can get a perfect fit of $\tilde{\mu}_i = Y_i$. This leads to the highest possible likelihood $L(\tilde{\mu})$.In practice such a model is not desirable because it leads to overfitting.
What is the deviance?

our model:
$$L(\widehat{\mu}) = \frac{\widehat{\mu_1}^{Y_1}}{Y_1!} e^{-\widehat{\mu_1}} \cdot \frac{\widehat{\mu_2}^{Y_2}}{Y_2!} e^{-\widehat{\mu_2}} \cdots \frac{\widehat{\mu_k}^{Y_k}}{Y_k!} e^{-\widehat{\mu_k}}$$

saturated model: $L(\widetilde{\mu}) = \frac{Y_1^{Y_1}}{Y_1!} e^{-Y_1} \cdot \frac{Y_2^{Y_2}}{Y_2!} e^{-Y_2} \cdots \frac{Y_k^{Y_k}}{Y_k!} e^{-Y_k}$

What is the deviance?

our model:
$$L(\widehat{\mu}) = \frac{\widehat{\mu_1}^{Y_1}}{Y_1!} e^{-\widehat{\mu_1}} \cdot \frac{\widehat{\mu_2}^{Y_2}}{Y_2!} e^{-\widehat{\mu_2}} \cdots \frac{\widehat{\mu_k}^{Y_k}}{Y_k!} e^{-\widehat{\mu_k}}$$

saturated model: $L(\widetilde{\mu}) = \frac{Y_1^{Y_1}}{Y_1!} e^{-Y_1} \cdot \frac{Y_2^{Y_2}}{Y_2!} e^{-Y_2} \cdots \frac{Y_k^{Y_k}}{Y_k!} e^{-Y_k}$

The residual deviance of our model is defined as

 $2 \cdot \left[\log \left(L(\widehat{\mu}) \right) - \log \left(L(\widetilde{\mu}) \right) \right]$.

What is the deviance?

our model:
$$L(\widehat{\mu}) = \frac{\widehat{\mu_1}^{Y_1}}{Y_1!} e^{-\widehat{\mu_1}} \cdot \frac{\widehat{\mu_2}^{Y_2}}{Y_2!} e^{-\widehat{\mu_2}} \cdots \frac{\widehat{\mu_k}^{Y_k}}{Y_k!} e^{-\widehat{\mu_k}}$$

saturated model: $L(\widetilde{\mu}) = \frac{Y_1^{Y_1}}{Y_1!} e^{-Y_1} \cdot \frac{Y_2^{Y_2}}{Y_2!} e^{-Y_2} \cdots \frac{Y_k^{Y_k}}{Y_k!} e^{-Y_k}$

The residual deviance of our model is defined as

$$2 \cdot \left[\log \left(L(\widehat{\mu}) \right) - \log \left(L(\widetilde{\mu}) \right) \right]$$
.

It measures how far our model is away from the theoretical optimum.

The deviance is approximately \(\chi_d^2\) distributed, where df is the degrees of freedom of our model.

- The deviance is approximately \(\chi_d^2\) distributed, where df is the degrees of freedom of our model.
- Thus, the deviance should be of the same order of magnitude as df.

- The deviance is approximately \(\chi_d^2\) distributed, where df is the degrees of freedom of our model.
- Thus, the deviance should be of the same order of magnitude as df.
- Check this to assess the fit of the model!

- ► The deviance is approximately χ^2_{df} distributed, where df is the degrees of freedom of our model.
- Thus, the deviance should be of the same order of magnitude as df.
- Check this to assess the fit of the model!

Analysis of deviance:

If D_1 and D_2 are the deviances of models M_1 with p_1 parameters and M_2 with p_2 parameters, and M_1 is nested in M_2 (i.e. the parameters of M_1 are a subset of the parameters of M_2), then $D_1 - D_2$ is approximately $\chi^2_{p_2-p_1}$ -distributed.

- ► The deviance is approximately χ^2_{df} distributed, where df is the degrees of freedom of our model.
- Thus, the deviance should be of the same order of magnitude as df.
- Check this to assess the fit of the model!

Analysis of deviance:

If D_1 and D_2 are the deviances of models M_1 with p_1 parameters and M_2 with p_2 parameters, and M_1 is nested in M_2 (i.e. the parameters of M_1 are a subset of the parameters of M_2), then $D_1 - D_2$ is approximately $\chi^2_{p_2-p_1}$ -distributed. This Test is the classical likelihood-ratio test. (Note that $D_1 - D_2$ is 2x the log of the likelihood-ratio of the two models.)

```
Analysis of Deviance Table
```

Model 1: counts ~ foodlevel + species
Model 2: counts ~ foodlevel * species
Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 9 6.1162
2 8 6.0741 1 0.042071 0.8375

Daphnia and Deviance

Why not the *F*-test?

Why not the *F*-test? Remember that we did not estimate a variance σ^2 for the Poisson distribution.

Remember that we did not estimate a variance σ^2 for the Poisson distribution.

There is an *F*-distribution approximation of a rescaled $D_1 - D_2$ for GLMs in which an extra variance parameter is estimated.

Remember that we did not estimate a variance σ^2 for the Poisson distribution.

There is an *F*-distribution approximation of a rescaled $D_1 - D_2$ for GLMs in which an extra variance parameter is estimated.

Example: *overdispersed Poisson*, also called *quasipoisson* GLM. Here, $\mathbb{E} Y_i = \mu_i$ but $\text{Var} Y_i = \phi \cdot \mu_i$ with the dispersion parameter $\phi > 1$.

Remember that we did not estimate a variance σ^2 for the Poisson distribution.

