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Example: 2-dim data in 3 dimensions
(Imagine the cloud to be rotated in 3 dimensions)
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Example: 2-dim data in 3 dimensions
(Imagine the cloud to be rotated in 3 dimensions)
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Example: 2-dim data in 3 dimensions
(Imagine the cloud to be rotated in 3 dimensions)
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Principal component analysis Motivation

Example: 2-dim data in 3 dimensions
(Imagine the cloud to be rotated in 3 dimensions)
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Principal component analysis Motivation

To have a good view on the data,
we wish to plot those components

which contribute most of the variation.

The component with the most variation
is rotated onto the x-axis,

the component with the second most variation
is rotated onto the y-axis.
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Principal component analysis Motivation

Example: 2-dim data
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Example: 2-dim data
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Principal component analysis Motivation

The principal component analysis finds
the components with the most contribution

to the total variance.

Before we investigate
how to obtain the optimal transformation,

we need to understand
how to rotate a data cloud.
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Principal component analysis Background on rotation matrices

Rotation by angle α.
(1,0)→ (cos(α), sin(α))

0 1

0
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αα
sin((αα))
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(0,1)→ (− sin(α), cos(α))
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Principal component analysis Background on rotation matrices

Rotation by angle α of a vector (x , y):

(x , y)→ (x , y) ·
(

cos(α) sin(α)
− sin(α) cos(α)

)



Principal component analysis Background on rotation matrices

Every rotation matrix R has the property RT · R = 1.
Example(

cos(α) − sin(α)
sin(α) cos(α)

)
·
(

cos(α) sin(α)
− sin(α) cos(α)

)
=

(
sin2(α) + cos2(α) 0

0 sin2(α) + cos2(α)

)
=

(
1 0
0 1

)

From now on we consider matrices U with the property

UT · U = 1

These matrices are called orthogonal (also called orthonormal)
and preserve distances. Such transformations are mixtures of
rotations and reflections.
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Principal component analysis Background on rotation matrices

A didactic Example

Before we go into applications,
we wish to see what the PCA does.

We simulate a data cloud from a
multi-variate normal distribution with covariance matrix(

5 0
0 1

)
that is, the two components are independent

and normally distributed with variances 5 and 1, respectively.

We rotate the cloud by −60◦

and apply the R-command prcomp().
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Principal component analysis Background on rotation matrices

> library("mvtnorm")

> z <- rmvnorm(1000,sigma=matrix(c(5,0,0,1),nrow=2))

> RotMat <- matrix(c(cos(pi/3),sin(pi/3),

+ -sin(pi/3),cos(pi/3)),nrow=2)

> x <- z %*% RotMat

> plot(z,xlim=c(-7,7),ylim=c(-7,7))

> points(x,col="red")

> abline(b=tan(-pi/3),a=0)

> pca <- prcomp(x)

> points(pca$x,col="yellow")



Principal component analysis Background on rotation matrices
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Principal component analysis Background on rotation matrices

Further observations:

> names(pca)

[1] "sdev" "rotation" "center" "scale" "x"

> pca

Standard deviations:

[1] 2.232067 1.008979

Rotation:

PC1 PC2

[1,] 0.5027292 0.8644439

[2,] -0.8644439 0.5027292

> ( pca$sdev )^2

[1] 4.982122 1.018038



Principal component analysis Background on rotation matrices

> RotMat %*% pca$rotation

PC1 PC2

[1,] 0.999995025 -0.003154303

[2,] 0.003154303 0.999995025

> t( pca$rotation ) %*% pca$rotation

PC1 PC2

PC1 1 0

PC2 0 1

> cov(z)

[,1] [,2]

[1,] 4.98180617 0.01204928

[2,] 0.01204928 1.01732926

> t( pca$rotation ) %*% cov(x) %*% pca$rotation

PC1 PC2

PC1 4.9818427419 -0.0004560566

PC2 -0.0004560566 1.0172926950



Principal component analysis Background on rotation matrices

The vector pca$sdev is approx. (
√

5,
√

1)
The matrix pca$rotation is the transformation matrix
The matrix pca$x is the transformed data



Principal component analysis Example: Weight and height
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Principal component analysis Example: Weight and height

Obviously the height (in cm) and the shoe size of human beings
are correlated variables. We also consider the weight (in kg).
The following data is from a test questionnaire from a statistics
course in 1999/2000 in Göttingen.

