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Anova

Example
Blood-clotting times in rats under 4 different treatments
gr. x i· observations
1 61 62 60 63 59

(62− 61)2 (60− 61)2 (63− 61)2 (59− 61)2

2 66 63 67 71 64 65 66
(63− 66)2 (67− 66)2 (71− 66)2 (64− 66)2 (65− 66)2 (66− 66)2

3 68 68 66 71 67 68 68
(68− 68)2 (66− 68)2 (71− 68)2 (67− 68)2 (68− 68)2 (68− 68)2

4 61 56 62 60 61 63 64 63 59
(56− 61)2 (62− 61)2 (60− 61)2 (61− 61)2 (63− 61)2 (64− 61)2 (63− 61)2 (59− 61)2

global mean x ·· = 64,
group means x1· = 61, x2· = 66, x3· = 68, x4· = 61.

The red Differences (unsquared) are the residuals: they are the residual variability
which is not explained by the model.
Sums of squares within groups:
sswithin = 112, 20 degrees of freedom (df)
Sums of squares between groups:
ssbetw = 4 · (61− 64)2 + 6 · (66− 64)2 + 6 · (68− 64)2 + 8 · (61− 64)2 = 228,
3 degrees of freedom (df)

F =
ssbetw/3

sswithin/20
=

76
5.6

= 13.57
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Anova

Example: Blood-clotting times in rats under 4 different treatments.

ANOVA table (”ANalysis Of VAriance“)

df
sum of
squares
(ss)

mean sum
of squares
(ss/df)

F value

groups 3 228 76 13.57

residuals 20 112 5.6

Under the Null-Hypothesis H0 “the group means are equal”
(and assuming independent, normally distributed observations)
is F Fisher-distributed with 3 and 20 degrees of freedom, and
p = Fisher3,20([13.57,∞)) ≤ 5 · 10−5.
Thus, we can reject H0.
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Anova

F -Test
n = n1 + n2 + · · ·+ nI obersvations in I groups,
Xij = j-th observation in i-th group, j = 1, . . . , ni .

Model assumption: Xij = µi + εij ,
with independent, normally distributed εij , E[εij ] = 0, Var[εij ] = σ2

(µi is the “true” mean within group i .)

X ·· = 1
n

∑I
i=1

∑ni
j=1 Xij (empirical) “global mean”

X i· = 1
ni

∑ni
j=1 Xij (empirical) mean of group i

SSwithin =
I∑

i=1

ni∑
j=1

(Xij − X i·)
2 sum of squares within the groups,

n − I degrees of freedom

SSbetw =
I∑

i=1
ni(X i· − X ··)

2 sum of squares between the groups,
I − 1 degrees of freedom

F =
SSbetw/(I − 1)

SSwithin/(n − I)
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F -Test
Xij = j-th observation i-th group, j = 1, . . . , ni ,
Model assumption: Xij = µi + εij . E[εij ] = 0, Var[εij ] = σ2
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ni∑
j=1

(Xij − X i·)
2 sum of squares within groups,

n − I degrees of feedom

SSbetw =
I∑

i=1
ni(X i· − X ··)

2 sum of squares between groups,
I − 1 degrees of freedom

F =
SSbetw/(I − 1)
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Under the hypothesis H0 : µ1 = · · · = µI (“all µi are equal”)
F is Fisher-distributed with I − 1 and n − I degrees of freedom
(no matter what the true joint value of µi is).

F -Test: We reject H0 on the level of significance α if F ≥ qα,
whereas qα is the (1− α)-quantile of the Fisher-distribution with
I − 1 and n − I degrees of freedom.
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> a <- aov(meas~flab)

> a

Call:

aov(formula = meas ~ flab)

Terms:

flab Residuals

Sum of Squares 0.1247371 0.2314000

Deg. of Freedom 6 63

Residual standard error: 0.06060541

Estimated effects may be unbalanced

> summary(a)

Df Sum Sq Mean Sq F value Pr(>F)

flab 6 0.12474 0.020789 5.6601 9.453e-05 ***

Residuals 63 0.23140 0.003673

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Anova

only for balanced designs:

> TukeyHSD(a)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = meas ~ flab)

$flab

diff lwr upr p adj

2-1 -0.065 -0.147546752 0.017546752 0.2165897

3-1 -0.059 -0.141546752 0.023546752 0.3226101

4-1 -0.142 -0.224546752 -0.059453248 0.0000396

5-1 -0.105 -0.187546752 -0.022453248 0.0045796

6-1 -0.107 -0.189546752 -0.024453248 0.0036211

7-1 -0.064 -0.146546752 0.018546752 0.2323813

3-2 0.006 -0.076546752 0.088546752 0.9999894

[...]



Anova

> kruskal.test(meas~flab)

Kruskal-Wallis rank sum test

data: meas by flab

Kruskal-Wallis chi-squared = 29.606, df = 6, p-value = 4.67e-05



Anova

Let i be the index for the row of a data table. The data are
subdivided into groups and Gi is the group row i (or patient i)
belongs to; e.g. Gi can be the treatment of patient i . Let Yi be
the response variable, e.g. the blood pressure of patient i . We
can apply an anova to check whether Y depends on G, and the
model behind it is:

Yi = bGi + εi

where the εi are assumed to be independent and normally
distributed with expectation 0, and all εi have the same variance
σ2. During the ANOVA we estimate the influence bGi of the
group on Yi by the group mean b̂g. Thus, the residuals
ri := Yi − b̂Gi ≈ Yi − bGi = εi should be approximately normally
distributed.