There is an *F*-distribution approximation of a rescaled $D_1 - D_2$ for GLMs in which an extra variance parameter is estimated.

Example: *overdispersed Poisson*, also called *quasipoisson* GLM. Here, $\mathbb{E} Y_i = \mu_i$ but $\text{Var} Y_i = \phi \cdot \mu_i$ with the dispersion parameter $\phi > 1$.

This is often used to model the influence of unknown external factors.

Remember that we did not estimate a variance σ^2 for the Poisson distribution.

There is an *F*-distribution approximation of a rescaled $D_1 - D_2$ for GLMs in which an extra variance parameter is estimated.

Example: *overdispersed Poisson*, also called *quasipoisson* GLM. Here, $\mathbb{E}Y_i = \mu_i$ but $\operatorname{Var}Y_i = \phi \cdot \mu_i$ with the dispersion parameter $\phi > 1$.

This is often used to model the influence of unknown external factors.

Since the dispersion parameter is estimated, one can apply an F approximation in the analysis of deviance.

Remember that we did not estimate a variance σ^2 for the Poisson distribution.

There is an *F*-distribution approximation of a rescaled $D_1 - D_2$ for GLMs in which an extra variance parameter is estimated.

Example: *overdispersed Poisson*, also called *quasipoisson* GLM. Here, $\mathbb{E}Y_i = \mu_i$ but $\operatorname{Var}Y_i = \phi \cdot \mu_i$ with the dispersion parameter $\phi > 1$.

This is often used to model the influence of unknown external factors.

Since the dispersion parameter is estimated, one can apply an *F* approximation in the analysis of deviance. But also χ^2 is still an option.

```
> anova(qpmod1,qpmod2,test="F")
Analysis of Deviance Table
```

Model 1: counts ~ foodlevel + species Model 2: counts ~ foodlevel * species Resid. Df Resid. Dev Df Deviance F Pr(>F) 1 9 6.1162 2 8 6.0741 1 0.042071 0.0572 0.817

```
> anova(qpmod1,qpmod2,test="Chisq")
Analysis of Deviance Table
```

Model 1: counts ~ foodlevel + species
Model 2: counts ~ foodlevel * species
Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 9 6.1162
2 8 6.0741 1 0.042071 0.811

- > expect <- predict(pmod1,type="response")</pre>
- > sim <- rpois(12,expect)</pre>
- > smod1 <- lm(sim~foodlevel+species,data=daph)</pre>
- > smod2 <- lm(sim~foodlevel*species,data=daph)</pre>
- > anova(smod1,smod2)

- > expect <- predict(pmod1,type="response")</pre>
- > sim <- rpois(12,expect)</pre>
- > smod1 <- lm(sim~foodlevel+species,data=daph)</pre>
- > smod2 <- lm(sim~foodlevel*species,data=daph)</pre>
- > anova(smod1,smod2)

Analysis of Variance Table

Model 1: sim ~ foodlevel + species Model 2: sim ~ foodlevel * species Res.Df RSS Df Sum of Sq F Pr(>F) 1 9 1289.42 2 8 109.33 1 1180.1 86.348 1.464e-05 *** ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

What is the problem? Normal distribution assumption or additivity?

What is the problem? Normal distribution assumption or additivity?

How about a multiplicative linear model?

- > expect <- predict(pmod1,type="response")</pre>
- > sim <- rpois(12,expect)</pre>
- > smod1 <- lm(log(sim)~foodlevel+species,data=daph)</pre>
- > smod2 <- lm(log(sim)~foodlevel*species,data=daph)</pre>
- > anova(smod1,smod2)

- > expect <- predict(pmod1,type="response")</pre>
- > sim <- rpois(12,expect)</pre>
- > smod1 <- lm(log(sim)~foodlevel+species,data=daph)</pre>
- > smod2 <- lm(log(sim)~foodlevel*species,data=daph)</pre>
- > anova(smod1,smod2)

Analysis of Variance Table

Model 1: log(sim) ~ foodlevel + species
Model 2: log(sim) ~ foodlevel * species
Res.Df RSS Df Sum of Sq F Pr(>F)
1 9 0.19216
2 8 0.19115 1 0.0010162 0.0425 0.8418

This solves the biggest problem, but what does the model say?

> lmod1 <- lm(log(counts)~foodlevel+species,data=daph)
[...]
</pre>

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 3.0946 0.1028 30.104 2.41e-10 *** foodlevellow -1.1450 0.1187 -9.646 4.83e-06 *** speciesmagna 0.9883 0.1187 8.326 1.61e-05 *** [...] Residual standard error: 0.2056 on 9 degrees of freedom [...]

2.0 galatea,low magna, low galatea,high magna, high 1.5 1.0 0.5 0.0 15 3 8 9 20 30 40 50 100 4 5 6 7

prediction of log-linear model

no. of Daphnia


```
> summary(pmod1)
[..]
glm(formula = counts ~ foodlevel + species,
         family = poisson, data = daph)
[..]
            Estimate Std. Error z value Pr(|z|)
                         0.1105 28.215 < 2e-16 ***
(Intercept) 3.1166
foodlevellow -1.1567
                         0.1298 -8.910 < 2e-16 ***
speciesmagna 0.9794 0.1243 7.878 3.32e-15 ***
[..]
(Dispersion parameter for poisson family taken to be 1)
[..]
Residual deviance: 6.1162 on 9 degrees of freedom
ATC: 70.497
```


Poisson GLMs for counting data Daphnia and Deviance

33/94

Instead use *deviance residuals*. Let d_i be the contribution of observation *i* (row *i* in the data table) to the Deviance, then the deviance residual of observation *i* is

sign
$$(Y_i - \widehat{\mu}_i) \cdot \sqrt{d_i}$$
.