Problem:
How can we compare variation in height (cm)

with variation in weight (kg)?

Answer: (Co-)variances should be measured
in units of the standard deviation.

This leads to considering
correlation matrices instead of covariance matrices.

In R simply use the option scale=TRUE.
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Principal component analysis Example: Weight and height

shsw <-read.table("HeightShoeWeight.txt",header=TRUE)

attach(shsw)

head(shsw)

hsw <- shsw[,2:4]

head(hsw)

hsw.pca <- prcomp(hsw,scale=TRUE)

hsw.pca

fm.col <- character()

fm.col[sex==0] <- "blue"

fm.col[sex==1] <- "red"

sqrt( length(sex)-1 ) # = 15



Principal component analysis Example: Weight and height

Let us plot the transformed data.

plot(hsw.pca$x,ylim=c(-3,6))
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There is nothing special to see.



Principal component analysis Example: Weight and height

Which observation is from which sex:

plot(hsw.pca$x,ylim=c(-3,6),col=fm.col)
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Why are guys on the right and girls on the left?



Principal component analysis Example: Weight and height

biplot(hsw.pca,scale=0)
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Principal component analysis Example: Weight and height

biplot(hsw.pca,scale=1)
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Principal component analysis Example: Weight and height

biplot(hsw.pca,scale=1,xlabs=sex)
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Principal component analysis Example: Weight and height

The first component can be interpreted as size.
As guys are on average taller than girls, this explains

why guys are on the right and girls on the left.

The second component is

”weight which is not explained
by the first component ’size’ “.
Thus students with overweight

are on top of the last figure
whereas students with underweight
are on the bottom of the last figure.
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Principal component analysis Example: Countries

The file Countries.txt contains data from
Kockluner: Angewandte Regessionsanalyse mit SPSS, Vieweg
1988, S. 7:

Variables:
ERN: nutrition index (Ernährungsindex)
BSP: gross national product per person

(Bruttosozialprodukt pro Kopf)
LWS: agriculture index (Landwirtschaftsindex)
LS2: cost of living index (Lebenshaltungsindex 2)
BEV: index of inhabitants (Bevölkerungsindex)



Principal component analysis Example: Countries

countries <- read.table("Countries.txt",header=TRUE)

cntr.pca <- prcomp(countries,scale=TRUE); cntr.pca

plot(cntr.pca$x)

biplot(cntr.pca,scale=0)
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Principal component analysis Example: Countries

biplot(cntr.pca,scale=1)
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Principal component analysis Background: PCA

The mathematical background is explained on the board.
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Principal component analysis Biplots

Reading biplots

Distance biplot (scale=0)
Angles between lines are meaningless.
The lines are projections of length 1 vectors into the plane
of the first two principal components. So the length
indicates how well the corresponding variable is
represented by the first two components.
Distances between points/labels approximate distances of
the observations for different objects.
The projection of a point onto a vector at right angle
approximates the position of the corresponding object along
the corresponding variable.



Principal component analysis Biplots

Correlation biplot (scale=1)
The cosine of the angle between two lines is approximately
equal to the correlation between the corresponding
variables.
If the PCA used scale=FALSE, then the length of a line is
approximately

√
N − 1 times the estimated standard

deviation of the corresponding variable. If the PCA used
scale=TRUE, then the lines are projections of length

√
N − 1

vectors into the plane of the first two principal components.
So the length indicates how well the corresponding variable
is represented by the first two components.
Distances between points/labels are meaningless.
The projection of a point onto a vector at right angle
approximates the position of the corresponding object along
the corresponding variable.



Principal component analysis Biplots

Due to the projection, the approximation of quantities such as
distance between points or correlation between variables can be
poor.

The approximations are reasonably good of the first two
principal components explain 70%− 80% of the total variation
(or even more).

In applications the first two components typically explain far less
then 70% of the total variation. PCA is still used as there is not
better method. But be careful and think twice.
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Principal component analysis How many components?

