# Multivariate Statistics in Ecology and Quantitative Genetics 10. Quantitative Traits Loci (QTL) Mapping 

Dirk Metzler \& Martin Hutzenthaler

http://evol.bio.lmu.de/_statgen

1. June 2010

## Contents

Introduction
Crossing Schemes
QTL model assumptions

Single-QTL analysis
LOD score
Interval mapping

More than one QTL
K.W. Broman, S. Sen (2009) A guide to QTL Mapping with R/qtl.
Springer, New York.

## Contents

Introduction
Crossing Schemes
QTL model assumptions

Single-QTL analysis
LOD score
Interval mapping

More than one QTL

## Contents

Introduction
Crossing Schemes

## QTL model assumptions

Single-QTL analysis
LOD score
Interval mapping

More than one QTL




## Contents

Introduction
Crossing Schemes
QTL model assumptions

Single-QTL analysis
LOD score
Interval mapping

More than one QTL

Assume that $p$ sites have an influence on the quantitative trait $y$ of interest and denote an individual's genotype at these sites by $g=\left(g_{1}, g_{2}, \ldots, g_{p}\right)$

$$
\begin{aligned}
\mu_{g} & :=\mathbb{E}(y \mid g) \\
\sigma_{g}^{2} & :=\operatorname{var}(y \mid g) \\
\text { we assume: } y \mid g & \sim \mathcal{N}\left(\mu_{g}, \sigma_{g}^{2}\right) \\
\text { additive model: } \mu_{g} & =\mu+\sum_{j=1}^{p} z_{j} \cdot \Delta_{j},
\end{aligned}
$$

whereas $z_{j}$ is 0 or 1 according to the genotype of $g_{j}$, and $\Delta_{j}$ is the effect of the QTL at position $j$.

In a strict sense, epistasis means that the effect of a mutation can be masked by a mutation at a different loci.

However, in the context of QTL mapping, the word epistasis if often used to express that there is a non-additive interaction between two loci.

In a strict sense, epistasis means that the effect of a mutation can be masked by a mutation at a different loci.

However, in the context of QTL mapping, the word epistasis if often used to express that there is a non-additive interaction between two loci.

Main problem: We do not know where the QTLs are. We only have genetic markers to determine for several sites whether the stem from A or B .

## Contents

## Introduction

## Crossing Schemes QTL model assumptions

Single-QTL analysis
LOD score
Interval mapping

## Contents

## Introduction

## Crossing Schemes <br> QTL model assumptions

Single-QTL analysis
LOD score
Interval mapping

More than one QTL

Assume a backcross experiment with $n$ F2 individuals Let $y=\left(y_{1}, \ldots, y_{n}\right)$ be their phenotypes for the trait of interest.

Null hypothesis $H_{0}$ : no QTL
Residual sum of squares under $H_{0}$ :

$$
\operatorname{RSS}_{0}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

Very simple alternative $H_{1}$ : single QTL at marker position $i$

$$
y_{i} \mid g_{i} \sim \mathcal{N}\left(\mu_{g_{i}}, \sigma^{2}\right)
$$

Likelihood function:

$$
\begin{aligned}
L_{1}\left(\mu_{A A}, \mu_{A B}, \sigma^{2}\right) & =\operatorname{Pr}\left(y \mid Q T L \text { marker }, \mu_{A A}, \mu_{A B}, \sigma^{2}\right) \\
& =\Pi_{i=1}^{n} \phi\left(y_{i} ; \mu_{g_{i}}, \sigma^{2}\right),
\end{aligned}
$$

whereas $\phi$ is the density of the normal distribution.

The maximal likelihood under $H_{1}$ is $\mathrm{RSS}_{1}^{-n / 2}$, with

$$
\mathrm{RSS}_{1}=\sum_{i=1}^{n}\left(y_{i}-\widehat{\mu_{g_{i}}}\right)^{2}
$$

The LOD score is the $\log _{10}$ of the likelihood ratio of $H_{1}$ and $H_{0}$ :

$$
\mathrm{LOD}=\frac{n}{2} \log _{10}\left(\frac{\mathrm{RSS}_{0}}{\mathrm{RSS}_{1}}\right)
$$

The LOD score is traditionally used in QTL mapping. However, it is equivalent to the classical anova $F$-statistic:

$$
\begin{aligned}
F & =\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) / \mathrm{df}}{\mathrm{RSS}_{1} /(n-\mathrm{df}-1)}=\left(10^{2 \cdot \mathrm{LOD} / n}-1\right) \cdot \frac{n-\mathrm{df}-1}{\mathrm{df}} \\
\mathrm{LOD} & =\frac{n}{2} \log _{10}\left(\frac{F \cdot \mathrm{df}}{n-\mathrm{df}+1}+1\right)
\end{aligned}
$$

So, if the marker positions are our our candidates for the QTLs we just perform anovas.