Instead use *deviance residuals*. Let d_i be the contribution of observation *i* (row *i* in the data table) to the Deviance, then the deviance residual of observation *i* is

sign
$$(Y_i - \widehat{\mu}_i) \cdot \sqrt{d_i}$$
.

The deviance residuals are the default residuals given by R for GLMs. They have similar properties as the standard residuals in the normal linear model.

Instead use *deviance residuals*. Let d_i be the contribution of observation *i* (row *i* in the data table) to the Deviance, then the deviance residual of observation *i* is

sign
$$(Y_i - \widehat{\mu}_i) \cdot \sqrt{d_i}$$
.

The deviance residuals are the default residuals given by R for GLMs. They have similar properties as the standard residuals in the normal linear model.

In the following plot obtained with plot(pmod1) the word "residual" always refers to deviance residuals.

Contents

Poisson GLMs for counting data

Intro to Poisson GLM Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios

Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

Other GLMs

In the lecture about linear regression we analysed a data set to find out whether the county size (number of females living in a county) has an effect on the risk of dying by breast cancer. Since the response variable in this data set are deaths counts, it seems natural to fit a Poisson GLM.

> str(canc)
'data.frame': 301 obs. of 2 variables:
 \$ deaths : int 1 0 3 4 3 4 1 5 5 5 ...
 \$ inhabitants: int 445 559 677 681 746 869 950 976 ...

First trial:

> mod0 <- glm(deaths~inhabitants,data=canc,family=poisson)
> summary(mod0)

Call: glm(formula = deaths ~ inhabitants, family = poisson, data = canc)

Deviance Residuals: Min 1Q Median 3Q Max -13.8783 -2.6449 -0.8845 1.8160 6.9909 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 2.961e+00 1.320e-02 224.2 <2e-16 *** inhabitants 4.044e-05 3.374e-07 119.9 <2e-16 *** ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Let D_i be the *expected* number of deaths in county *i* and S_i its size. Then the model assumes

 $\log\left(D_{i}\right)=a+b\cdot S_{i}$

Let D_i be the *expected* number of deaths in county *i* and S_i its size. Then the model assumes

$$\log\left(D_{i}\right)=a+b\cdot S_{i}$$

or, equivalently,

$$D_i = e^{a+b\cdot S_i} = e^a \cdot (e^{S_i})^b$$

Let D_i be the *expected* number of deaths in county *i* and S_i its size. Then the model assumes

$$\log\left(D_{i}\right)=a+b\cdot S_{i}$$

or, equivalently,

$$D_i = e^{a+b\cdot S_i} = e^a \cdot \left(e^{S_i}
ight)^b$$

this is not a plausible model.

$\log\left(D_{i}\right) = a + b \cdot \log\left(S_{i}\right)$

$$\log\left(D_{i}\right) = a + b \cdot \log\left(S_{i}\right)$$

or, equivalently,

$$D_i = e^{a+b \cdot \log(S_i)} = e^a \cdot (e^{\log(S_i)})^b$$

$$\log\left(D_{i}\right) = a + b \cdot \log\left(S_{i}\right)$$

or, equivalently,

$$D_i = e^{a+b \cdot \log(S_i)} = e^a \cdot \left(e^{\log(S_i)}
ight)^b = e^a \cdot S_i^b$$

$$\log\left(D_{i}\right) = a + b \cdot \log\left(S_{i}\right)$$

or, equivalently,

$$D_i = e^{a+b \cdot \log(S_i)} = e^a \cdot \left(e^{\log(S_i)}\right)^b = e^a \cdot S_i^b$$

If b = 1, then e^a is just the individual risk to die by breast cancer (during the time span of the survey).

[..]

Estimate Std. Error z value Pr(>|z|) (Intercept) -5.531496 0.093003 -59.48 <2e-16 *** log(inhabitants) 0.988350 0.009406 105.08 <2e-16 *** ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12994.06 on 300 degrees of freedom Residual deviance: 785.85 on 299 degrees of freedom AIC: 2282.9

[..]

Estimate Std. Error z value Pr(>|z|) (Intercept) -5.531496 0.093003 -59.48 <2e-16 *** log(inhabitants) 0.988350 0.009406 105.08 <2e-16 *** ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12994.06 on 300 degrees of freedom Residual deviance: 785.85 on 299 degrees of freedom AIC: 2282.9

Too much residual deviance for df=299 \Rightarrow Let's allow for overdispersion!

Estimate Std. Error t value Pr(>|t|) (Intercept) -5.53150 0.14865 -37.21 <2e-16 *** log(inhabitants) 0.98835 0.01503 65.75 <2e-16 *** ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family taken to be 2.554585)

Null deviance: 12994.06 on 300 degrees of freedom Residual deviance: 785.85 on 299 degrees of freedom

Estimate Std. Error t value Pr(>|t|) (Intercept) -5.53150 0.14865 -37.21 <2e-16 *** log(inhabitants) 0.98835 0.01503 65.75 <2e-16 *** ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family taken to be 2.554585)

Null deviance: 12994.06 on 300 degrees of freedom Residual deviance: 785.85 on 299 degrees of freedom

What does the highly significant *p*-value for log(inhabitants) say?

Estimate Std. Error t value Pr(>|t|) (Intercept) -5.53150 0.14865 -37.21 <2e-16 *** log(inhabitants) 0.98835 0.01503 65.75 <2e-16 *** ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family taken to be 2.554585)

Null deviance: 12994.06 on 300 degrees of freedom Residual deviance: 785.85 on 299 degrees of freedom

What does the highly significant *p*-value for log(inhabitants) say? It says that the coefficient *b* is significantly different from 0.

