
Multivariate Statistics in Ecology and
Quantitative Genetics

Generalized Linear Models (GLMs)

Dirk Metzler & Martin Hutzenthaler

http://evol.bio.lmu.de/_statgen

23. July 2012

1 / 94

http://evol.bio.lmu.de/_statgen


Contents

Poisson GLMs for counting data
Intro to Poisson GLM
Daphnia and Deviance
County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression
Odorant preferences in flies
Sex ratio in ants

Other GLMs

2 / 94



Poisson GLMs for counting data

Contents

Poisson GLMs for counting data
Intro to Poisson GLM
Daphnia and Deviance
County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression
Odorant preferences in flies
Sex ratio in ants

Other GLMs

3 / 94



Poisson GLMs for counting data Intro to Poisson GLM

Contents

Poisson GLMs for counting data
Intro to Poisson GLM
Daphnia and Deviance
County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression
Odorant preferences in flies
Sex ratio in ants

Other GLMs

4 / 94



Poisson GLMs for counting data Intro to Poisson GLM

> daph <- read.table("daphnia_justina.csv",h=T)

> mod1 <- lm(counts~foodlevel+species,data=daph)

> mod2 <- lm(counts~foodlevel*species,data=daph)

> anova(mod1,mod2)

Analysis of Variance Table

Model 1: counts ~ foodlevel + species

Model 2: counts ~ foodlevel * species

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 710.00

2 8 176.67 1 533.33 24.151 0.001172 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

>
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Poisson GLMs for counting data Intro to Poisson GLM

> daph

counts foodlevel species

1 68 high magna

2 54 high magna

3 59 high magna

4 24 high galeata

5 27 high galeata

6 16 high galeata

7 20 low magna

8 18 low magna

9 18 low magna

10 5 low galeata

11 8 low galeata

12 9 low galeata
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Poisson GLMs for counting data Intro to Poisson GLM

The normal distribution N (µ, σ2) is a continuous distribution and
thus not suitable to model distributions on small numbers.

The Poisson distribution Pois(λ) is a distribution on
{0,1,2,3, . . . }.

N (µ = n · p, σ2 = n · p · (1− p)) approximates the binomial
distribution Bin(n,p) if n · p · (1− p) is not too small (rule of
thumb: n · p · (1− p) > 9), Pois(λ = n · p) gives a better
approximation when p is small.
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Poisson GLMs for counting data Intro to Poisson GLM

If Y is Pois(λ)-distributed, then

Pr(Y = k) =
λk

k !
· e−λ for k = 0,1,2, . . .

EY = λ

Var(Y ) = λ

Is there a linear model with Pois(λ) instead of N (µ, σ2)?

Yes, the Generalized Linear Model (GLM) of type Poisson.
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Poisson GLMs for counting data Intro to Poisson GLM

Remeber the normal linear model:

Yi = b0 + b1 · X1,i + · · ·+ bk · Xk ,i + εi with εi ∼ N (0, σ2)

or equivalently:

ηi = b0 + b1 · X1,i + · · ·+ bk · Xk ,i

Yi ∼ N (ηi , σ
2)

η is called the linear predictor.

This also works for the Poisson distribution:

ηi = b0 + b1 · X1,i + · · ·+ bk · Xk ,i

Yi ∼ Pois(ηi)

(but note that the additional σ2 is missing!)
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Poisson GLMs for counting data Intro to Poisson GLM

Instead of using η directly as parameter of the Poisson
distribution, it is common to apply a transformation:

`(µi) = ηi = b0 + b1 · X1,i + · · ·+ bk · Xk ,i

Yi ∼ Pois(µi)

`(.) is called the link function.

The default link function for Poisson GLMs is log, the natural
logarithm.
Thus,

EYi = µi = eηi = eb0+b1·X1,i+···+bk ·Xk,i = eb0 · eb1·X1,i · · · ebk ·Xk,i

and the Poisson GLM with this default link is multiplicative model
rather than an additive one.
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Poisson GLMs for counting data Daphnia and Deviance

> pmod1 <- glm(counts~foodlevel+species,data=daph,

family=poisson)

> summary(pmod1)

[...]

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.1166 0.1105 28.215 < 2e-16 ***

foodlevellow -1.1567 0.1298 -8.910 < 2e-16 ***

speciesmagna 0.9794 0.1243 7.878 3.32e-15 ***

[...]
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Poisson GLMs for counting data Daphnia and Deviance

Note that the Poisson model has log as its default link function.
Thus, the model pmod1 assumes that the number of Daphnia in
row i is Poisson distributed with mean λi , i.e.
Pr(X = k) = λk

i
k! e

−λ, and

log (λi) ≈ 3.12− 1.15 · Ilowfoodlevel + 0.979 · Imagna

or, equivalently,

λi ≈ e3.12·e−1.15Ilowfoodlevel ·e0.979Imagna ≈ 22.6·0.317Ilowfoodlevel ·2.66Imagna

Thus, this Poisson model assumes multiplicative effects.
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Poisson GLMs for counting data Daphnia and Deviance

> pmod1 <- glm(counts~foodlevel+species,

data=daph,family=poisson)

> pmod2 <- glm(counts~foodlevel*species,

data=daph,family=poisson)

> anova(pmod1,pmod2,test="F")

Analysis of Deviance Table

Model 1: counts ~ foodlevel + species

Model 2: counts ~ foodlevel * species

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 9 6.1162

2 8 6.0741 1 0.042071 0.0421 0.8375

Warning message:

F-Test not appropriate for family ’poisson’
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Poisson GLMs for counting data Daphnia and Deviance

Note:
I The anova command gives us an “analysis of deviance”

instead of an analysis of variance!