Anova

More than one factor can play a role. For example we may take
into account that the blood pressure Yi of a patient may depend
on the sex Si of the patient. In this case the model behind the
anova takes the form

Yi = bGi + cSi + εi .

bGi depends only on the treatment group and cSi only on the sex
of the female. If we also want allow in interaction between the
treatment and the sex, we need another variable dGi ,Si that may
depend on both:

Yi = bGi + cSi + dGi ,Si + εi .

This makes possible, for example, that a certain treatment has a
stronger effect for males than for females.



Anova

A balanced design means, that the sample size are the same for
each combination of factors. E.g. 10 males and 10 females in
each treatment group. Some ANOVA-based method will only
work for balanced designs. Therefore, it is preferable to use a
balanced design when planning an experiment. If the data,
however, are observations from nature, the “design” is usually
unbalanced and this has to be taken into account in the
analysis.

One of the methods for which you need a balanced design is
Tukey’s HSD (honest significat differences). From an anova it
computes confidence intervals for the pairwise differences
between the group means with mulptiple-testing correction
(cf. R-script).
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Another thing to be careful with is the interpretation of ANOVA
tables. The R command anova, applied to a single model gives
a so-called “Type I Anova”, where each line take only the
variables in the lines above into account:

> anova(model4)

Analysis of Variance Table

Response: log(ccrt)

Df Sum Sq Mean Sq F value Pr(>F)

line 1 1.2224 1.22238 13.1486 0.0003812 ***

day 11 2.8471 0.25883 2.7841 0.0023769 **

person 1 0.0850 0.08504 0.9147 0.3402393

[...]

For example, the p-value 0.0023769 tells how much better the
model with line line and day can explain the data compared to a
model that only takes line into account. Thus, the values
assigned to variables depend on the input order.



Anova

If you use the R command drop1 with the option test=“F”, you
get a so-called “Type II Anova”, in which each line shows the
influence of one variable, given the estimates of all other
variables.

> drop1(model4,test="F")

[...]

Df Sum of Sq RSS AIC F value Pr(F)

<none> 15.618 -418.91

line 1 0.05860 15.677 -420.23 0.6304 0.428338

day 11 2.47080 18.089 -414.18 2.4161 0.008177 **

person 1 0.08504 15.703 -419.92 0.9147 0.340239

For example, the p-value 0.008177 says that a model that takes
line, day and person into account explains the data significantly
better than a model that uses only line and person.



Anova

It is often important to rescale (i.e. transform) the data. For
example, if a comparison between fitted values (group means)
and the residuals show that the larger values have larger
standard deviations, this may mean that the random error ist
rather multiplicative than additive (as it should be). In this case,
a log transform may help. Other transformations are shown in
the R-script. Sometimes, there is a good explantation why a
certain transformation should be applied. Sometimes the
Box-Cox-Transform can help, which can take various shapes,
depending on a parameter to be optimized.
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Nested ANOVA: What if the data are not really independent?



Anova

> oats.aov <- aov(Y~N*V+Error(B/V), data=oats)

> summary(oats.aov)

Error: B

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 15875 3175.1

Error: B:V

Df Sum Sq Mean Sq F value Pr(>F)

V 2 1786.4 893.18 1.4853 0.2724

Residuals 10 6013.3 601.33

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

N 3 20020.5 6673.5 37.6856 2.458e-12 ***

N:V 6 321.7 53.6 0.3028 0.9322

Residuals 45 7968.7 177.1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Linear Models

define the regression line

y = â + b̂ · x

by minimizing the sum of squared residuals:

(â, b̂) = arg min
(a,b)

∑
i

(yi − (a + b · xi))
2

this is based on the model assumption that values a, b exist,
such that, for all data points (xi , yi) we have

yi = a + b · xi + εi ,

whereas all εi are independent and normally distributed with the
same variance σ2.



Linear Models

given data:

Y X
y1 x1

y2 x2

y3 x3
...

...

yn xn

Model: there are values
a, b, σ2 such that

y1 = a + b · x1 + ε1

y2 = a + b · x2 + ε2

y3 = a + b · x3 + ε3
...

...

yn = a + b · xn + εn

ε1, ε2, . . . , εn are independent ∼ N (0, σ2).

⇒ y1, y2, . . . , yn are independent yi ∼ N (a + b · xi , σ
2).

a, b, σ2 are unknown, but not random.
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Linear Models

We estimate a and b by computing

(â, b̂) := arg min
(a,b)

∑
i

(yi − (a + b · xi))
2.

Theorem
Compute â and b̂ by

b̂ =

∑
i(yi − ȳ) · (xi − x̄)∑

i(xi − x̄)2 =

∑
i yi · (xi − x̄)∑

i(xi − x̄)2

and
â = ȳ − b̂ · x̄ .

Please keep in mind:
The line y = â + b̂ · x goes through the center of gravity of the
cloud of points (x1, y1), (x2, y2), . . . , (xn, yn).
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Linear Models

> mod <- lm(ratiomales~rank,data=hind)

> summary(mod)

Call:

lm(formula = ratiomales ~ rank, data = hind)

Residuals:

Min 1Q Median 3Q Max

-0.32798 -0.09396 0.02408 0.11275 0.37403

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.20529 0.04011 5.119 4.54e-06 ***

rank 0.45877 0.06732 6.814 9.78e-09 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.154 on 52 degrees of freedom

Multiple R-squared: 0.4717, Adjusted R-squared: 0.4616

F-statistic: 46.44 on 1 and 52 DF, p-value: 9.78e-09



Linear Models

Model:
Y = a + b · X + ε mit ε ∼ N (0, σ2)

How to compute the significance of a relationship between the
explanatory trait X and the target variable Y ?