Estimate Std. Error t value Pr(>|t|) (Intercept) -5.53150 0.14865 -37.21 <2e-16 *** log(inhabitants) 0.98835 0.01503 65.75 <2e-16 *** ---Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family taken to be 2.554585)

Null deviance: 12994.06 on 300 degrees of freedom Residual deviance: 785.85 on 299 degrees of freedom

What does the highly significant *p*-value for log(inhabitants) say? It says that the coefficient *b* is significantly different from 0. But our question is rather whether *b* is significantly different from 1!

$$\log\left(D_{i}\right) = a + \log\left(S_{i}\right) + b \cdot \log\left(S_{i}\right)$$

$$\log\left(D_{i}\right) = a + \log\left(S_{i}\right) + b \cdot \log\left(S_{i}\right)$$

which is equivalent to

$$D_i = e^a \cdot S_i \cdot S_i^b$$
.

$$\log (D_i) = a + \log (S_i) + b \cdot \log (S_i)$$

which is equivalent to

$$D_i = e^a \cdot S_i \cdot S_i^b$$
.

Then the question is whether *b* is significantly different from 0.

$$\log\left(D_{i}\right) = a + \log\left(S_{i}\right) + b \cdot \log\left(S_{i}\right)$$

which is equivalent to

$$D_i = e^a \cdot S_i \cdot S_i^b$$
.

Then the question is whether *b* is significantly different from 0.

in R: use the command offset to tell R not to estimate a coefficient for the first $log(S_i)$

(Dispersion parameter for quasipoisson family taken to be 2.554585)

(Dispersion parameter for quasipoisson family taken to be 2.554585)

Thus, the expected number of deaths seems to be just proportional to the number of inhabitants. No signicant dependence of the death rate on the county size was found.

Another way of testing this:

```
> mod4 <- glm(deaths~offset(log(inhabitants)),</pre>
                   data=canc,family=quasipoisson)
> anova(mod4,mod3,test="F")
Analysis of Deviance Table
Model 1:
deaths ~ offset(log(inhabitants))
Model 2:
deaths ~ offset(log(inhabitants)) + log(inhabitants)
                                      F Pr(>F)
  Resid. Df Resid. Dev Df Deviance
1
        300
               787.38
2
        299
               785.85 1 1.5315 0.5995 0.4394
```

Contents

Poisson GLMs for counting data

Intro to Poisson GLM Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios

Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

Other GLMs

Contents

Poisson GLMs for counting data

Intro to Poisson GLM Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios

Intro to binomial GLMs and logistic regression

Odorant preferences in flies Sex ratio in ants

Other GLMs

- > fly <- read.csv("Flies_AnaCatalan.csv",h=T,sep=";")</pre>
- > fly

	odorant	resp	air	ΡI	sex	day	species
1	C02	1	29	NA	males	1	mel
2	C02	2	28	NA	males	1	mel
3	C02	1	25	NA	males	1	mel
•		•	•	•	•	•	
•	•	•	•	•	•	•	•
•	•	•	•	•		•	
753	30CD2	4	7	NA	females	2	vir
754	30CO2	6	12	NA	females	2	vir
755	30CO2	6	11	NA	females	2	vir
756	30CD2	6	15	NA	females	2	vir

> :	str(fly)		
'da	ata.fram	le ²	: 756 obs. of 7 variables:
\$	odorant	:	Factor w/ 3 levels "30CO2","CO2",: 2 2 2 2
\$	resp	:	int 12125495511
\$	air	:	int 29 28 25 17 36 42 38 13 19 25
\$	PI	:	logi NA NA NA NA NA NA
\$	sex	:	Factor w/ 2 levels "females", "males": 2 2 2 2
\$	day	:	int 1 1 1 1 1 1 2 2 2 2
\$	species	:	Factor w/ 11 levels "ana", "atr", "ere",: 5 5

In experiment *i* (row *i* of the data table) there are n_i flies. Each of these flies decided independently of all other to go to the odorant with probability p_i and, thus, to go to the fresh air with probability $(1 - p_i)$.

In experiment *i* (row *i* of the data table) there are n_i flies. Each of these flies decided independently of all other to go to the odorant with probability p_i and, thus, to go to the fresh air with probability $(1 - p_i)$.

Thus, the number Y_i of flies which went to the odorant is binomially distributed:

 $Y_i \sim \operatorname{bin}(n_i, p_i)$

In experiment *i* (row *i* of the data table) there are n_i flies. Each of these flies decided independently of all other to go to the odorant with probability p_i and, thus, to go to the fresh air with probability $(1 - p_i)$.

Thus, the number Y_i of flies which went to the odorant is binomially distributed:

$$\mathbf{Y}_i \sim \operatorname{bin}(n_i, p_i)$$

 $\mathsf{Pr}(\mathbf{Y}_i = k) = \binom{n_i}{k} \cdot p_i^k \cdot (1 - p_i)^{n_i - k}$

In experiment *i* (row *i* of the data table) there are n_i flies. Each of these flies decided independently of all other to go to the odorant with probability p_i and, thus, to go to the fresh air with probability $(1 - p_i)$.

Thus, the number Y_i of flies which went to the odorant is binomially distributed:

$$egin{array}{rcl} \mathbf{Y}_i &\sim & \mathrm{bin}(\mathbf{n}_i, \mathbf{p}_i) \ \mathbf{Pr}(\mathbf{Y}_i = k) &= & inom{n_i}{k} \cdot \mathbf{p}_i^k \cdot (1 - \mathbf{p}_i)^{n_i - k} \ &\mathbb{E} \mathbf{Y}_i &= & \mathbf{n}_i \cdot \mathbf{p}_i \end{array}$$

In experiment *i* (row *i* of the data table) there are n_i flies. Each of these flies decided independently of all other to go to the odorant with probability p_i and, thus, to go to the fresh air with probability $(1 - p_i)$.