I What is a deviance?
I There is a Warning “F-Test not appropriate for family

’poisson’ ”.
I Why?
I Which test should we apply?
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Poisson GLMs for counting data Daphnia and Deviance

What is the deviance?
Let b̂0, . . . , b̂k be our fitted model coefficients and

µ̂i = `−1
(

b̂0 + b̂1X1i + · · ·+ b̂kXki

)
be the predicted means for all observations. The Likelihood of
the fitted parameter values is the probability of the observations
assuming the fitted parameter values:

L(µ̂) =
µ̂1

Y1

Y1!
e−µ̂1 · µ̂2

Y2

Y2!
e−µ̂2 · · · µ̂k

Yk

Yk !
e−µ̂k

Now we compare this to a saturated Poisson GLM model, i.e. a
model with so many parameters such that we can get a perfect
fit of µ̃i = Yi . This leads to the highest possible likelihood L(µ̃).

In
practice such a model is not desirable because it leads to
overfitting.
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Poisson GLMs for counting data Daphnia and Deviance

What is the deviance?

our model: L(µ̂) =
µ̂1

Y1

Y1!
e−µ̂1 · µ̂2

Y2

Y2!
e−µ̂2 · · · µ̂k

Yk

Yk !
e−µ̂k

saturated model: L(µ̃) =
Y Y1

1

Y1!
e−Y1 · Y Y2

2

Y2!
e−Y2 · · · Yk

Yk

Yk !
e−Yk

The residual deviance of our model is defined as

2 · [log (L(µ̂))− log (L(µ̃))] .

It measures how far our model is away from the theoretical
optimum.
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Poisson GLMs for counting data Daphnia and Deviance

I The deviance is approximately χ2
df distributed, where df is

the degrees of freedom of our model.

I Thus, the deviance should be of the same order of
magnitude as df.

I Check this to assess the fit of the model!

Analysis of deviance:
If D1 and D2 are the deviances of models M1 with p1 parameters
and M2 with p2 parameters, and M1 is nested in M2 (i.e. the
parameters of M1 are a subset of the parameters of M2), then
D1 − D2 is approximately χ2

p2−p1
-distributed.

This Test is the classical likelihood-ratio test. (Note that D1 − D2

is 2x the log of the likelihood-ratio of the two models.)
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Poisson GLMs for counting data Daphnia and Deviance

> pmod1 <- glm(counts~foodlevel+species,

data=daph,family=poisson)

> pmod2 <- glm(counts~foodlevel*species,

data=daph,family=poisson)

> anova(pmod1,pmod2,test="Chisq")

Analysis of Deviance Table

Model 1: counts ~ foodlevel + species

Model 2: counts ~ foodlevel * species

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 9 6.1162

2 8 6.0741 1 0.042071 0.8375
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Poisson GLMs for counting data Daphnia and Deviance

Why not the F -test?

Remember that we did not estimate a variance σ2 for the
Poisson distribution.
There is an F -distribution approximation of a rescaled D1 − D2

for GLMs in which an extra variance parameter is estimated.

Example: overdispersed Poisson, also called quasipoisson
GLM. Here, EYi = µi but VarYi = φ · µi with the dispersion
parameter φ > 1.
This is often used to model the influence of unknown external
factors.
Since the dispersion parameter is estimated, one can apply an
F approximation in the analysis of deviance. But also χ2 is still
an option.
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Poisson GLMs for counting data Daphnia and Deviance

> qpmod1 <- glm(counts~foodlevel+species,data=daph,

family=quasipoisson)

> qpmod2 <- glm(counts~foodlevel*species,data=daph,

family=quasipoisson)

> anova(qpmod1,qpmod2,test="F")

Analysis of Deviance Table

Model 1: counts ~ foodlevel + species

Model 2: counts ~ foodlevel * species

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 9 6.1162

2 8 6.0741 1 0.042071 0.0572 0.817
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> anova(qpmod1,qpmod2,test="Chisq")

Analysis of Deviance Table

Model 1: counts ~ foodlevel + species

Model 2: counts ~ foodlevel * species

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 9 6.1162

2 8 6.0741 1 0.042071 0.811

23 / 94



Poisson GLMs for counting data Daphnia and Deviance

> expect <- predict(pmod1,type="response")

> sim <- rpois(12,expect)

> smod1 <- lm(sim~foodlevel+species,data=daph)

> smod2 <- lm(sim~foodlevel*species,data=daph)

> anova(smod1,smod2)

Analysis of Variance Table

Model 1: sim ~ foodlevel + species

Model 2: sim ~ foodlevel * species

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 1289.42

2 8 109.33 1 1180.1 86.348 1.464e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Poisson GLMs for counting data Daphnia and Deviance

What is the problem? Normal distribution assumption or
additivity?