In other words: How can we test the null hypothesis b = 0?

We have estimated b by b̂ 6= 0. Could the true b be 0?

How large is the standard error of b̂?
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t-test for b̂

Estimate σ2 by

s2 =

∑
i

(
yi − â− b̂ · xi

)2

n − 2
.

Then,
b̂ − b

s
/√∑

i (xi − x̄)2

is t-distributed with n − 2 degrees of freedom. Thus, we can
apply a t-test to test the null-hypothesis b = 0.



Linear Models

> modell <- lm(brain.weight.g~weight.kg.,subset=extinct=="no")
> summary(modell)
Call:
lm(formula = brain.weight.g ~ weight.kg., subset = extinct ==

"no")
Residuals:

Min 1Q Median 3Q Max
-809.95 -87.43 -78.55 -31.17 2051.05
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 89.91213 43.58134 2.063 0.0434 *
weight.kg. 0.96664 0.04769 20.269 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 334.8 on 60 degrees of freedom
Multiple R-squared: 0.8726, Adjusted R-squared: 0.8704
F-statistic: 410.8 on 1 and 60 DF, p-value: < 2.2e-16
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Linear Models

We see that the residuals’ varaince depends on the fitted values
(or the body weight): “heteroscadiscity”

The model assumes homoscedascity, i.e. the random deviations
must be (almost) independent of the explaining traits (body
weight) and the fitted values.
variance-stabilizing transformation:
can be rescale body- and brain size to make deviations
independent of variables
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Linear Models

Actually not so surprising: An elephant’s brain of typically 5 kg
can easily be 500 g lighter or heavier from individual to
individual. This can not happen for a mouse brain of typically
5 g. The latter will rather also vary by 10%, i.e. 0.5 g. Thus, the
variance is not additive but rather multiplicative:

brain mass = (expected brain mass) · random

We can convert this into something with additive randomness by
taking the log:

log(brain mass) = log(expected brain mass) + log(random)



Linear Models

Multivariate Regression
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Linear Models

Multivariate Regression
Problem: Predict Y from X1, X2,. . . ,Xm.

Observations:

Y1 , X11, X21, . . . , Xm1

Y2 , X12, X22, . . . , Xm2
...

...
Yn , X1n, X2n, . . . , Xmn

Model: Y = a + b1 · X1 + b2 · X2 + · · ·+ bm · Xm + ε
Equation system to determine a, b1, b2, . . . , bm:

Y1 = a + b1 · X11 + b2 · X21 + . . . + bm · Xm1 + ε1

Y2 = a + b1 · X12 + b2 · X22 + . . . + bm · Xm2 + ε2
...

...
...

...
...

...
...

... . . . ...
...

...
...

Yn = a + b1 · X1n + bn · X2n + . . . + bm · Xmn + εn
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Linear Models

Model:

Y1 = a + b1 · X11 + b2 · X21 + . . . + bm · Xm1 + ε1

Y2 = a + b1 · X12 + b2 · X22 + . . . + bm · Xm2 + ε2
...

...
...

...
...

...
...

... . . . ...
...

...
...

Yn = a + b1 · X1n + bn · X2n + . . . + bm · Xmn + εn

target variable Y
explanatory variables X1, X2, . . . , Xm

parameter to be estimated a, b1, . . . , bm

independent normally distributed pertubations ε1, . . . , εm with
unknown variance σ2.



Linear Models

> modell0 <- lm(richness ~ angle2+NAP+grainsize+humus,
+ data = rikz)
> modell <- lm(richness ~ angle2+NAP+grainsize+humus
+ +factor(week), data = rikz)
> anova(modell0, modell)
Analysis of Variance Table

Model 1: richness ~ angle2 + NAP + grainsize + humus
Model 2: richness ~ angle2 + NAP + grainsize + humus + factor(week)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 40 531.17
2 37 353.66 3 177.51 6.1902 0.00162 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Linear Models

We reject the null hypothesis that the weeks have no effect with
a p-value of 0.00162.

But wait! We can only do that if the more complex model fits well
to the data. We check this graphically.
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Linear Models

plot(modell)
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Linear Models

Different types of ANOVA tables

If you apply the R command anova to a single model, the variables are
added consecutively in the same order as in the command. Each p
value refers to the test wether the model gets significantly better by
adding the variable to only those that are listed above the variable. In
contrast to this, the p values that are given by summary or by dropterm

from the MASS library always compare the model to a model where
only the corresponding variable is set to 0 and all other variables can
take any values. The p values given by anova thus depend on the
order in which the variables are given in the command. This is not the
case for summary and dropterm. The same options exist in other
software packages, sometimes under the names “type I analysis” and
“type II analysis”.



Linear Models

> lm1 <- lm(Postwt~Prewt+Treat,anorexia)

> lm2 <- lm(Postwt~Prewt*Treat,anorexia)

> anova(lm1,lm2)

Analysis of Variance Table

Model 1: Postwt ~ Prewt + Treat

Model 2: Postwt ~ Prewt * Treat

Res.Df RSS Df Sum of Sq F Pr(>F)

1 68 3311.3

2 66 2844.8 2 466.5 5.4112 0.006666 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Linear Models

How to predict the winglength of a Darwin finch by its beak size?

Shall we take beak height, beak length or both into account?
Residual variance should be small....

