Multivariate Statistics in Ecology and Quantitative Genetics 5. Mixed-effects models

Dirk Metzler \& Martin Hutzenthaler

http://evol.bio.lmu.de/_statgen

31. May 2010

Contents

The random effect of the beach

How to select a mixed-effects model

Split-plot experiment: Back to the oats.

Generalized linear mixed-effects models

Contents

The random effect of the beach

How to select a mixed-effects model

Split-plot experiment: Back to the oats.

Generalized linear mixed-effects models

We revisit the RIKZ dataset.

We revisit the RIKZ dataset.
Species abundance and many other covariates were measured at 9 beaches.

We revisit the RIKZ dataset.
Species abundance and many other covariates were measured at 9 beaches.

On every beach, 5 plots were sampled in the intertidal range.

We revisit the RIKZ dataset.
Species abundance and many other covariates were measured at 9 beaches.

On every beach, 5 plots were sampled in the intertidal range.
Each plot was sampled only once. Thus, each line in the data table corresponds to one plot.

```
> rikz <- read.csv("RIKZ_Tab4.csv")
> rikz$Beach <- factor(rikz$Beach)
> rikz$Week <- factor(rikz$Week)
> str(rikz)
'data.frame': 45 obs. of 15 variables:
    $ ShannonW : num 0.76 0.72 0.85 0.53 0.74 0.13 0.4 0.29 1.02
    $ Richness : int 11 10 13 11 10 8 9 8 19 17 ...
$ angle1 : int 32 62 65 55 23 129 126 52 26 143 ...
$ angle2 : int 96 96 96 96 96 89 89 89 89 89 ...
$ exposure : int 10 10 10 10 10 8 8 8 8 8 ...
$ salinity : num 29.4 29.4 29.4 29.4 29.4 29.6 29.6 29.6 29.6
$ temperature : num 17.5 17.5 17.5 17.5 17.5 20.8 20.8 20.8 20.8
$ NAP : num 0.045 -1.036 -1.336 0.616 -0.684 ...
$ penetrability: num 254 227 237 249 252 ...
$ grainsize : num 222 200 194 221 202 ...
$ humus : num 0.05 0.3 0.1 0.15 0.05 0.1 0.1 0.1 0.15 0 ..
$ chalk : num 2.05 2.5 3.45 1.6 2.45 2.5 1.85 1.7 2.3 2.6
$ sorting1 : num 69.8 59 59.2 67.8 57.8 ...
$ Beach
$ Week : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1
: Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1
```

Today we use the following covariates:
ShannonW A biodiversity index based on the Shannon entropy.
Richness The number of species.
Beach Which beach.
NAP The altitude of the plot compared to the average sea level.
exposure An index composed of wave action, length of the surf zone, slope, grain size, depth of the anaerobic layer.
salinity Salt contents.
humus Fraction of organic material.

Today we use the following covariates:
ShannonW A biodiversity index based on the Shannon entropy.
Richness The number of species.
Beach Which beach.
NAP The altitude of the plot compared to the average sea level.
exposure An index composed of wave action, length of the surf zone, slope, grain size, depth of the anaerobic layer.
salinity Salt contents.
humus Fraction of organic material.
In an earlier analysis, NAP turned out to have an impact on species richness. Does ShannonW also depend on NAP?
> mod1 <- lm(ShannonW~NAP,data=rikz)
> summary (mod1)
[..]
Coefficients:

| | Estimate | Std. Error t value $\operatorname{Pr}(>\|t\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 0.47141 | 0.03627 | 12.996 | $<2 \mathrm{e}-16 * * *$ |
| NAP | -0.22583 | 0.03478 | -6.493 | $7.01 \mathrm{e}-08 * * *$ |