How about a multiplicative linear model?
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Poisson GLMs for counting data Daphnia and Deviance

> expect <- predict(pmod1,type="response")

> sim <- rpois(12,expect)

> smod1 <- lm(log(sim)~foodlevel+species,data=daph)

> smod2 <- lm(log(sim)~foodlevel*species,data=daph)

> anova(smod1,smod2)

Analysis of Variance Table

Model 1: log(sim) ~ foodlevel + species

Model 2: log(sim) ~ foodlevel * species

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 0.19216

2 8 0.19115 1 0.0010162 0.0425 0.8418
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Poisson GLMs for counting data Daphnia and Deviance

This solves the biggest problem, but what does the model say?
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Poisson GLMs for counting data Daphnia and Deviance

> lmod1 <- lm(log(counts)~foodlevel+species,data=daph)

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0946 0.1028 30.104 2.41e-10 ***

foodlevellow -1.1450 0.1187 -9.646 4.83e-06 ***

speciesmagna 0.9883 0.1187 8.326 1.61e-05 ***

[...]

Residual standard error: 0.2056 on 9 degrees of freedom

[...]
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Poisson GLMs for counting data Daphnia and Deviance

> summary(pmod1)

[..]

glm(formula = counts ~ foodlevel + species,

family = poisson, data = daph)

[..]

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.1166 0.1105 28.215 < 2e-16 ***

foodlevellow -1.1567 0.1298 -8.910 < 2e-16 ***

speciesmagna 0.9794 0.1243 7.878 3.32e-15 ***

[..]

(Dispersion parameter for poisson family taken to be 1)

[..]

Residual deviance: 6.1162 on 9 degrees of freedom

AIC: 70.497
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Poisson GLMs for counting data Daphnia and Deviance
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Poisson GLMs for counting data Daphnia and Deviance

Since the variance is proportional to the expectation value in the
Poisson model, usual residuals are not so informatative.

Instead use deviance residuals. Let di be the contribution of
observation i (row i in the data table) to the Deviance, then the
deviance residual of observation i is

sign(Yi − µ̂i) ·
√

di .

The deviance residuals are the default residuals given by R for
GLMs. They have similar properties as the standard residuals in
the normal linear model.
In the following plot obtained with plot(pmod1) the word
“residual” always refers to deviance residuals.
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Poisson GLMs for counting data County size and cancer risk, now with Poisson
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Poisson GLMs for counting data County size and cancer risk, now with Poisson

In the lecture about linear regression we analysed a data set to
find out whether the county size (number of females living in a
county) has an effect on the risk of dying by breast cancer.
Since the response variable in this data set are deaths counts, it
seems natural to fit a Poisson GLM.

> str(canc)

’data.frame’: 301 obs. of 2 variables:

$ deaths : int 1 0 3 4 3 4 1 5 5 5 ...

$ inhabitants: int 445 559 677 681 746 869 950 976 ...
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Poisson GLMs for counting data County size and cancer risk, now with Poisson

First trial:
> mod0 <- glm(deaths~inhabitants,data=canc,family=poisson)

> summary(mod0)

Call:

glm(formula = deaths ~ inhabitants, family = poisson,

data = canc)

Deviance Residuals:

Min 1Q Median 3Q Max

-13.8783 -2.6449 -0.8845 1.8160 6.9909

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.961e+00 1.320e-02 224.2 <2e-16 ***

inhabitants 4.044e-05 3.374e-07 119.9 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12994.1 on 300 degrees of freedom

Residual deviance: 2936.2 on 299 degrees of freedom

AIC: 4433.2
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Poisson GLMs for counting data County size and cancer risk, now with Poisson

Before we complain about the large residual deviance... we ask
ourselves whether this is a plausible model.

Let Di be the expected number of deaths in county i and Si its
size. Then the model assumes

log (Di) = a + b · Si

or, equivalently,
Di = ea+b·Si = ea ·

(
eSi
)b

this is not a plausible model.
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Poisson GLMs for counting data County size and cancer risk, now with Poisson

Solution: take the log of Si .

log (Di) = a + b · log (Si)

or, equivalently,

Di = ea+b·log(Si ) = ea ·
(
elog(Si )

)b
= e a · Sb

i

If b = 1, then ea is just the individual risk to die by breast cancer
(during the time span of the survey).
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Poisson GLMs for counting data County size and cancer risk, now with Poisson

> mod1 <- glm(deaths~log(inhabitants),data=canc,family=poisson)

> summary(mod1)

[..]

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.531496 0.093003 -59.48 <2e-16 ***

log(inhabitants) 0.988350 0.009406 105.08 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12994.06 on 300 degrees of freedom

Residual deviance: 785.85 on 299 degrees of freedom

AIC: 2282.9

Too much residual deviance for df=299⇒ Let’s allow for
overdispersion!
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Poisson GLMs for counting data County size and cancer risk, now with Poisson

> mod2 <- glm(deaths~log(inhabitants),data=canc,family=quasipoisson)

> summary(mod2)

[...]