Leave-one-out cross validation: If you leave out one bird and
fit the model to the others, how well can this model predict the
wing span?

prederrorHL <- numeric()

for (i in 1:46) {

selection <- rep(TRUE,46)

selection[i] <- FALSE

modHL.R <- lm(WingL~N.UBkL+BeakH,data=finchdata,

subset=selection)

prederrorHL[i]=WingL[i]-predict(modHL.R,finchdata[i,])

}
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Linear Models

Height Length Height and Length
σ(Residuals) 3.83 4.78 3.79

d = (Number Parameters) 2 2 3

σ(Residuals)·
√

n−1
n−d 3.86 4.84 3.87

cross validation. 3.96 4.97 3.977
AIC 259.0 279.5 260.1
BIC 264.4 285.0 267.4

Akaike’s Information Criterion:

AIC = −2 · log L + 2 · (NumberofParameters)

Bayesian Information Criterion:

BIC = −2 · log L + log(n) · (NumberofParameters)
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Generalized Linear Models

The normal distribution N (µ, σ2) is a continuous distribution and
thus not suitable to model distributions on small numbers.

The Poisson distribution Pois(λ) is a distribution on
{0, 1, 2, 3, . . . }.

N (µ = n · p, σ2 = n · p · (1− p)) approximates the binomial
distribution Bin(n,p) if n · p · (1− p) is not too small (rule of
thumb: n · p · (1− p) > 9), Pois(λ = n · p) gives a better
approximation when p is small.
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Generalized Linear Models

If Y is Pois(λ)-distributed, then

Pr(Y = k) =
λk

k !
· e−λ for k = 0, 1, 2, . . .

EY = λ

Var(Y ) = λ

Is there a linear model with Pois(λ) instead of N (µ, σ2)?

Yes, the Generalized Linear Model (GLM) of type Poisson.
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Generalized Linear Models

Remeber the normal linear model:

Yi = b0 + b1 · X1,i + · · ·+ bk · Xk ,i + εi with εi ∼ N (0, σ2)

or equivalently:

ηi = b0 + b1 · X1,i + · · ·+ bk · Xk ,i

Yi ∼ N (ηi , σ
2)

η is called the linear predictor.

This also works for the Poisson distribution:

ηi = b0 + b1 · X1,i + · · ·+ bk · Xk ,i

Yi ∼ Pois(ηi)

(but note that the additional σ2 is missing!)
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Generalized Linear Models

Instead of using η directly as parameter of the Poisson
distribution, it is common to apply a transformation:

`(µi) = ηi = b0 + b1 · X1,i + · · ·+ bk · Xk ,i

Yi ∼ Pois(µi)

`(.) is called the link function.

The default link function for Poisson GLMs is log, the natural
logarithm.
Thus,

EYi = µi = eηi = eb0+b1·X1,i+···+bk ·Xk,i = eb0 · eb1·X1,i · · · ebk ·Xk,i

and the Poisson GLM with this default link is multiplicative model
rather than an additive one.
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Generalized Linear Models

> pmod1 <- glm(counts~foodlevel+species,data=daph,

family=poisson)

> summary(pmod1)

[...]

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.1166 0.1105 28.215 < 2e-16 ***

foodlevellow -1.1567 0.1298 -8.910 < 2e-16 ***

speciesmagna 0.9794 0.1243 7.878 3.32e-15 ***

[...]



Generalized Linear Models

Note that the Poisson model has log as its default link function.
Thus, the model pmod1 assumes that the number of Daphnia in
row i is Poisson distributed with mean λi , i.e.
Pr(X = k) =

λk
i

k!
e−λ, and

log (λi) ≈ 3.12− 1.15 · Ilowfoodlevel + 0.979 · Imagna

or, equivalently,

λi ≈ e3.12·e−1.15Ilowfoodlevel ·e0.979Imagna ≈ 22.6·0.317Ilowfoodlevel·2.66Imagna

Thus, this Poisson model assumes multiplicative effects.
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Generalized Linear Models

> pmod1 <- glm(counts~foodlevel+species,

data=daph,family=poisson)

> pmod2 <- glm(counts~foodlevel*species,

data=daph,family=poisson)

> anova(pmod1,pmod2,test="F")

Analysis of Deviance Table

Model 1: counts ~ foodlevel + species

Model 2: counts ~ foodlevel * species

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 9 6.1162

2 8 6.0741 1 0.042071 0.0421 0.8375

Warning message:

F-Test not appropriate for family ’poisson’
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Generalized Linear Models

Note:
I The anova command gives us an “analysis of deviance”

instead of an analysis of variance!

I What is a deviance?
I There is a Warning “F-Test not appropriate for family

’poisson’ ”.
I Why?
I Which test should we apply?
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Generalized Linear Models

What is the deviance?
Let b̂0, . . . , b̂k be our fitted model coefficients and

µ̂i = `−1
(

b̂0 + b̂1X1i + · · ·+ b̂kXki

)
be the predicted means for all observations. The Likelihood of
the fitted parameter values is the probability of the observations
assuming the fitted parameter values:

L(µ̂) =
µ̂1

Y1

Y1!
e−cµ1 · µ̂2

Y2

Y2!
e−cµ2 · · · µ̂k

Yk

Yk !
e−cµk

Now we compare this to a saturated Poisson GLM model, i.e. a
model with so many parameters such that we can get a perfect
fit of µ̃i = Yi . This leads to the highest possible likelihood L(µ̃).

In
practice such a model is not desirable because it leads to
overfitting.
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What is the deviance?

our model: L(µ̂) =
µ̂1

Y1

Y1!
e−cµ1 · µ̂2

Y2

Y2!
e−cµ2 · · · µ̂k

Yk

Yk !
e−cµk

saturated model: L(µ̃) =
Y Y1

1

Y1!
e−Y1 · Y Y2

2

Y2!
e−Y2 · · · Yk

Yk

Yk !
e−Yk

The residual deviance of our model is defined as

2 · [log (L(µ̂))− log (L(µ̃))] .