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. 0.11

Residual standard error: 0.2294 on 43 degrees of freedom Multiple R-squared: 0.4951, Adjusted R-squared: 0.4833
F-statistic: 42.16 on 1 and 43 DF, p-value: 7.01e-08
> mod1 <- lm(ShannonW~NAP,data=rikz)
> summary (mod1)
[. .]
Coefficients:

| | Estimate | Std. Error t value $\operatorname{Pr}(>\|t\|)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 0.47141 | 0.03627 | 12.996 | $<2 \mathrm{e}-16 * * *$ |
| NAP | -0.22583 | 0.03478 | -6.493 | $7.01 \mathrm{e}-08 * * *$ |

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. 0.11

Residual standard error: 0.2294 on 43 degrees of freedom Multiple R-squared: 0.4951, Adjusted R-squared: 0.4833
F-statistic: 42.16 on 1 and 43 DF, p-value: 7.01e-08

Can we really pool the data from the different beaches?

```
> library(lattice)
> dotplot(residuals(mod1)~rikz$Beach,jitter.x=TRUE,pch=1)
```


> xyplot(ShannonW~NAP|Beach,data=rikz)

> mod2 <- lm (ShannonW ${ }^{\sim}$ NAP+Beach, data=rikz)
$>$ summary (mod2)
[..]

		. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	0.620395	0.086771	7.150	$2.45 \mathrm{e}-08$	*
NAP	-0.207945	0.031366	-6.630	$1.15 \mathrm{e}-07$	***
Beach2	0.004665	0.123148	0.038	0.96999	
Beach3	-0.328311	0.121791	-2.696	0.01072	*
Beach4	-0.345859	0.125102	-2.765	0.00903	**
Beach5	0.025370	0.125550	0.202	0.84103	
Beach6	-0.185777	0.122910	-1.511	0.13964	
Beach7	-0.363441	0.128055	-2.838	0.00750	**
Beach8	-0.125882	0.124720	-1.009	0.31975	
Beach9	-0.077617	0.125268	-0.620	0.53953	

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. 0.11

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	0.663388	0.097592	6.798	$2.67 \mathrm{e}-07$	***
NAP	-0.118188	0.113333	-1.043	0.30627	
Beach2	0.002042	0.129370	0.016	0.98752	
Beach3	-0.371311	0.126891	-2.926	0.00688	**
Beach4	-0.413504	0.135632	-3.049	0.00510	**
Beach5	0.130807	0.142539	0.918	0.36691	
Beach6	-0.245660	0.127976	-1.920	0.06554	
Beach7	-0.528549	0.165405	-3.195	0.00354	**
Beach8	-0.188925	0.131537	-1.436	0.16241	
Beach9	-0.086618	0.136291	-0.636	0.53043	
NAP : Beach2	-0.236876	0.145877	-1.624	0.11604	
NAP: Beach3	-0.075049	0.149266	-0.503	0.61919	
NAP: Beach4	-0.044999	0.142857	-0.315	0.75519	
NAP: Beach5	-0.335176	0.156110	-2.147	0.04093	*
NAP : Beach6	-0.017519	0.133795	-0.131	0.89679	
NAP : Beach7	0.050573	0.166465	0.304	0.76361	
NAP: Beach8	-0.049864	0.132654	-0.376	0.70993	


```
> anova(mod1,mod2,mod3)
[..]
Model 1: ShannonW ~ NAP
Model 2: ShannonW ~ NAP + Beach
Model 3: ShannonW ~ NAP * Beach
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 43 2.26293
2 35 1.27812 8 0.98481 3.7433 0.00458 **
3 27 0.88792 8 0.39020 1.4831 0.20951
[..]
> AIC(mod1,mod2,mod3)
    df AIC
mod1 3 -0.8457103
mod2 11 -10.5528837
mod3 19 -10.9445763
```