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.53150 0.14865 -37.21 <2e-16 ***

log(inhabitants) 0.98835 0.01503 65.75 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family taken to be 2.554585)

Null deviance: 12994.06 on 300 degrees of freedom

Residual deviance: 785.85 on 299 degrees of freedom

What does the highly significant p-value for log(inhabitants) say?
It says that the coefficient b is significantly different from 0.
But our question is rather whether b is significantly different from 1!
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Poisson GLMs for counting data County size and cancer risk, now with Poisson

Trick: Fit a model

log (Di) = a + log (Si) + b · log (Si)

which is equivalent to

Di = ea · Si · Sb
i .

Then the question is whether b is significantly different from 0.

in R: use the command offset to tell R not to estimate a
coefficient for the first log (Si)
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Poisson GLMs for counting data County size and cancer risk, now with Poisson

> mod3 <- glm(deaths~offset(log(inhabitants))+log(inhabitants),

data=canc,family=quasipoisson)

> summary(mod3)

[...]

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.53150 0.14865 -37.212 <2e-16 ***

log(inhabitants) -0.01165 0.01503 -0.775 0.439

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasipoisson family taken to be 2.554585)

Thus, the expected number of deaths seems to be just
proportional to the number of inhabitants. No signicant
dependence of the death rate on the county size was found.
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proportional to the number of inhabitants. No signicant
dependence of the death rate on the county size was found.
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Another way of testing this:

> mod4 <- glm(deaths~offset(log(inhabitants)),

data=canc,family=quasipoisson)

> anova(mod4,mod3,test="F")

Analysis of Deviance Table

Model 1:

deaths ~ offset(log(inhabitants))

Model 2:

deaths ~ offset(log(inhabitants)) + log(inhabitants)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 300 787.38

2 299 785.85 1 1.5315 0.5995 0.4394
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> fly <- read.csv("Flies_AnaCatalan.csv",h=T,sep=";")

> fly

odorant resp air PI sex day species

1 CO2 1 29 NA males 1 mel

2 CO2 2 28 NA males 1 mel

3 CO2 1 25 NA males 1 mel

. . . . . . . .

. . . . . . . .

. . . . . . . .

753 30CO2 4 7 NA females 2 vir

754 30CO2 6 12 NA females 2 vir

755 30CO2 6 11 NA females 2 vir

756 30CO2 6 15 NA females 2 vir

48 / 94



Bionomial GLMs for Ratios Intro to binomial GLMs and logistic regression

> str(fly)

’data.frame’: 756 obs. of 7 variables:

$ odorant: Factor w/ 3 levels "30CO2","CO2",..: 2 2 2 2 2 2 2 2 2 2 ...

$ resp : int 1 2 1 2 5 4 9 5 5 11 ...

$ air : int 29 28 25 17 36 42 38 13 19 25 ...

$ PI : logi NA NA NA NA NA NA ...

$ sex : Factor w/ 2 levels "females","males": 2 2 2 2 2 2 2 2 2 2 ...

$ day : int 1 1 1 1 1 1 2 2 2 2 ...

$ species: Factor w/ 11 levels "ana","atr","ere",..: 5 5 5 5 5 5 5 5 5 5 ...

49 / 94



Bionomial GLMs for Ratios Intro to binomial GLMs and logistic regression

Model
In experiment i (row i of the data table) there are ni flies. Each of
these flies decided independently of all other to go to the
odorant with probability pi and, thus, to go to the fresh air with
probability (1− pi).

Thus, the number Yi of flies which went to the odorant is
binomially distributed:

Yi ∼ bin(ni ,pi)

Pr(Yi = k) =

(
ni

k

)
· pk

i · (1− pi)
ni−k

EYi = ni · pi

VarYi = ni · pi · (1− pi)

How does pi depend on the odorant and on the species?
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Binomial GLM with logit link

Similar as in Poisson GLMs we assume:

`(pi) = ηi = b0 + b1 · X1,i + · · ·+ bk · Xk ,i

The default link of the Binomial GLM is the logit link:

η = logit(p) = log(p/(1− p))

Its inverse is the logistic function

p =
1

1 + e−η

Binomial GLM with the logit link is also called logistic regression.
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Likelihood and Deviance

If p̂1, . . . , p̂k are the estimated pi in our model, then the likelihood
of the fitted parameters is

L(p̂) =

(
n1

Y1

)
p̂1

Y1(1− p̂1)
n1−Y1 ·

(
n2

Y2

)
p̂2

Y2(1− p̂2)
n2−Y2 · · ·

· · ·
(

nk

Yk

)
p̂k

Yk (1− p̂k)
nk−Yk

Using this likelihood, the deviance and the deviance residuals
are defined like in the Poisson GLM.
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Analysis of deviance and overdispersion

Note that, like in the Poisson model, VarYi = ni · pi · (1− pi) is
fixed for given EYi = nipi . Thus, the χ2 approximation should be
used in the anaysis of deviance.