One problem with PCA is to decide how many components to
present, and there are various rules of thumb.

80%-rule: Present the first k axes that explain 80% of the
total variation.

ellbow-rule: Plot the eigenvalues as vertical lines or bars
next to each other. Use k axes if the ’elbow’ is at k + 1.
broken-stick-rule: If a stick of unit length is broken at
random in p pieces, then the expected length of piece
number j is given by

Lj =
1
p

p∑
i=j

1
i

(1)

If the eigenvalue of the j-th axis is larger than Lj , then it can
be considered as important.

The broken-stick-model is the most reliable rule of thumb.
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Principal component analysis How many components?

Example: Height and weight data.

> gsg.pca$sdev^2/sum( (gsg.pca$sdev)^2 )

[1] 0.86984879 0.08035589 0.04979531

> cumsum( gsg.pca$sdev^2/sum( (gsg.pca$sdev)^2 ) )

[1] 0.8698488 0.9502047 1.0000000

> screeplot( gsg.pca, type="lines")

80%-rule: one component is enough
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Principal component analysis How many components?

> gsg.pca$sdev^2/sum( (gsg.pca$sdev)^2 )

[1] 0.86984879 0.08035589 0.04979531

> p<-length(gsg.pca$sdev)

> L<-matrix(ncol=p)

> for (i in 1:p) {

+ L[i]<-round(1/p*sum(1/seq(from=i, to=p)),2)

+ }

> L

[,1] [,2] [,3]

[1,] 0.61 0.28 0.11

broken-stick-rule: one component is enough
(0.87 >= 0.61, 0.08 < 0.28, 0.05 < 0.11)
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Principal component analysis Example: European currency union

The file ’EWU.txt’ contains data of European countries. (From
Rinne (2000,p21.)). Let’s find out.

ewu <- read.table("EWU.txt",header=TRUE)

ewu1 <- ewu[,2:5]

ewu.pca <- prcomp(ewu1)

biplot(ewu.pca,scale=0,xlabs=ewu$Staat)

biplot(ewu.pca,scale=1,xlabs=ewu$Staat)



Principal component analysis Example: European currency union

Distance biplot (scale=0):
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Principal component analysis Example: European currency union

Correlation biplot (scale=1):
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Principal component analysis Example: European currency union

The variables X1 and X2 are highly positively correlated.
The variables X3 and X4 are highly positively correlated.

Thus the data depends only on two variables
namely on X1(X2) and on X3(X4).

So what are X1, X2, X3 and X4?
X1 is the inflation rate 1997 in %

X2 is the long term interest rate 1997 in %

X3 is the new indebtedness 1997 in % of the GDP
X4 is the public debt level 1997 in % of the GDP

The fitness of candidates for the European currency union has
been measured with these four variables.
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Principal component analysis Correlation versus covariance

In many cases the different variables are on different scales.
Then you are recommended to scale the variables with their
standard deviations, that is, to use the correlation matrix rather
than the covariance matrix.
Otherwise the first principal component might be dominated by
the variable with the largest scale.

For you this means to use the argument scale=TRUE in the
prcomp() command.

If the values of the variables are of comparable order, then it is
also fine to not scale the variables, that is, to apply PCA to the
covariance matrix.
In R this means to use the argument scale=FALSE.
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Principal component analysis Summary

Summary

Principal component analysis is a transformation
(rotation and reflection) of the data such that
most of the variation is on the first axis,
the second most variation is on the second axis...

Used for:
Visualizing multi-variate data (we have no better method)
Get a feeling on the dependencies
Find clusters in the variables
(e.g. {X1,X2} and {X3,X4} in the EWU data set)
Find clusters in the set of objects/individuals
(e.g. girls and guys in the height and weight data)
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Principal component analysis Summary

Be aware:
Principal components can often not be interpreted
2 ∗ shoe + 3 ∗ height is a measure for size
But how shall we interpret 2 ∗ shoe− height?

If first two principal components explain less than 70%, then
consider forgetting PCA
Biplots are easily misread. Be careful!
It’s spelled ’principal’ (main, Haupt-),
not ’principle’ (Prinzip, Grundsatz)
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