- Model 2 (where beaches have an additive effect) is significantly better than model 1, and model 3 is not significantly better than model 2.
- Model 2 (where beaches have an additive effect) is significantly better than model 1 , and model 3 is not significantly better than model 2.
- AIC favours (takes the lowest value for) model 3.
- Model 2 (where beaches have an additive effect) is significantly better than model 1 , and model 3 is not significantly better than model 2.
- AIC favours (takes the lowest value for) model 3.
- How can AIC be negative?
- Model 2 (where beaches have an additive effect) is significantly better than model 1 , and model 3 is not significantly better than model 2.
- AIC favours (takes the lowest value for) model 3.
- How can AIC be negative? It is still defined as $-2 \cdot \log (L)+2 \cdot d$, whereas d is the number of parameters and L is the likelihood of the ML parameter estimate in the model. Since the response variable ShannonW has a continuos distribution (assumed to be normal), the likelihood is the probability density of the data given the parameter values. Densities can be larger than 1. If $L>1$, then $\log (L)>0$ and AIC can be negative.
- We are not interested in the precise effect of each beach
- We are not interested in the precise effect of each beach
- We do not want to estimate 8 extra paramters for the beaches
- We are not interested in the precise effect of each beach
- We do not want to estimate 8 extra paramters for the beaches
- Is there another way to take the difference between the beaches into account?
- We are not interested in the precise effect of each beach
- We do not want to estimate 8 extra paramters for the beaches
- Is there another way to take the difference between the beaches into account?
- Assume that the effect α_{k} of beach k is random. Do not estimate all α_{k} but only their standard deviation σ_{α}.

Mixed-effects model

Let S_{i} and N_{i} be the ShannonW and the NAP observed at plot i, which is on beach k.

$$
S_{i}=a+b \cdot N_{i}+\alpha_{k}+\varepsilon_{i}
$$

Mixed-effects model

Let S_{i} and N_{i} be the ShannonW and the NAP observed at plot i, which is on beach k.

$$
S_{i}=a+b \cdot N_{i}+\alpha_{k}+\varepsilon_{i}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{45}$ are independently $\mathcal{N}\left(0, \sigma^{2}\right)$-distributed.

Mixed-effects model

Let S_{i} and N_{i} be the ShannonW and the NAP observed at plot i, which is on beach k.

$$
S_{i}=a+b \cdot N_{i}+\alpha_{k}+\varepsilon_{i}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{45}$ are independently $\mathcal{N}\left(0, \sigma^{2}\right)$-distributed. $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{9}$ are independently $\mathcal{N}\left(0, \sigma_{\alpha}^{2}\right)$-distributed.

Mixed-effects model

Let S_{i} and N_{i} be the ShannonW and the NAP observed at plot i, which is on beach k.

$$
S_{i}=a+b \cdot N_{i}+\alpha_{k}+\varepsilon_{i}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{45}$ are independently $\mathcal{N}\left(0, \sigma^{2}\right)$-distributed. $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{9}$ are independently $\mathcal{N}\left(0, \sigma_{\alpha}^{2}\right)$-distributed. Mixed-effects: a and b are deterministic, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{9}$ are random.

Mixed-effects model

Let S_{i} and N_{i} be the ShannonW and the NAP observed at plot i, which is on beach k.

$$
S_{i}=a+b \cdot N_{i}+\alpha_{k}+\varepsilon_{i}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{45}$ are independently $\mathcal{N}\left(0, \sigma^{2}\right)$-distributed. $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{9}$ are independently $\mathcal{N}\left(0, \sigma_{\alpha}^{2}\right)$-distributed. Mixed-effects: a and b are deterministic, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{9}$ are random.