There is an overdispersed binomial GLM (available in R with the
option family=quasibinomial) with an additional dispersion
parameter. For these models one can use both χ2

approximation and F approximations in analyses of deviance.
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Bionomial GLMs for Ratios Odorant preferences in flies

> fly <- read.csv("Flies_AnaCatalan.csv",h=T,sep=";")

> fly

odorant resp air PI sex day species

1 CO2 1 29 NA males 1 mel

2 CO2 2 28 NA males 1 mel

3 CO2 1 25 NA males 1 mel

. . . . . . . .

. . . . . . . .

. . . . . . . .

753 30CO2 4 7 NA females 2 vir

754 30CO2 6 12 NA females 2 vir

755 30CO2 6 11 NA females 2 vir

756 30CO2 6 15 NA females 2 vir
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Bionomial GLMs for Ratios Odorant preferences in flies

> modelbin <- glm(cbind(resp,air)~(sex+species)*odorant+day,

+ subset=odorant!="oct",

+ data=fly,family=binomial)

> summary(modelbin)

Call:

glm(formula = cbind(resp, air) ~ (sex + species) * odorant +

day, family = binomial, data = fly,

subset = odorant != "oct")

Deviance Residuals:

Min 1Q Median 3Q Max

-3.3735 -0.9693 -0.1187 0.7240 4.4994

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.376503 0.123901 -11.110 < 2e-16 ***

sexmales 0.131066 0.053810 2.436 0.014863 *

speciesatr 0.227528 0.145096 1.568 0.116854

speciesere 0.057917 0.150061 0.386 0.699528

speciesmau 0.141718 0.163017 0.869 0.384658
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Bionomial GLMs for Ratios Odorant preferences in flies

speciesmel -1.128202 0.164920 -6.841 7.87e-12 ***

speciespse 1.318299 0.143279 9.201 < 2e-16 ***

speciessec -0.518238 0.143658 -3.607 0.000309 ***

speciessim 0.427407 0.136345 3.135 0.001720 **

speciestei -0.266130 0.144181 -1.846 0.064921 .

speciesvir 0.424609 0.173881 2.442 0.014608 *

speciesyak -0.454361 0.170760 -2.661 0.007795 **

odorantCO2 -0.922118 0.171020 -5.392 6.97e-08 ***

day -0.008059 0.014922 -0.540 0.589129

sexmales:odorantCO2 -0.023450 0.067791 -0.346 0.729408

speciesatr:odorantCO2 1.180104 0.194524 6.067 1.31e-09 ***

speciesere:odorantCO2 1.473309 0.200023 7.366 1.76e-13 ***

speciesmau:odorantCO2 1.214336 0.222429 5.459 4.78e-08 ***

speciesmel:odorantCO2 1.530291 0.219269 6.979 2.97e-12 ***

speciespse:odorantCO2 0.384300 0.195086 1.970 0.048849 *

speciessec:odorantCO2 2.046612 0.194380 10.529 < 2e-16 ***

speciessim:odorantCO2 1.369519 0.189228 7.237 4.57e-13 ***
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speciestei:odorantCO2 1.033078 0.199579 5.176 2.26e-07 ***

speciesvir:odorantCO2 1.262574 0.225086 5.609 2.03e-08 ***

speciesyak:odorantCO2 1.919994 0.215587 8.906 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2429.1 on 663 degrees of freedom

Residual deviance: 1187.1 on 639 degrees of freedom

AIC: 3430.7

Number of Fisher Scoring iterations: 4

59 / 94



Bionomial GLMs for Ratios Odorant preferences in flies

A residual deviance of 1187.1 on 639 degrees of freedom is
very high and indicates that the model parameters cannot fully
explain the data.

⇒ Fit an overdispersed model!

There is a price we have to pay for overdispersion: Since it is not
a clearly defined distribution, AIC is not available for model
selection.

Select parameters
1. that seem important to you from the biological context
2. or have low p-values.
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Bionomial GLMs for Ratios Odorant preferences in flies

> model <- glm(cbind(resp,air)~(sex+species)*odorant+day,

+ subset=odorant!="oct",

+ data=fly,family=quasibinomial)

> drop1(model,test="F")

Single term deletions

Model:

cbind(resp, air) ~ (sex + species) * odorant + day

Df Deviance F value Pr(F)

<none> 1187.1

day 1 1187.3 0.1571 0.6920

sex:odorant 1 1187.2 0.0644 0.7997

species:odorant 10 1431.1 13.1365 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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> model2 <- update(model,~.-day)

> drop1(model2,test="F")

Single term deletions

Model:

cbind(resp, air) ~ sex + species + odorant + sex:odorant + species:odorant

Df Deviance F value Pr(F)

<none> 1187.3

sex:odorant 1 1187.5 0.0673 0.7953

species:odorant 10 1432.6 13.2215 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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> model3 <- update(model2,~.-sex:odorant)

> drop1(model3,test="F")

Single term deletions

Model:

cbind(resp, air) ~ sex + species + odorant + species:odorant

Df Deviance F value Pr(F)