## Contents

## Introduction

## Crossing Schemes QTL model assumptions

Single-QTL analysis
LOD score
Interval mapping

More than one QTL

- The QTLs may be between the marker positions, and their genotypes can only be estimated from the markers.
- The QTLs may be between the marker positions, and their genotypes can only be estimated from the markers.
- Let $M_{i}$ be the multipoint marker genotype and $g_{i}$ be the QTL genotype of individual $i$, and

$$
p_{i j}:=\operatorname{Pr}\left(g_{i}=j \mid M_{i}\right) .
$$

(Computation uses recombination rates.)

- The QTLs may be between the marker positions, and their genotypes can only be estimated from the markers.
- Let $M_{i}$ be the multipoint marker genotype and $g_{i}$ be the QTL genotype of individual $i$, and

$$
p_{i j}:=\operatorname{Pr}\left(g_{i}=j \mid M_{i}\right) .
$$

(Computation uses recombination rates.)

- Probability density of an individual's phenotype is a mixture of normal distribution densities:

$$
\sum_{j} p_{i j} \cdot \phi\left(y_{i} ; \mu_{j}, \sigma^{2}\right)
$$

## EM algorithm for ML-estimation of $\mu_{j}$ and $\sigma$

 Start with initial estimates $\mu_{j}^{(0)}$ and $\sigma^{(0)}$ and iterate the following steps for $s=1, \ldots, N$ :
## E-step

$$
\begin{aligned}
w_{i j}^{(s)} & :=\operatorname{Pr}\left(g_{i}=j \mid M_{i}, y_{i}, \mu_{j}^{(s-1)}, \sigma^{(s-1)}\right) \\
& =\frac{p_{i j} \phi\left(y_{i} ; \mu_{j}^{(s-1)}, \sigma^{(s-1)}\right)}{\sum_{k} p_{i k} \phi\left(y_{i} ; \mu_{k}^{(s-1)}, \sigma^{(s-1)}\right)}
\end{aligned}
$$

M-step

$$
\begin{aligned}
\mu_{j}^{(s)} & :=\sum_{i} w_{i j}^{(s)} y_{i} / \sum_{i} w_{i j}^{(s)} \\
\sigma^{(s)} & :=\sqrt{\sum_{i j} w_{i j}^{(s)}\left(y_{i}-\mu_{j}^{(s)}\right)^{2} / n}
\end{aligned}
$$

The aim of the EM algorithm is that $\mu_{j}^{(s)}$ and $\sigma^{(s)}$ converge against the ML estimators $\widehat{\mu}$ and $\widehat{\sigma}$.

The aim of the EM algorithm is that $\mu_{j}^{(s)}$ and $\sigma^{(s)}$ converge against the ML estimators $\widehat{\mu}$ and $\widehat{\sigma}$.

Then, the LOD score can be computed:

$$
\mathrm{LOD}=\log _{10}\left(\frac{\Pi_{i} \sum_{j} p_{i j} \phi\left(y_{i} ; \widehat{\mu}_{j}, \widehat{\sigma}^{2}\right.}{\Pi_{i} \phi\left(y_{i} ; \widehat{\mu}_{0}, \widehat{\sigma}_{0}^{2}\right.}\right)
$$

Sometimes EM can be very slow. Haley-Knott (HK) regression is a fast approximation: For each point $i$ on the grid calculate $p_{i j}=\operatorname{Pr}\left(g_{i}=j \mid M_{i}\right)$ and estimate $\mu_{j}$ and $\sigma$ by fitting a linear model

$$
y_{i} \mid M_{i} \sim \mathcal{N}\left(\sum_{j} p_{i j} \mu_{j}, \sigma^{2}\right)
$$

Sometimes EM can be very slow.
Haley-Knott (HK) regression is a fast approximation: For each point $i$ on the grid calculate $p_{i j}=\operatorname{Pr}\left(g_{i}=j \mid M_{i}\right)$ and estimate $\mu_{j}$ and $\sigma$ by fitting a linear model

$$
y_{i} \mid M_{i} \sim \mathcal{N}\left(\sum_{j} p_{i j} \mu_{j}, \sigma^{2}\right)
$$

Extended Haley-Knott (EHK) regression: Takes into account that $p_{i j}$ and $\mu_{j}$ have an influence on the variance:

$$
y_{i} \mid M_{i} \sim \mathcal{N}\left(\sum_{j} p_{i j} \mu_{j}, \sum_{j} p_{i j} \mu_{j}^{2}-\left(\sum_{j} p_{i j} \mu_{j}\right)^{2}+\sigma^{2}\right)
$$

## Which LOD scores are significant?

## Which LOD scores are significant?

Assess this by a permutation test: shuffle the phenotype column.

## Contents

## Introduction

# Crossing Schemes <br> QTL model assumptions 

Single-QTL analysis
LOD score
Interval mapping

More than one QTL

Composite Interval Mapping While searching for a QTL in one interval use other markers as proxies for nearby QTLs. Thus, markers are used as covariates. Specify maximal number of covariates and how far they should be away from the interval under examination.
two-QTL models search for interacting pairs of QTLs. Same methods like in 1-QTL model: EM, HK, EHK
multiple QTLs When candidate loci are found, fit regression models allowing for interactions and do variable selection.