To be estimated: $a, b, \sigma_{\alpha}, \sigma$.

```
> library(lme4)
> mmodO <- lmer(ShannonW~1+NAP+(1|Beach),
    data=rikz,verbose=TRUE)
    0: -3.0154190: 0.730297
    1: -3.0321775: 0.694973
    2: -3.0321844: 0.694215
    3: -3.0321844: 0.694257
    4: -3.0321844: 0.694257
```

```
> library(lme4)
> mmod0 <- lmer(ShannonW~1+NAP+(1|Beach),
+ data=rikz,verbose=TRUE)
    0: -3.0154190: 0.730297
    1: -3.0321775: 0.694973
    2: -3.0321844: 0.694215
    3: -3.0321844: 0.694257
    4: -3.0321844: 0.694257
```

It may be necessary to first install the Ime4 package:
> install.packages("lme4")
This will only work if the R version installed is not too old.

```
> summary(mmod0)
Linear mixed model fit by REML
Formula: ShannonW ~ 1 + NAP + (1 | Beach)
    Data: rikz
    AIC BIC logLik deviance REMLdev
    4.968 12.19 1.516 -12.27 -3.032
Random effects:
    Groups Name Variance Std.Dev.
    Beach (Intercept) 0.017595 0.13264
    Residual 0.036504 0.19106
Number of obs: 45, groups: Beach, 9
Fixed effects:
    Estimate Std. Error t value
(Intercept) 0.46722 0.05366 8.707
NAP -0.21380 0.03060 -6.987
Correlation of Fixed Effects:
    (Intr)
NAP -0.198
```

```
> summary(mmod0)
Linear mixed model fit by REML
Formula: ShannonW ~ 1 + NAP + (1 | Beach)
What is REML?
    Data: rikz
    AIC BIC logLik deviance REMLdev
    4.968 12.19 1.516 -12.27 -3.032
Random effects:
Groups Name Variance Std.Dev.
    Beach (Intercept) 0.017595 0.13264
    Residual 0.036504 0.19106
Number of obs: 45, groups: Beach, 9
Fixed effects:
    Estimate Std. Error t value
(Intercept) 0.46722 0.05366 8.707
NAP -0.21380 0.03060 -6.987
Correlation of Fixed Effects:
    (Intr)
NAP -0.198
```

```
> summary(mmod0)
Linear mixed model fit by REML
Formula: ShannonW ~ 1 + NAP + (1 | Beach)
What is REML?
    Data: rikz
    AIC BIC logLik deviance REMLdev
    4.968 12.19 1.516 -12.27 -3.032
Random effects:
    Groups Name Variance Std.Dev.
    Beach (Intercept) 0.017595 0.13264
    Residual 0.036504 0.19106
Number of obs: 45, groups: Beach, }
Fixed effects:
    Estimate Std. Error t value
(Intercept) 0.46722 0.05366 8.707
NAP -0.21380 0.03060 -6.987
Correlation of Fixed Effects:
    (Intr)
NAP -0.198
```

Why are there t-values but no p-values?

REML vs. ML

- ML (Maximum Likelihood): estimate all parameters (here a, $\left.b, \sigma_{\alpha}, \sigma\right)$ by maximizing their joint likelihood.

REML vs. ML

- ML (Maximum Likelihood): estimate all parameters (here a, $\left.b, \sigma_{\alpha}, \sigma\right)$ by maximizing their joint likelihood.
- REML (Restricted Maximum Likelihood): first estimate variance parameters (here σ_{α}, σ) from the components of the response space that are orthogonal on components that can be explained by fixed effects. Using these estimates, the coefficients of the fixed effects (here a and b) are estimated with ML.

REML vs. ML

- ML (Maximum Likelihood): estimate all parameters (here a, $\left.b, \sigma_{\alpha}, \sigma\right)$ by maximizing their joint likelihood.
- REML (Restricted Maximum Likelihood): first estimate variance parameters (here σ_{α}, σ) from the components of the response space that are orthogonal on components that can be explained by fixed effects. Using these estimates, the coefficients of the fixed effects (here a and b) are estimated with ML.
- Comparable to estimation of σ^{2} from sample X_{1}, \ldots, X_{n} by $\frac{1}{n-1} \sum_{i}\left(\mu_{X}-X_{i}\right)^{2}$ instead of the biased ML estimator $\frac{1}{n} \sum_{i}\left(\mu_{X}-X_{i}\right)^{2}$