<none> 1187.5

sex 1 1200.0 6.7785 0.00944 **

species:odorant 10 1432.7 13.2366 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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> model4 <- glm(cbind(resp,air)~sex+species+odorant

+ +species:odorant+species:sex,

+ subset=odorant!="oct",

+ data=fly,family=quasibinomial)

> anova(model3,model4,test="F")

Analysis of Deviance Table

Model 1: cbind(resp, air) ~ sex + species + odorant + species:odorant

Model 2: cbind(resp, air) ~ sex + species + odorant + species:odorant +

species:sex

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 641 1187.5

2 631 1157.1 10 30.395 1.7232 0.072 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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> drop1(model4,test="F")

Single term deletions

Model:

cbind(resp, air) ~ sex + species + odorant + species:odorant +

species:sex

Df Deviance F value Pr(F)

<none> 1157.1

species:odorant 10 1402.9 13.4043 < 2e-16 ***

sex:species 10 1187.5 1.6575 0.08708 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Bionomial GLMs for Ratios Odorant preferences in flies

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

estimated probability of choosing 30CO2
 with 95% confidence bands

●

●

●

●

●

●

●

●

●

●

●yak

vir

tei

sim

sec

pse

mel

mau

ere

atr

ana |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

●

●

females
males

67 / 94



Bionomial GLMs for Ratios Odorant preferences in flies
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Bionomial GLMs for Ratios Odorant preferences in flies

> newdata <- data.frame(species=rep(levels(fly$species),4),

+ odorant=rep(levels(fly$odorant)[1:2],rep(22,2)),

+ sex=rep(rep(levels(fly$sex),2),rep(11,4)))

> newdata

species odorant sex

1 ana 30CO2 females

2 atr 30CO2 females

3 ere 30CO2 females

4 mau 30CO2 females

5 mel 30CO2 females

6 pse 30CO2 females

7 sec 30CO2 females

8 sim 30CO2 females

9 tei 30CO2 females

10 vir 30CO2 females

11 yak 30CO2 females

12 ana 30CO2 males

13 atr 30CO2 males

14 ere 30CO2 males

15 mau 30CO2 males

16 mel 30CO2 males

17 pse 30CO2 males

18 sec 30CO2 males

19 sim 30CO2 males

20 tei 30CO2 males

21 vir 30CO2 males

22 yak 30CO2 males
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Bionomial GLMs for Ratios Odorant preferences in flies

23 ana CO2 females

24 atr CO2 females

25 ere CO2 females

26 mau CO2 females

27 mel CO2 females

28 pse CO2 females

29 sec CO2 females

30 sim CO2 females

31 tei CO2 females

32 vir CO2 females

33 yak CO2 females

34 ana CO2 males

35 atr CO2 males

36 ere CO2 males

37 mau CO2 males

38 mel CO2 males

39 pse CO2 males

40 sec CO2 males

41 sim CO2 males

42 tei CO2 males

43 vir CO2 males

44 yak CO2 males
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Bionomial GLMs for Ratios Odorant preferences in flies

> predict(model4,newdata,type="link")

1 2 3 4 5 6

-1.58789551 -1.14469372 -1.26487696 -1.14101650 -2.76586374 -0.10775557

7 8 9 10 11 12

-1.90097360 -0.91699408 -1.72012424 -0.89185179 -1.78389658 -1.01728212

13 14 15 16 17 18

-1.06650110 -1.29566564 -1.25030454 -2.16842944 0.08781449 -1.79595472

19 20 21 22 23 24

-0.91001993 -1.47044203 -0.89969326 -1.78744176 -2.55428808 -0.90392477

25 26 27 28 29 30

-0.72774118 -0.85332683 -2.19052045 -0.65510800 -0.78579246 -0.46942549

31 32 33 34 35 36

-1.61457993 -0.59147161 -0.80167681 -1.98367468 -0.82573216 -0.75852985

37 38 39 40 41 42

-0.96261487 -1.59308615 -0.45953795 -0.68077358 -0.46245135 -1.36489772

43 44

-0.59931308 -0.80522198
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Bionomial GLMs for Ratios Odorant preferences in flies

> predict(model4,newdata,type="response")

1 2 3 4 5 6 7

0.16968019 0.24145963 0.22013549 0.24213378 0.05919695 0.47308714 0.12999832

8 9 10 11 12 13 14

0.28557077 0.15185516 0.29072783 0.14382265 0.26555715 0.25606905 0.21489539

15 16 17 18 19 20 21

0.22264743 0.10262158 0.52193952 0.14234421 0.28699576 0.18687544 0.28911354

22 23 24 25 26 27 28

0.14338666 0.07213894 0.28824462 0.32569061 0.29873544 0.10060499 0.34183939

29 30 31 32 33 34 35

0.31307282 0.38475223 0.16595372 0.35629727 0.30966695 0.12092766 0.30454824

36 37 38 39 40 41 42

0.31896554 0.27635496 0.16895014 0.38709544 0.33608867 0.38640446 0.20344545

43 44

0.35450087 0.30890960

72 / 94



Bionomial GLMs for Ratios Odorant preferences in flies

Compute an approx. 95% confidence range
> case <- data.frame(species="mel",odorant="CO2",sex="males")