Thus, the number Y_i of flies which went to the odorant is binomially distributed:

$$egin{array}{rcl} Y_i &\sim & ext{bin}(n_i, p_i) \ \mathsf{Pr}(Y_i = k) &= & inom{n_i}{k} \cdot p_i^k \cdot (1 - p_i)^{n_i - k} \ \mathbb{E} Y_i &= & n_i \cdot p_i \ ext{Var} Y_i &= & n_i \cdot p_i \cdot (1 - p_i) \end{array}$$

In experiment *i* (row *i* of the data table) there are n_i flies. Each of these flies decided independently of all other to go to the odorant with probability p_i and, thus, to go to the fresh air with probability $(1 - p_i)$.

Thus, the number Y_i of flies which went to the odorant is binomially distributed:

$$egin{array}{rcl} Y_i &\sim & ext{bin}(n_i, p_i) \ \mathsf{Pr}(Y_i = k) &= & inom{n_i}{k} \cdot p_i^k \cdot (1 - p_i)^{n_i - k} \ \mathbb{E} Y_i &= & n_i \cdot p_i \ ext{Var} Y_i &= & n_i \cdot p_i \cdot (1 - p_i) \end{array}$$

How does p_i depend on the odorant and on the species?

Binomial GLM with logit link

Similar as in Poisson GLMs we assume:

$$\ell(\boldsymbol{p}_i) = \eta_i = \boldsymbol{b}_0 + \boldsymbol{b}_1 \cdot \boldsymbol{X}_{1,i} + \cdots + \boldsymbol{b}_k \cdot \boldsymbol{X}_{k,i}$$

Binomial GLM with logit link

Similar as in Poisson GLMs we assume:

$$\ell(\boldsymbol{p}_i) = \eta_i = b_0 + b_1 \cdot X_{1,i} + \cdots + b_k \cdot X_{k,i}$$

The default link of the Binomial GLM is the logit link:

$$\eta = \operatorname{logit}(p) = \log(p/(1-p))$$
Binomial GLM with logit link

Similar as in Poisson GLMs we assume:

$$\ell(\boldsymbol{p}_i) = \eta_i = \boldsymbol{b}_0 + \boldsymbol{b}_1 \cdot \boldsymbol{X}_{1,i} + \cdots + \boldsymbol{b}_k \cdot \boldsymbol{X}_{k,i}$$

The default link of the Binomial GLM is the logit link:

$$\eta = \operatorname{logit}(p) = \log(p/(1-p))$$

Its inverse is the logistic function

$$\rho = \frac{1}{1+e^{-\eta}}$$

Binomial GLM with logit link

Similar as in Poisson GLMs we assume:

$$\ell(\boldsymbol{p}_i) = \eta_i = \boldsymbol{b}_0 + \boldsymbol{b}_1 \cdot \boldsymbol{X}_{1,i} + \cdots + \boldsymbol{b}_k \cdot \boldsymbol{X}_{k,i}$$

The default link of the Binomial GLM is the logit link:

$$\eta = \operatorname{logit}(p) = \log(p/(1-p))$$

Its inverse is the logistic function

$$o = \frac{1}{1+e^{-\eta}}$$

Binomial GLM with the logit link is also called *logistic regression*.

The logistic function 1/(1+exp(-eta))

Likelihood and Deviance

If $\hat{p_1}, \ldots, \hat{p_k}$ are the estimated p_i in our model, then the likelihood of the fitted parameters is

$$L(\widehat{p}) = \binom{n_1}{Y_1} \widehat{p_1}^{Y_1} (1 - \widehat{p_1})^{n_1 - Y_1} \cdot \binom{n_2}{Y_2} \widehat{p_2}^{Y_2} (1 - \widehat{p_2})^{n_2 - Y_2} \cdots \cdots \binom{n_k}{Y_k} \widehat{p_k}^{Y_k} (1 - \widehat{p_k})^{n_k - Y_k}$$

Using this likelihood, the *deviance* and the deviance residuals are defined like in the Poisson GLM.

Analysis of deviance and overdispersion

Note that, like in the Poisson model, $\text{Var} Y_i = n_i \cdot p_i \cdot (1 - p_i)$ is fixed for given $\mathbb{E} Y_i = n_i p_i$. Thus, the χ^2 approximation should be used in the analysis of deviance.

Analysis of deviance and overdispersion

Note that, like in the Poisson model, $\operatorname{Var} Y_i = n_i \cdot p_i \cdot (1 - p_i)$ is fixed for given $\mathbb{E} Y_i = n_i p_i$. Thus, the χ^2 approximation should be used in the analysis of deviance.

There is an overdispersed binomial GLM (available in R with the option family=quasibinomial) with an additional dispersion parameter. For these models one can use both χ^2 approximation and *F* approximations in analyses of deviance.