REML vs. ML

- ML (Maximum Likelihood): estimate all parameters (here a, $\left.b, \sigma_{\alpha}, \sigma\right)$ by maximizing their joint likelihood.
- REML (Restricted Maximum Likelihood): first estimate variance parameters (here σ_{α}, σ) from the components of the response space that are orthogonal on components that can be explained by fixed effects. Using these estimates, the coefficients of the fixed effects (here a and b) are estimated with ML.
- Comparable to estimation of σ^{2} from sample X_{1}, \ldots, X_{n} by $\frac{1}{n-1} \sum_{i}\left(\mu_{X}-X_{i}\right)^{2}$ instead of the biased ML estimator $\frac{1}{n} \sum_{i}\left(\mu_{X}-X_{i}\right)^{2}$
- Also for fitting parameters of mixed-effects models, ML estimation is biased and REML is usually preferred.

REML vs. ML

- ML (Maximum Likelihood): estimate all parameters (here a, $\left.b, \sigma_{\alpha}, \sigma\right)$ by maximizing their joint likelihood.
- REML (Restricted Maximum Likelihood): first estimate variance parameters (here σ_{α}, σ) from the components of the response space that are orthogonal on components that can be explained by fixed effects. Using these estimates, the coefficients of the fixed effects (here a and b) are estimated with ML.
- Comparable to estimation of σ^{2} from sample X_{1}, \ldots, X_{n} by $\frac{1}{n-1} \sum_{i}\left(\mu_{X}-X_{i}\right)^{2}$ instead of the biased ML estimator $\frac{1}{n} \sum_{i}\left(\mu_{X}-X_{i}\right)^{2}$
- Also for fitting parameters of mixed-effects models, ML estimation is biased and REML is usually preferred.
- ML estimation should be used when a likelihood ratio test shall be applied to models with different fixed effects and the same random effects.

Why no p-values for the t-values?

- The t-values computed like in the usual linear model, but in the case of mixed-effects models they are in general not t-distributed (under the null hypothesis). Thus, it is not clear how to get p-values from the t-values.

Why no p-values for the t-values?

- The t-values computed like in the usual linear model, but in the case of mixed-effects models they are in general not t-distributed (under the null hypothesis). Thus, it is not clear how to get p-values from the t-values.
- Some other programs give p-values which can be very imprecise.

Why no p-values for the t-values?

- The t-values computed like in the usual linear model, but in the case of mixed-effects models they are in general not t-distributed (under the null hypothesis). Thus, it is not clear how to get p-values from the t-values.
- Some other programs give p-values which can be very imprecise.
- Exception: small balanced datasets. Here, t-values are approximately t-distributed and $|t|>2$ usually indicates significance on the 5% level.

One possibility to visualize the estimations for the parameter and to assess their significance is based on sampling parameter values from their posterior distribution by an MCMC method.

One possibility to visualize the estimations for the parameter and to assess their significance is based on sampling parameter values from their posterior distribution by an MCMC method.

In contrast to most other methods discussed in this lecture, this is a Bayesian approach and thus needs prior distributions for the parameter values (or at least pseudo priors).
$>\operatorname{samp}<-\operatorname{mcmcsamp}(\operatorname{mmod} 0,1000)$
> densityplot(samp)

> sampdf <- data.frame(t(samp@fixef),

+ sigma=t(samp@sigma),sig.beach=t(samp@ST))
> plot(sampdf)

Future versions of Ime4 will offer more comfortable possibilities to visualize results. The following two plots were generated with Ime4a, an alpha version of Ime4.

Future versions of Ime4 will offer more comfortable possibilities to visualize results. The following two plots were generated with Ime4a, an alpha version of Ime4.

The profiles in the first plots are likelihood ratios.

Future versions of Ime4 will offer more comfortable possibilities to visualize results. The following two plots were generated with Ime4a, an alpha version of Ime4.