> (pred <- predict(model4,case,type="link",se.fit=TRUE) )

$fit

-1.593086

$se.fit

[1] 0.1327248

$residual.scale

[1] 1.328106

> invlink <- function(x) { ## inverse link function

+ 1/(1+exp(-x))

+ }

> invlink(pred$fit) ## prediction

0.1689501

> invlink(pred$fit-2*pred$se.fit) ## lower bound

0.1348738

> invlink(pred$fit+2*pred$se.fit) ## upper bound

0.2095506
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Bionomial GLMs for Ratios Odorant preferences in flies

This can be done simultaneously for a whole data frame (e.g.
newdata) instead just for one on case (in our example
mel/CO2/males)

Should be done on the linear predictor (“link”) scale and not on
the response scale because it is based on a normal distribution
approximation, which is only (more or less) valid on the linear
predictor scale. (Remember: for a normal distribution, > 95%
are within the 2σ-bounds around the mean.)
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Bionomial GLMs for Ratios Sex ratio in ants

Contents

Poisson GLMs for counting data
Intro to Poisson GLM
Daphnia and Deviance
County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression
Odorant preferences in flies
Sex ratio in ants

Other GLMs
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Bionomial GLMs for Ratios Sex ratio in ants

S. Foitzik, I.M. Kureck, M.H. Rüger, D. Metzler (2010)
Alternative reproductive tactics and the influence of local
competition on sex allocation in the ant Hypoponera opacior.
Behavioral Ecology and Sociobiology, to appear.

How does the ratio of queens and males produced by an ant
nest depend on the nest size?
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Bionomial GLMs for Ratios Sex ratio in ants

I Winged sexuals were observed in June, unwinged sexuals
in August.

I New queens and workers have more genetic material in
common than new males and workers.

I Queens are larger than males and thus more costly to
produce.

I Other factors: local resource competition, local mate
competition...
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Bionomial GLMs for Ratios Sex ratio in ants

Variables in the ants data set.

Nest.size number of workers in the nest
Puppen pupae produced by the nest

New.Males new males produced by the nest
New.Queens new queens produced by the nest

month 6=June, 8=August

(Many more variables in full dataset)
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Bionomial GLMs for Ratios Sex ratio in ants

> str(ants)

’data.frame’: 229 obs. of 5 variables:

$ Puppen : int 71 16 7 6 12 13 330 12 180 0 ...

$ Nest.size : int 39 6 5 2 5 4 18 9 47 10 ...

$ New.Males : int 0 1 3 0 0 0 2 2 0 0 ...

$ New.Queens: int 1 3 9 0 2 0 2 1 0 0 ...

$ month : int 6 6 6 6 6 6 6 6 6 6 ...

> attach(ants)

> productivity <- ( Puppen + New.Males +

New.Queens )/ (Nest.size)
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Bionomial GLMs for Ratios Sex ratio in ants

> M0 <- glm(cbind(New.Queens,New.Males)~(as.factor(month)

+ +Nest.size+productivity)^2,family=binomial)

> summary(M0)

[...]

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.428 0.3175 -1.3 0.1776

as.factor(month)8 -0.205 0.3664 -0.5 0.5757

Nest.size 0.066 0.0177 3.7 0.0001 ***

productivity 0.002 0.0178 0.1 0.8670

as.factor(month)8:Nest.size -0.030 0.0171 -1.8 0.0710 .

as.factor(month)8:productivity -0.016 0.0165 -0.9 0.3225

Nest.size:productivity -0.000 0.0007 -0.5 0.5988

[..]

Null deviance: 494.61 on 138 degrees of freedom

Residual deviance: 354.96 on 132 degrees of freedom

(10 observations deleted due to missingness)

AIC: 529.5
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Bionomial GLMs for Ratios Sex ratio in ants

We already have lots of parameters and interactions in the
model, but the residual deviance of 354.96 is still to high for 132
degrees of freedom.

⇒ Use overdispersed binomial (quasibinomial).

81 / 94



Bionomial GLMs for Ratios Sex ratio in ants

We already have lots of parameters and interactions in the
model, but the residual deviance of 354.96 is still to high for 132
degrees of freedom.

⇒ Use overdispersed binomial (quasibinomial).

81 / 94



Bionomial GLMs for Ratios Sex ratio in ants

> M1 <- glm(cbind(New.Queens,New.Males)~(as.factor(month)

+ +Nest.size+productivity)^2,family=quasibinomial)

> summary(M1)

[..]