It measures how far our model is away from the theoretical
optimum.
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Generalized Linear Models

I The deviance is approximately χ2
df distributed, where df is

the degrees of freedom of our model.

I Thus, the deviance should be of the same order of
magnitude as df.

I Check this to assess the fit of the model!

Analysis of deviance:
If D1 and D2 are the deviances of models M1 with p1 parameters
and M2 with p2 parameters, and M1 is nested in M2 (i.e. the
parameters of M1 are a subset of the parameters of M2), then
D1 − D2 is approximately χ2

p2−p1
-distributed.

This Test is the classical likelihood-ratio test. (Note that D1 − D2

is 2x the log of the likelihood-ratio of the two models.)
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> pmod1 <- glm(counts~foodlevel+species,

data=daph,family=poisson)

> pmod2 <- glm(counts~foodlevel*species,

data=daph,family=poisson)

> anova(pmod1,pmod2,test="Chisq")

Analysis of Deviance Table

Model 1: counts ~ foodlevel + species

Model 2: counts ~ foodlevel * species

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
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Generalized Linear Models

Why not the F -test?

Remember that we did not estimate a variance σ2 for the
Poisson distribution.
There is an F -distribution approximation of a rescaled D1 − D2

for GLMs in which an extra variance parameter is estimated.

Example: overdispersed Poisson, also called quasipoisson
GLM. Here, EYi = µi but VarYi = φ · µi with the dispersion
parameter φ > 1.
This is often used to model the influence of unknown external
factors.
Since the dispersion parameter is estimated, one can apply an
F approximation in the analysis of deviance. But also χ2 is still
an option.
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Generalized Linear Models

Since the variance is proportional to the expectation value in the
Poisson model, usual residuals are not so informatative.

Instead use deviance residuals. Let di be the contribution of
observation i (row i in the data table) to the Deviance, then the
deviance residual of observation i is

sign(Yi − µ̂i) ·
√

di .

The deviance residuals are the default residuals given by R for
GLMs. They have similar properties as the standard residuals in
the normal linear model.
In the following plot obtained with plot(pmod1) the word
“residual” always refers to deviance residuals.
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Generalized Linear Models

Binomial GLM / logistic regression
In experiment i (row i of the data table) there are ni flies. Each of
these flies decided independently of all other to go to the
odorant with probability pi and, thus, to go to the fresh air with
probability (1− pi).

Thus, the number Yi of flies which went to the odorant is
binomially distributed:

Yi ∼ bin(ni , pi)

Pr(Yi = k) =

(
ni

k

)
· pk

i · (1− pi)
ni−k

EYi = ni · pi

VarYi = ni · pi · (1− pi)

How does pi depend on the odorant and on the species?
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Generalized Linear Models

Binomial GLM with logit link

Similar as in Poisson GLMs we assume:

`(pi) = ηi = b0 + b1 · X1,i + · · ·+ bk · Xk ,i

The default link of the Binomial GLM is the logit link:

η = logit(p) = log(p/(1− p))

Its inverse is the logistic function

p =
1

1 + e−η

Binomial GLM with the logit link is also called logistic regression.
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Likelihood and Deviance

If p̂1, . . . , p̂k are the estimated pi in our model, then the likelihood
of the fitted parameters is

L(p̂) =

(
n1

Y1

)
p̂1

Y1(1− p̂1)
n1−Y1 ·

(
n2

Y2

)
p̂2

Y2(1− p̂2)
n2−Y2 · · ·

· · ·
(

nk

Yk

)
p̂k

Yk (1− p̂k)
nk−Yk

Using this likelihood, the deviance and the deviance residuals
are defined like in the Poisson GLM.



Generalized Linear Models

Analysis of deviance and overdispersion

Note that, like in the Poisson model, VarYi = ni · pi · (1− pi) is
fixed for given EYi = nipi . Thus, the χ2 approximation should be
used in the anaysis of deviance.

There is an overdispersed binomial GLM (available in R with the
option family=quasibinomial) with an additional dispersion
parameter. For these models one can use both χ2

approximation and F approximations in analyses of deviance.
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Generalized Linear Models

A residual deviance of 1187.1 on 639 degrees of freedom (as
observed in one of the example datasets) is very high and
indicates that the model parameters cannot fully explain the
data.

⇒ Fit an overdispersed model!

There is a price we have to pay for overdispersion: Since it is not
a clearly defined distribution, AIC is not available for model
selection.

Select parameters
1. that seem important to you from the biological context
2. or have low p-values.
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Generalized Linear Models

Compute an approx. 95% confidence range

> case <- data.frame(species="mel",odorant="CO2",sex="males")
> (pred <- predict(model4,case,type="link",se.fit=TRUE) )
$fit
-1.593086
$se.fit
[1] 0.1327248
$residual.scale
[1] 1.328106
> invlink <- function(x) { ## inverse link function
+ 1/(1+exp(-x))
+ }
> invlink(pred$fit) ## prediction
0.1689501
> invlink(pred$fit-2*pred$se.fit) ## lower bound
0.1348738
> invlink(pred$fit+2*pred$se.fit) ## upper bound
0.2095506



Generalized Linear Models

This can be done simultaneously for a whole data frame (e.g.
newdata) instead just for one on case (in our example
mel/CO2/males)

Should be done on the linear predictor (“link”) scale and not on
the response scale because it is based on a normal distribution
approximation, which is only (more or less) valid on the linear
predictor scale. (Remember: for a normal distribution, > 95%
are within the 2σ-bounds around the mean.)
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Generalized Linear Models

Model selection when AIC is not available.