Contents

Poisson GLMs for counting data

Intro to Poisson GLM Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios

Intro to binomial GLMs and logistic regression

Odorant preferences in flies

Sex ratio in ants

Other GLMs

- > fly <- read.csv("Flies_AnaCatalan.csv",h=T,sep=";")</pre>
- > fly

	odorant	resp	air	ΡI	sex	day	species
1	C02	1	29	NA	males	1	mel
2	C02	2	28	NA	males	1	mel
3	C02	1	25	NA	males	1	mel
•		•	•	•		•	
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	
753	30CD2	4	7	NA	females	2	vir
754	30CO2	6	12	NA	females	2	vir
755	30CO2	6	11	NA	females	2	vir
756	30CD2	6	15	NA	females	2	vir

```
> modelbin <- glm(cbind(resp,air)~(sex+species)*odorant+day,</pre>
+
              subset=odorant!="oct".
              data=fly,family=binomial)
+
 summary(modelbin)
Call:
glm(formula = cbind(resp, air) ~ (sex + species) * odorant +
   day, family = binomial, data = fly,
                       subset = odorant != "oct")
Deviance Residuals:
   Min
             10 Median
                               30
                                       Max
-3.3735 - 0.9693 - 0.1187 0.7240
                                    4.4994
Coefficients:
                      Estimate Std. Error z value Pr(>|z|)
(Intercept)
                     -1.376503
                                 0.123901 -11.110 < 2e-16 ***
sexmales
                      0.131066 0.053810 2.436 0.014863 *
speciesatr
                     0.227528 0.145096 1.568 0.116854
speciesere
                      0.057917 0.150061 0.386 0.699528
```

0.141718 0.163017 0.869 0.384658

speciesmau

speciesmel	-1.128202	0.164920	-6.841	7.87e-12	***
speciespse	1.318299	0.143279	9.201	< 2e-16	***
speciessec	-0.518238	0.143658	-3.607	0.000309	***
speciessim	0.427407	0.136345	3.135	0.001720	**
speciestei	-0.266130	0.144181	-1.846	0.064921	•
speciesvir	0.424609	0.173881	2.442	0.014608	*
speciesyak	-0.454361	0.170760	-2.661	0.007795	**
odorantCO2	-0.922118	0.171020	-5.392	6.97e-08	***
day	-0.008059	0.014922	-0.540	0.589129	
<pre>sexmales:odorantCO2</pre>	-0.023450	0.067791	-0.346	0.729408	
speciesatr:odorantCO2	1.180104	0.194524	6.067	1.31e-09	***
<pre>speciesere:odorantCO2</pre>	1.473309	0.200023	7.366	1.76e-13	***
<pre>speciesmau:odorantCO2</pre>	1.214336	0.222429	5.459	4.78e-08	***
<pre>speciesmel:odorantCO2</pre>	1.530291	0.219269	6.979	2.97e-12	***
<pre>speciespse:odorantCO2</pre>	0.384300	0.195086	1.970	0.048849	*
speciessec:odorantCO2	2.046612	0.194380	10.529	< 2e-16	***
speciessim:odorantCO2	1.369519	0.189228	7.237	4.57e-13	***

speciestei:odorantCO2 1.033078 0.199579 5.176 2.26e-07 ***
speciesvir:odorantCO2 1.262574 0.225086 5.609 2.03e-08 ***
speciesyak:odorantCO2 1.919994 0.215587 8.906 < 2e-16 ***
--Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1</pre>

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2429.1 on 663 degrees of freedom Residual deviance: 1187.1 on 639 degrees of freedom AIC: 3430.7

Number of Fisher Scoring iterations: 4

 \Rightarrow Fit an overdispersed model!

 \Rightarrow Fit an overdispersed model!

There is a price we have to pay for overdispersion: Since it is not a clearly defined distribution, AIC is not available for model selection.

 \Rightarrow Fit an overdispersed model!

There is a price we have to pay for overdispersion: Since it is not a clearly defined distribution, AIC is not available for model selection.

Select parameters

- 1. that seem important to you from the biological context
- 2. or have low *p*-values.

```
> model <- glm(cbind(resp,air)~(sex+species)*odorant+day,</pre>
               subset=odorant!="oct",
+
               data=fly,family=quasibinomial)
+
> drop1(model,test="F")
Single term deletions
Model:
cbind(resp, air) ~ (sex + species) * odorant + day
                Df Deviance F value Pr(F)
<none>
                     1187.1
                 1 1187.3 0.1571 0.6920
day
sex:odorant 1 1187.2 0.0644 0.7997
species:odorant 10 1431.1 13.1365 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> model2 <- update(model,~.-day)</pre>
> drop1(model2,test="F")
Single term deletions
Model:
cbind(resp, air) ~ sex + species + odorant + sex:odorant
               Df Deviance F value Pr(F)
                    1187.3
<none>
sex:odorant 1 1187.5 0.0673 0.7953
species:odorant 10 1432.6 13.2215 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> model3 <- update(model2,~.-sex:odorant)</pre>
> drop1(model3,test="F")
Single term deletions
Model:
cbind(resp, air) ~ sex + species + odorant + species:odor
                Df Deviance F value Pr(F)
                     1187.5
<none>
                 1 1200.0 6.7785 0.00944 **
sex
species:odorant 10 1432.7 13.2366 < 2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

species:sex

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 641 1187.5

```
2 631 1157.1 10 30.395 1.7232 0.072 .
```

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