The profiles in the first plots are likelihood ratios.
Vertical lines indicate 50\%, 80\%, 90\%, 95\%, and 99\% confidence intervals.
> pro <- profile(mmod0)
> xyplot(pr0)

Display confidence intervals (per default 95\%).
> confint(pr0)

	2.5%	97.5%
.sig01	0.0415353	0.2420610
.lsig	-1.8831563	-1.4178656
(Intercept)	0.3568131	0.5765609
NAP	-0.2757402	-0.1540307

Display confidence intervals (per default 95\%).
> confint(pr0)

	2.5%	97.5%
.sig01	0.0415353	0.2420610
.lsig	-1.8831563	-1.4178656
(Intercept)	0.3568131	0.5765609
NAP	-0.2757402	-0.1540307

The next plot shows pairwise confidence ranges (again 50\%, 80%, 90%, 95%, and 99%).

Display confidence intervals (per default 95\%).
> confint(pr0)

	2.5%	97.5%
. sig01	0.0415353	0.2420610
.lsig	-1.8831563	-1.4178656
(Intercept)	0.3568131	0.5765609
NAP	-0.2757402	-0.1540307

The next plot shows pairwise confidence ranges (again 50\%, $80 \%, 90 \%, 95 \%$, and 99%).

Panels above the diagonal are in the original scale of the parameters, panels below the diagonal are on the $\sqrt{\text { likelihoodratio }}$ scale.

> splom(pr0)

Streudiagramm-Matrix

Back to what is possible with the current version of Ime4.
The next two plots visualize estimates for the random effects of the beaches.

> dotplot(ranef(B1,postVar=TRUE))

> qqmath (ranef(B1,postVar=TRUE))

Contents

The random effect of the beach

How to select a mixed-effects model

Split-plot experiment: Back to the oats.

Generalized linear mixed-effects models

General considerations

- What is the purpose of the model?

1. Making predictions as precise as possible
2. or to understand what the most influential paramters are?

General considerations

- What is the purpose of the model?

1. Making predictions as precise as possible
2. or to understand what the most influential paramters are?

- In the first case AIC may be appropriate.

General considerations

- What is the purpose of the model?

1. Making predictions as precise as possible
2. or to understand what the most influential paramters are?

- In the first case AIC may be appropriate.
- In the second case it may be better to use likelihood-ratio tests and remove all parameters which do not significantly improve the fit.

General considerations

- What is the purpose of the model?

1. Making predictions as precise as possible
2. or to understand what the most influential paramters are?

- In the first case AIC may be appropriate.
- In the second case it may be better to use likelihood-ratio tests and remove all parameters which do not significantly improve the fit.
- Variable selection should not only depend on statistics but also on the relevance of the parameter for the biological question.

We begin with a comparison of two nested models with the same random parameters

We begin with a comparison of two nested models with the same random parameters

```
> B0 <- lmer(ShannonW 1+exposure*NAP+(1|Beach),
    data=rikz,verbose=TRUE)
    0: -3.1079878: 0.730297
    1: -3.9300741: 0.431067
    2: -3.9406377: 0.471682
    3: -3.9424344: 0.460627
    4: -3.9424352: 0.460386
    5: -3.9424352: 0.460388
```

```
> summary(B0)
```

Linear mixed model fit by REML
Formula: ShannonW ~ 1 + exposure * NAP + (1 | Beach)
Data: rikz
AIC BIC logLik deviance REMLdev
$8.05818 .90 \quad 1.971 \quad-23.54 \quad-3.942$
Random effects:

Groups	Name	Variance	Std.Dev.
Beach	(Intercept)	0.0069857	0.08358
Residual		0.0329581	0.18154