I Apply backward model selection strategy: apply drop1 and
remove the variable with the highest p-value. Apply drop1
on the reduced model and repeat this again and again until
you only variables are left which are significant or almost
significant.

I Variables will not be removed if they are involved in
interactions, because drop1 wont show those variables.

I Do not a variable if there is a good biological reason why it
should be in the model.



Generalized Linear Models

GLMs and their links (canonical links first)

Poisson log(µ), µ,
√

µ

binomial logit, probit, cloglog
gaussian µ

Gamma −1/µ, µ, log(µ)

inverse gaussian −2/µ2

Also interesting: negative binomial as alternative to
overdispersed Poisson.
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We revisit the RIKZ dataset.

Species abundance and many other covariates were measured
at 9 beaches.

On every beach, 5 plots were sampled in the intertidal range.

Each plot was sampled only once. Thus, each line in the data
table corresponds to one plot.
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Mixed-effects models

I We are not interested in the precise effect of each beach

I We do not want to estimate 8 extra paramters for the
beaches

I Is there another way to take the difference between the
beaches into account?

I Assume that the effect αk of beach k is random. Do not
estimate all αk but only their standard deviation σα.
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Mixed-effects model

Let Si and Ni be the ShannonW and the NAP observed at plot i ,
which is on beach k .

Si = a + b · Ni + αk + εi

ε1, ε2, . . . , ε45 are independently N (0, σ2)-distributed.
α1, α2, . . . , α9 are independently N (0, σ2

α)-distributed.
Mixed-effects: a and b are deterministic, α1, α2, . . . , α9 are
random.

To be estimated: a,b, σα, σ.
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Mixed-effects models

> summary(mmod0)
Linear mixed model fit by REML
Formula: ShannonW ~ 1 + NAP + (1 | Beach)

Data: rikz
AIC BIC logLik deviance REMLdev

4.968 12.19 1.516 -12.27 -3.032
Random effects:
Groups Name Variance Std.Dev.
Beach (Intercept) 0.017595 0.13264
Residual 0.036504 0.19106
Number of obs: 45, groups: Beach, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) 0.46722 0.05366 8.707
NAP -0.21380 0.03060 -6.987

Correlation of Fixed Effects:
(Intr)

NAP -0.198

What is REML?

Why are there
t-values but no
p-values?
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Mixed-effects models

REML vs. ML
I ML (Maximum Likelihood): estimate all parameters (here a,

b, σα, σ) by maximizing their joint likelihood.

I REML (Restricted Maximum Likelihood): first estimate
variance parameters (here σα, σ) from the components of
the response space that are orthogonal on components that
can be explained by fixed effects. Using these estimates,
the coefficients of the fixed effects (here a and b) are
estimated with ML.

I Comparable to estimation of σ2 from sample X1, . . . , Xn by
1

n−1

∑
i(µX − Xi)

2 instead of the biased ML estimator
1
n

∑
i(µX − Xi)

2

I Also for fitting parameters of mixed-effects models, ML
estimation is biased and REML is usually preferred.

I ML estimation should be used when a likelihood ratio test
shall be applied to models with different fixed effects and
the same random effects.
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Mixed-effects models

Why no p-values for the t-values?

I The t-values computed like in the usual linear model, but in
the case of mixed-effects models they are in general not
t-distributed (under the null hypothesis). Thus, it is not clear
how to get p-values from the t-values.

I Some other programs give p-values which can be very
imprecise.

I Exception: small balanced datasets. Here, t-values are
approximately t-distributed and |t | > 2 usually indicates
significance on the 5% level.
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Mixed-effects models

One possibility to visualize the estimations for the parameter
and to assess their significance is based on sampling parameter
values from their posterior distribution by an MCMC method.

In contrast to most other methods discussed in this lecture, this
is a Bayesian approach and thus needs prior distributions for the
parameter values (or at least pseudo priors).
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Mixed-effects models

General considerations of model selection

I What is the purpose of the model?
1. Making predictions as precise as possible
2. or to understand what the most influential paramters are?

I In the first case AIC may be appropriate.
I In the second case it may be better to use likelihood-ratio

tests and remove all parameters which do not significantly
improve the fit.

I Variable selection should not only depend on statistics but
also on the relevance of the parameter for the biological
question.
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Mixed-effects models

When random and fixed parameters have to be selected we
apply the following strategy:

1. Start with a model that contains as many of the relevant
parameters and interactions as possible.

2. First select random parameters. To decide between models
which have different random parameters, fit models with
REML and choose model of minimal AIC.

3. Now select fixed parameters. This can be done with the
help of AIC or with likelihood ratio tests. If likelihood ratio
tests are used, apply ML to fit the models to the data.

4. Never remove covariates that are still involved in
interactions.

5. Fit the final model with REML.



Mixed-effects models

Next, we fit a model where there is not only a random intercept
for every beach but also a random coefficient of NAP. Again, let
Si and Ni be the ShannonW and the NAP observed at plot i ,
which is on beach k . The model says

Si = a + [fixed effects terms] + αk + βk · Ni + εi .