```
> drop1(model4,test="F")
Single term deletions
Model:
cbind(resp, air) ~ sex + species + odorant + species:odor
   species:sex
               Df Deviance F value Pr(F)
                    1157.1
<none>
species:odorant 10 1402.9 13.4043 < 2e-16 ***
sex:species 10 1187.5 1.6575 0.08708.
___
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
                                                  1
```


Predicted values

estimated probability of choosing 30CO2 with 95% confidence bands

68/94

>	newdata <	<- data.1	frame(sp	ecies=rep(levels(fly\$species),4),
+		odorant=	-rep(leve	els(fly\$odorant)[1:2],rep(22,2)),
+		sex=rep	(rep(leve	els(fly\$sex),2),rep(11,4)))
>	newdata			
	species	odorant	sex	
1	ana	30CO2	females	
2	atr	30CO2	females	
3	ere	30CO2	females	
4	mau	30CO2	females	
5	mel	30CO2	females	
6	pse	30CO2	females	
7	sec	30CO2	females	
8	sim	30CO2	females	
9	tei	30CO2	females	
10) vir	30CO2	females	
11	. yak	30CO2	females	
12	2 ana	30CO2	males	
13	8 atr	30CO2	males	
14	ere	30CO2	males	
15	5 mau	30CO2	males	
16	5 mel	30CO2	males	

23	ana	C02	females
24	atr	C02	females
25	ere	C02	females
26	mau	C02	females
27	mel	C02	females
28	pse	C02	females
29	sec	C02	females
30	sim	C02	females
31	tei	C02	females
32	vir	C02	females
33	yak	C02	females
34	ana	C02	males
35	atr	C02	males
36	ere	C02	males
37	mau	C02	males
38	mel	C02	males
39	pse	C02	males
40	sec	C02	males
41	sim	C02	males
42	tei	C02	males
43	vir	C02	males

> predict(model4,newdata,type="link") -1.58789551 -1.14469372 -1.26487696 -1.14101650 -2.76586374 -0.1077 -1.90097360 -0.91699408 -1.72012424 -0.89185179 -1.78389658 -1.0172 -1.06650110 -1.29566564 -1.25030454 -2.16842944 0.08781449 -1.7959-0.91001993 -1.47044203 -0.89969326 -1.78744176 -2.55428808 -0.9039 -0.72774118 -0.85332683 -2.19052045 -0.65510800 -0.78579246 -0.4694 -1.61457993 -0.59147161 -0.80167681 -1.98367468 -0.82573216 -0.7585 -0.96261487 -1.59308615 -0.45953795 -0.68077358 -0.46245135 -1.3648 -0.59931308 - 0.80522198

> predict(model4,newdata,type="response") 0.16968019 0.24145963 0.22013549 0.24213378 0.05919695 0.47308714 0 0.28557077 0.15185516 0.29072783 0.14382265 0.26555715 0.25606905 0 0.22264743 0.10262158 0.52193952 0.14234421 0.28699576 0.18687544 0 0.14338666 0.07213894 0.28824462 0.32569061 0.29873544 0.10060499 0 0.31307282 0.38475223 0.16595372 0.35629727 0.30966695 0.12092766 0 0.31896554 0.27635496 0.16895014 0.38709544 0.33608867 0.38640446 0 0.35450087 0.30890960

Compute an approx. 95% confidence range

```
> case <- data.frame(species="mel",odorant="CO2",sex="males")</pre>
> (pred <- predict(model4,case,type="link",se.fit=TRUE) )</pre>
$fit
-1.593086
$se.fit
[1] 0.1327248
$residual.scale
[1] 1.328106
> invlink <- function(x) {</pre>
                               ## inverse link function
    1/(1+\exp(-x))
+
+ }
> invlink(pred$fit)
                         ## prediction
0.1689501
> invlink(pred$fit-2*pred$se.fit)
                                      ## lower bound
0.1348738
> invlink(pred$fit+2*pred$se.fit)
                                      ## upper bound
0.2095506
```

This can be done simultaneously for a whole data frame (e.g. newdata) instead just for one on case (in our example mel/CO2/males)

This can be done simultaneously for a whole data frame (e.g. newdata) instead just for one on case (in our example mel/CO2/males)

Should be done on the linear predictor ("link") scale and not on the response scale because it is based on a normal distribution approximation, which is only (more or less) valid on the linear predictor scale. (Remember: for a normal distribution, > 95% are within the 2σ -bounds around the mean.)

Contents

Intro to Poisson GLM Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Batios

Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

 S. Foitzik, I.M. Kureck, M.H. Rüger, D. Metzler (2010) Alternative reproductive tactics and the influence of local competition on sex allocation in the ant *Hypoponera opacior*. *Behavioral Ecology and Sociobiology*, to appear.
 How does the ratio of queens and males produced by an ant nest depend on the nest size?

- Winged sexuals were observed in June, unwinged sexuals in August.
- New queens and workers have more genetic material in common than new males and workers.
- Queens are larger than males and thus more costly to produce.
- Other factors: local resource competition, local mate competition...

Variables in the ants data set.

Nest.size number of workers in the nest Puppen pupae produced by the nest New.Males new males produced by the nest New.Queens new queens produced by the nest month 6=June, 8=August

(Many more variables in full dataset)

> str(ants)
'data.frame': 229 obs. of 5 variables:
\$ Puppen : int 71 16 7 6 12 13 330 12 180 0 ...
\$ Nest.size : int 39 6 5 2 5 4 18 9 47 10 ...
\$ New.Males : int 0 1 3 0 0 0 2 2 0 0 ...
\$ New.Queens: int 1 3 9 0 2 0 2 1 0 0 ...
\$ month : int 6 6 6 6 6 6 6 6 6 6 ...
> attach(ants)
> productivity <- (Puppen + New.Males +</pre>

New.Queens)/ (Nest.size)