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.4281 0.470 -0.9 0.36

as.factor(month)8 -0.2050 0.542 -0.3 0.70

Nest.size 0.0667 0.026 2.5 0.01 *

productivity 0.0029 0.026 0.1 0.91

as.factor(month)8:Nest.size -0.0309 0.025 -1.2 0.22

as.factor(month)8:productivity -0.0164 0.024 -0.6 0.50

Nest.size:productivity -0.0003 0.001 -0.3 0.72

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasibinomial family 2.190267)

Null deviance: 494.61 on 138 degrees of freedom

Residual deviance: 354.96 on 132 degrees of freedom

(10 observations deleted due to missingness)

AIC: NA
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Bionomial GLMs for Ratios Sex ratio in ants

I Less significance now.
I Residual deviance still the same, but no reason to worry for

overdispersed models
I AIC not available anymore; that’s a real pity!
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Bionomial GLMs for Ratios Sex ratio in ants

> drop1(M1,test="F")

Single term deletions

Model:

cbind(New.Queens, New.Males) ~ (as.factor(month)

+ Nest.size + productivity)^2

Df Deviance F value Pr(F)

<none> 354.96

as.factor(month):Nest.size 1 358.39 1.2754 0.2608

as.factor(month):productivity 1 355.94 0.3642 0.5472

Nest.size:productivity 1 355.24 0.1035 0.7482
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Bionomial GLMs for Ratios Sex ratio in ants

Model selection when AIC is not available.

I Apply backward model selection strategy: apply drop1 and
remove the variable with the highest p-value. Apply drop1
on the reduced model and repeat this again and again until
you only variables are left which are significant or almost
significant.

I Variables will not be removed if they are involved in
interactions, because drop1 won’t show those variables.

I Do not remove a variable if there is a good biological reason
why it should be in the model.
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Bionomial GLMs for Ratios Sex ratio in ants

> M2 <- update(M1,~.-as.factor(month):productivity)

> drop1(M2,test="F")

Single term deletions

Model:

cbind(New.Queens, New.Males) ~ as.factor(month)

+ Nest.size + productivity + as.factor(month):Nest.size

+ Nest.size:productivity

Df Deviance F value Pr(F)

<none> 355.94

as.factor(month):Nest.size 1 358.86 1.0911 0.2981

Nest.size:productivity 1 355.96 0.0067 0.9349
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Bionomial GLMs for Ratios Sex ratio in ants

> M3 <- update(M2,~.-Nest.size:productivity)

> drop1(M3,test="F")

Single term deletions

Model:

cbind(New.Queens, New.Males) ~ as.factor(month) +

Nest.size + productivity +

as.factor(month):Nest.size

Df Deviance F value Pr(F)

<none> 355.96

productivity 1 358.57 0.9832 0.3232

as.factor(month):Nest.size 1 359.40 1.2952 0.2571
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Bionomial GLMs for Ratios Sex ratio in ants

> M4 <- update(M3,~.-productivity )

> drop1(M4,test="F")

Single term deletions

Model:

cbind(New.Queens, New.Males) ~ as.factor(month) +

Nest.size + as.factor(month):Nest.size

Df Deviance F value Pr(F)

<none> 358.57

as.factor(month):Nest.size 1 360.07 0.5626 0.4545
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Bionomial GLMs for Ratios Sex ratio in ants

> M5 <- update(M4,~.-as.factor(month):Nest.size)

> drop1(M5,test="F")

Single term deletions

Model:

cbind(New.Queens, New.Males) ~ as.factor(month) + Nest.size

Df Deviance F value Pr(F)

<none> 360.07

as.factor(month) 1 399.32 14.828 0.0001806 ***

Nest.size 1 417.47 21.684 7.559e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Bionomial GLMs for Ratios Sex ratio in ants

> summary(M5)

Call:

glm(formula = cbind(New.Queens, New.Males) ~ as.factor(month) +

Nest.size, family = quasibinomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.5049 -0.8569 0.0000 0.3521 4.2843

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.156142 0.236048 -0.661 0.509

as.factor(month)8 -0.839253 0.202793 -4.138 6.10e-05 ***

Nest.size 0.045656 0.009749 4.683 6.76e-06 ***
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Bionomial GLMs for Ratios Sex ratio in ants

plot(Nest.size[month==6],

New.Queens[month==6]/(New.Males[month==6]+New.Queens[month==6]),

main="June", log="x", xlab="Nest size",

ylab="N of new queens / N of new sexuals")

hypotheticaljune <- data.frame(month=6,Nest.size=0:200)

pred <- predict(M5,hypotheticaljune,type="link",se.fit=TRUE)

lines(0:200,1/(1+exp(-pred$fit)),lwd=3)

lines(0:200,1/(1+exp(-(pred$fit+2*pred$se.fit))))

lines(0:200,1/(1+exp(-(pred$fit-2*pred$se.fit))))

92 / 94



Other GLMs

Contents

Poisson GLMs for counting data
Intro to Poisson GLM
Daphnia and Deviance
County size and cancer risk, now with Poisson

Bionomial GLMs for Ratios
Intro to binomial GLMs and logistic regression
Odorant preferences in flies
Sex ratio in ants

Other GLMs

93 / 94



Other GLMs

GLMs and their links (canonical links first)

Poisson log(µ), µ,
√
µ

binomial logit, probit, cloglog
gaussian µ

Gamma −1/µ, µ, log(µ)
inverse gaussian −2/µ2

Also interesting: negative binomial as alternative to
overdispersed Poisson.
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