ε1, . . . , ε45 are independently N (0, σ2)-distributed,
α1, . . . , α9 are independently N (0, σ2

α)-distributed,
β1, . . . , β9 are independently N (0, σ2

β)-distributed,

Besides the fixed-effects coefficients we have to estimate σ, σα

and σβ.
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Mixed-effects models

Don’t trust the p-values on the previous slide! The problem is
not only that the models were fitted with REML. The main
problem ist that the null hypotheses (e.g. σβ = 0 in the case of
B2/B3) are on the boundary of the parameter space. σβ can only
be ≥ 0, and deviations from σβ = 0 are thus only possible in one
direction. The χ2-approximation of likelihood ratio tests are only
reliable when deviations from the expectation under the null
hypothesis are possible in all directions, for example if the null
hypothesis θ = 0 is tested for some parameter θ, and estimates
of θ can lead to positive as well as negative values.

Thus, we rather base our decision on the AIC values. This is, of
course, also not stringent. However, in our case, all criteria favor
model B2.
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Mixed-effects models

I Generalized linear mixed-effects models can be fitted with
the glmer command in the lme4 package.

I REML is not applied, more complex algorithms are applied
to fit models.

I All p-values can be very imprecise, so do not trust them too
much, especially if they are close to the significance level.

I Mcmc methods or other nice methods to visualize the
results of a mixed-effects GLM are not yet implemented in
lme4.

I As an example we fit an overdispersed Poisson model to
the RIKZ data with Richness as the response variable.
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Principal Component Analysis (PCA)

Reading biplots

Distance biplot (scale=0)
I Angles between lines are meaningless.
I The lines are projections of length 1 vectors into the plane

of the first two principal components. So the length
indicates how well the corresponding variable is
represented by the first two components.

I Distances between points/labels approximate distances of
the observations for different objects.

I The projection of a point onto a vector at right angle
approximates the position of the corresponding object along
the corresponding variable.



Principal Component Analysis (PCA)

Correlation biplot (scale=1)
I The cosine of the angle between two lines is approximately

equal to the correlation between the corresponding
variables.

I If the PCA used scale=FALSE, then the length of a line is
approximately

√
N − 1 times the estimated standard

deviation of the corresponding variable. If the PCA used
scale=TRUE, then the lines are projections of length

√
N − 1

vectors into the plane of the first two principal components.
So the length indicates how well the corresponding variable
is represented by the first two components.

I Distances between points/labels are meaningless.
I The projection of a point onto a vector at right angle

approximates the position of the corresponding object along
the corresponding variable.



Principal Component Analysis (PCA)

One problem with PCA is to decide how many components to
present, and there are various rules of thumb.

I 80%-rule: Present the first k axes that explain 80% of the
total variation.

I ellbow-rule: Plot the eigenvalues as vertical lines or bars
next to each other. Use k axes if the ’elbow’ is at k + 1.

I broken-stick-rule: If a stick of unit length is broken at
random in p pieces, then the expected length of piece
number j is given by

Lj =
1
p

p∑
i=j

1
i

(1)

If the eigenvalue of the j-th axis is larger than Lj , then it can
be considered as important.

The broken-stick-model is the most reliable rule of thumb.
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Principal Component Analysis (PCA)

In many cases the different variables are on different scales.
Then you are recommended to scale the variables with their
standard deviations, that is, to use the correlation matrix rather
than the covariance matrix.
Otherwise the first principal component might be dominated by
the variable with the largest scale.

For you this means to use the argument scale=TRUE in the
prcomp() command.

If the values of the variables are of comparable order, then it is
also fine to not scale the variables, that is, to apply PCA to the
covariance matrix.
In R this means to use the argument scale=FALSE.
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Principal Component Analysis (PCA)

Summary

Principal component analysis is a transformation
(rotation and reflection) of the data such that
most of the variation is on the first axis,
the second most variation is on the second axis...

Used for:
I Visualizing multi-variate data (we have no better method)
I Get a feeling on the dependencies
I Find clusters in the variables

(e.g. {X1, X2} and {X3, X4} in the EWU data set)
I Find clusters in the set of objects/individuals

(e.g. girls and guys in the height and weight data)
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Principal Component Analysis (PCA)

Be aware:
I Principal components can often not be interpreted

2 ∗ shoe + 3 ∗ height is a measure for size
But how shall we interpret 2 ∗ shoe− height?

I If first two principal components explain less than 70%, then
consider forgetting PCA

I Biplots are easily misread. Be careful!
I It’s spelled ’principal’ (main, Haupt-),

not ’principle’ (Prinzip, Grundsatz)
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Redundancy Analysis (RDA)

Given: Data frames/matrices Y and X
The variables in X are called explanatory variables
The variables in Y are called response variables

Goal: Find those components of Y which are linear
combinations of X and (among those) represent as
much variance of Y as possible.

Assumption: There is a linear dependence of the response
variables in Y on the explanatory variables in X .

The idea behind redundancy analysis is to apply linear
regression in order to represent Y as linear function of X and
then to use PCA in order to visualize the result.

Among those components of Y which can be linearly explained
with X (multivariate linear regression) take those components
which represent most of the variance.
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Redundancy Analysis (RDA)

Before applying RDA:

I Is Y increasing with increasing values of X?
I If the variables in X are twice as high, are the variables in Y

also approximately twice as high?

These questions are to check the assumption of linear
dependence.



Redundancy Analysis (RDA)

The graphical output of RDA consists of two biplots on top of
each other and is called triplot.
You produce a triplot with plot(rda.object) (which itself calls
plot.cca()).

There are three components in a triplot:
I Continuous explanatory variables (numeric values) are

represented by lines. Nominal explanatory variables (factor
object) (coded 0− 1) by squares (or triangles) (one for each
level). The square is plotted at the centroid of the
observations that have the value 1.