```
> M0 <- glm(cbind(New.Queens,New.Males)~(as.factor(month)
+ +Nest.size+productivity)^2,family=binomial)
> summary(M0)
[...]
```

	Estimate St	d. Error	z value	Pr(>	> z)
(Intercept)	-0.428	0.3175	-1.3 0.	1776	
as.factor(month)8	-0.205	0.3664	-0.5 0.	5757	
Nest.size	0.066	0.0177	3.7 0.0	0001	***
productivity	0.002	0.0178	0.1 0.8	8670	
as.factor(month)8:Nest.size	-0.030	0.0171	-1.8 0.0	0710	
as.factor(month)8:productiv	ity -0.016	0.0165	-0.9 0.3	3225	
Nest.size:productivity	-0.000	0.0007	-0.5 0.	5988	
[]					

Null deviance: 494.61 on 138 degrees of freedom Residual deviance: 354.96 on 132 degrees of freedom

(10 observations deleted due to missingness) AIC: 529.5
We already have lots of parameters and interactions in the model, but the residual deviance of 354.96 is still to high for 132 degrees of freedom.

We already have lots of parameters and interactions in the model, but the residual deviance of 354.96 is still to high for 132 degrees of freedom.

 \Rightarrow Use *overdispersed* binomial (quasibinomial).

Estima	ate Std.	Error t	value	Pr(> t)
(Intercept)	-0.4281	0.470	-0.9	0.36
as.factor(month)8	-0.2050	0.542	-0.3	0.70
Nest.size	0.0667	0.026	2.5	0.01 *
productivity	0.0029	0.026	0.1	0.91
as.factor(month)8:Nest.size	-0.0309	0.025	-1.2	0.22
as.factor(month)8:productivity	-0.0164	0.024	-0.6	0.50
Nest.size:productivity	-0.0003	0.001	-0.3	0.72
Signif. codes: 0 *** 0.001 **	0.01 * (0.05 . 0	.1 1	

(Dispersion parameter for quasibinomial family 2.190267)

Null deviance: 494.61 on 138 degrees of freedom Residual deviance: 354.96 on 132 degrees of freedom (10 observations deleted due to missingness) AIC: NA

- Less significance now.
- Residual deviance still the same, but no reason to worry for overdispersed models
- AIC not available anymore; that's a real pity!

```
> drop1(M1,test="F")
Single term deletions
Model:
cbind(New.Queens, New.Males) ~ (as.factor(month)
       + Nest.size + productivity)^2
                              Df Deviance F value
                                                    Pr(F)
<none>
                                    354.96
as.factor(month):Nest.size
                                1
                                   358.39 1.2754 0.2608
as.factor(month):productivity
                                1
                                   355.94 0.3642 0.5472
                                1
Nest.size:productivity
                                   355.24
                                            0.1035 0.7482
```

Model selection when AIC is not available.

- Apply backward model selection strategy: apply drop1 and remove the variable with the highest p-value. Apply drop1 on the reduced model and repeat this again and again until you only variables are left which are significant or almost significant.
- Variables will not be removed if they are involved in interactions, because drop1 won't show those variables.
- Do not remove a variable if there is a good biological reason why it should be in the model.

```
> M2 <- update(M1,~.-as.factor(month):productivity)</pre>
> drop1(M2,test="F")
Single term deletions
Model:
cbind(New.Queens, New.Males) ~ as.factor(month)
    + Nest.size + productivity + as.factor(month):Nest.si
    + Nest.size:productivity
                           Df Deviance F value Pr(F)
<none>
                                355.94
as.factor(month):Nest.size 1 358.86 1.0911 0.2981
                            1 355.96 0.0067 0.9349
Nest.size:productivity
```

```
> M3 <- update(M2,~.-Nest.size:productivity)</pre>
> drop1(M3,test="F")
Single term deletions
Model:
cbind(New.Queens, New.Males) ~ as.factor(month) +
    Nest.size + productivity +
    as.factor(month):Nest.size
                            Df Deviance F value Pr(F)
<none>
                                 355.96
productivity
                             1
                                358.57 0.9832 0.3232
as.factor(month):Nest.size 1 359.40 1.2952 0.2571
```

```
> M4 <- update(M3,~.-productivity )</pre>
> drop1(M4,test="F")
Single term deletions
Model:
cbind(New.Queens, New.Males) ~ as.factor(month) +
    Nest.size + as.factor(month):Nest.size
                            Df Deviance F value Pr(F)
                                 358.57
<none>
as.factor(month):Nest.size 1 360.07 0.5626 0.4545
```

```
> M5 <- update(M4,~.-as.factor(month):Nest.size)
> drop1(M5,test="F")
Single term deletions
```

> summary(M5)

```
Call:
glm(formula = cbind(New.Queens, New.Males) ~ as.factor(month) +
    Nest.size, family = quasibinomial)
```

20

M - --

```
Deviance Residuals:
```

MITU	τų	Median	ଅନ୍	Max
-3.5049	-0.8569	0.0000	0.3521	4.2843

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-0.156142	0.236048	-0.661	0.509	
as.factor(month)8	-0.839253	0.202793	-4.138	6.10e-05	***
Nest.size	0.045656	0.009749	4.683	6.76e-06	***


```
plot(Nest.size[month==6],
    New.Queens[month==6]/(New.Males[month==6]+New.Queens[month==6]),
    main="June", log="x", xlab="Nest size",
    ylab="N of new queens / N of new sexuals")
```

hypotheticaljune <- data.frame(month=6,Nest.size=0:200)</pre>

pred <- predict(M5,hypotheticaljune,type="link",se.fit=TRUE)</pre>

lines(0:200,1/(1+exp(-pred\$fit)),1wd=3)

lines(0:200,1/(1+exp(-(pred\$fit+2*pred\$se.fit))))

lines(0:200,1/(1+exp(-(pred\$fit-2*pred\$se.fit))))

Contents

Poisson GLMs for counting data

Intro to Poisson GLM Daphnia and Deviance County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios

Intro to binomial GLMs and logistic regression Odorant preferences in flies Sex ratio in ants

Other GLMs

GLMs and their links (canonical links first)

Poisson $\log(\mu)$, μ , $\sqrt{\mu}$ binomial logit, probit, cloglog gaussian μ Gamma $-1/\mu$, μ , $\log(\mu)$ inverse gaussian $-2/\mu^2$

Also interesting: **negative binomial** as alternative to overdispersed Poisson.