I The response variables by labels or lines.
I The observations by points or labels.
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Redundancy Analysis (RDA)

Correlation triplot
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Redundancy Analysis (RDA)

Distance triplot
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Redundancy Analysis (RDA)

Distance triplot (scaling=1)
I Distances between points (observations), between squares

or between points and squares approximate distances of
the observations (or the centroid of the nominal explanatory
variable).

I Angles between lines of response variables and lines of
explanatory variables represent a two-dimensional
approximation of correlations.

I Other angles between lines are meaningless.

I The projection of a point onto the line of a response variable
at right angle approximates the position of the
corresponding object along the corresponding variable.

I Squares/triangles cannot be compared with lines of
qualitatively explanatory variables.
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Redundancy Analysis (RDA)

Correlation triplot (scaling=2)
I The cosine of the angle between lines (of response variable

or of explanatory variable) is approximately equal to the
correlation between the corresponding variables.

I Distances are meaningless.
I The projection of a point onto a line (response variable or

explanatory variable) at right angle approximates the value
of the corresponding variable of this observation.

I The length of lines are not important.
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Correspondence Analysis (CA)

Contents
Anova

Linear Models

Generalized Linear Models

Mixed-effects models

Principal Component Analysis (PCA)

Redundancy Analysis (RDA)

Correspondence Analysis (CA)

Canonical Correspondence Analysis (CCA)

QTL Mapping



Correspondence Analysis (CA)

Correspondence analysis

Given: Data frame/matrix Y
Y [i , ·] are the observations of species i

Y [·, j ] are the observations at site j

Goal: Find associations of species and sites
Assumption: There is a niche dependence of the species on the

environmental variables

The setting is formulated here in terms of species and sites.
If you have measured quantities (variables) of some objects,
then replace ’species’ by ’object’ and ’site’ by ’variable’.
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Correspondence Analysis (CA)

Instead of frequencies we now consider probabilities

p[i , k ] := Y [i , k ]/n

and define a matrix Q with entries

Q[i , k ] :=
p[i , k ]− p[i , +] · p[+, k ]√

p[i , +]p[+, k ]

Now all further steps are just as in PCA with the
centred/normalized matrix Y replaced by the association matrix
Q. Again we get a distance biplot and a correlation biplot.

Correspondence analysis assesses
the association between species and sites

(or objects and variables)
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Correspondence Analysis (CA)

The position of a species represents the optimum value in terms
of the Gausian response model (niche) along the first and
second axes. For this reason, species scores are represented
as labels or points.

Site conditional biplot (scaling=1)
I The sites are the centroids of the species, that is, sites are

plotted close to the species which occur at those sites.
I Distances between sites are two-dimensional

approximations of their Chi-square distances. So sites close
to each other are similar in terms of the Chi-square
distance.
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Correspondence Analysis (CA)

Species conditional biplot (scaling=2)
I The species are the centroids of the sites, that is, species

are plotted close to the sites where they occur.
I Distances between species are two-dimensional

approximations of their Chi-square distances. So species
close to each other are similar in terms of the Chi-square
distance.



Correspondence Analysis (CA)

There is also a joint plot of species and site scores (scaling=3).
In this plot distances between sites and distances between
species can be interpreted as the approximations of the
respective Chi-square distances. However the relative positions
of sites and frequencies cannot be interpreted. So this biplot is
to be used with care if used at all.



Correspondence Analysis (CA)

Note:
I The total inertia (or total variance) in correspondence

analysis is defined as the Chi-square statistic of the
site-by-species table divided by the total number of
observations.

I Points further away from the origin in a biplot are the most
interesting as these points make a relatively high
contribution to the Chi-square statistic. So the further away
from the origin a site is plotted, the more different it is from
the average site.
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Canonical Correspondence Analysis (CCA)

Given: Data frames/matrices Y and X
Y [i , ·] are the observations of species i

Y [·, j ] are the observations at site j

X are the explanatory variables

Goal: Find associations of species abundancies and sites
with each environmental condition on a site being a
linear combination of the environmental variables of
X .

Assumption: There is a niche dependence of the species on
environmental factors
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Canonical Correspondence Analysis (CCA)

The species scores, the site scores and the environmental
scores are plotted in a figure called a triplot (confer with triplots
in RDA). These triplots are the biplots from CA with additionally
the explanatory variables plotted as lines.
Again the position of a species represents the optimum value in
terms of the Gausian response model (niche) along the first and
second axes. For this reason, species scores are represented
as labels or points.

In addition: Species can be projected perpendicular
(=orthogonally) on the lines showing the species optima of the
respective explanatory variables (in the respective scaling).
Projecting sites perpendicular on the lines results in the values
of the respective environmental variable at those sites.

The angle between lines does NOT represent correlation
between the variables. Instead if the tip of a line is projected on
another line or an axis then the resulting value represents a
weighted correlation.
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Canonical Correspondence Analysis (CCA)

When PCA, RDA, CA, CCA?

Summary of methods:
I Relationships in PCA and RDA are linear.
I In RDA and CCA two sets of variables are used, and a

cause-effect relationship is asssumed.

Pure ordination Cause-effect relation
Linear model PCA RDA

Unimodal model CA CCA
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QTL Mapping

I Candidate loci and interactions found by scanone and
scantwo can then be used in multiple QTL analysis.

I Then, p-values from multiple QTL analysis are not reliable
because not multiple-testing corrected. Massive
multiple-testing problem is caused by preselection by
scanone and scantwo.

I If two QTL are close to each other with only few marker loci
inbetween, scanone may falsely indicate strong evidence
for one QTL between the two.
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