Number of obs: 45, groups: Beach, 9

Fixed effects:
Estimate Std. Error t value

(Intercept)	1.92603	0.44765	4.303
exposure	-0.14294	0.04368	-3.272

[..]

```
> summary(B0)
[..]
Fixed effects:
Estimate Std. Error t value
\begin{tabular}{lrrr} 
(Intercept) & 1.92603 & 0.44765 & 4.303 \\
exposure & -0.14294 & 0.04368 & -3.272 \\
NAP & -0.89673 & 0.33620 & -2.667 \\
exposure:NAP & 0.06661 & 0.03270 & 2.037
\end{tabular}
Correlation of Fixed Effects:
(Intr) exposr NAP
exposure -0.996
NAP \(\quad-0.233 \quad 0.235\)
exposur:NAP \(0.235-0.238-0.996\)
```

```
> B1 <- update(B0, ~.-exposure:NAP)
0: -3.5739227: 0.730297
1: -4.1112507: 0.00000
2: -4.1112507: 3.65618e-06
3: -4.1112511: 0.000144407
4: -4.1650501: 0.0555603
5: -4.7984144: 0.246592
6: -5.0104872: 0.374551
7: -5.0104967: 0.373651
8: -5.0104968: 0.373725
9: -5.0104968: 0.373722
```

```
> summary(B1)
Linear mixed model fit by REML
Formula: ShannonW ~ exposure + NAP + (1 | Beach)
            Data: rikz
            AIC BIC logLik deviance REMLdev
            4.99 14.02 2.505 -19.62 -5.01
Random effects:
    Groups Name Variance Std.Dev.
    Beach (Intercept) 0.0050958 0.071385
    Residual
                            0.0364847 0.191010
Number of obs: 45, groups: Beach, 9
Fixed effects:
    Estimate Std. Error t value
(Intercept) 1.71143 0.41570 4.117
exposure -0.12166 0.04053 -3.001
NAP -0.21555 0.02990 -7.209
Correlation of Fixed Effects:
    (Intr) exposr
exposure -0.996
```

> anova(B0,B1)
Data: rikz
Models:
B1: ShannonW ~ exposure + NAP + (1 | Beach)
B0: ShannonW ~ $1+$ exposure * NAP + (1 | Beach)

	Df	AIC	BIC	logLik	Chisq Chi	Df
B1	5	-9.6222	-0.58886	9.8111		
B0	6	-11.5446	-0.70461	11.7723	3.9224	1

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

```
> anova(B0,B1)
Data: rikz
Models:
B1: ShannonW ~ exposure + NAP + (1 | Beach)
B0: ShannonW ~ 1 + exposure * NAP + (1 | Beach)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B1 5 -9.6222 -0.58886 9.8111
B0 6 -11.5446 -0.70461 11.7723 3.9224 1 0.04765
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

The p-value of 0.04765 may be imprecise because REML was used.

```
> anova(B0,B1)
Data: rikz
Models:
B1: ShannonW ~ exposure + NAP + (1 | Beach)
B0: ShannonW ~ 1 + exposure * NAP + (1 | Beach)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B1 5 -9.6222 -0.58886 9.8111
B0 6 -11.5446 -0.70461 11.7723 3.9224 1 0.04765
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

The p-value of 0.04765 may be imprecise because REML was used. To get a slighly more reliable p-value we fit both models with ML.

```
> B1ML <- update(B1,REML=FALSE)
0: -16.875166: 0.730297
1: -19.518802: 0.00000
2: -19.518802: 3.18807e-06
> BOML <- update(B0,REML=FALSE)
0: -21.820395: 0.730297
1: -22.739010: 0.00000
2: -22.739010: 7.52231e-06
3: -22.739011: 0.000259128
4: -22.880262: 0.0868904
5: -23.616152: 0.288666
6: -23.703097: 0.366825
7: -23.703443: 0.361997
8: -23.703444: 0.362261
9: -23.703444: 0.362262
```

```
> anova(B1ML,B0ML)
Data: rikz
Models:
B1ML: ShannonW ~ exposure + NAP + (1 | Beach)
BOML: ShannonW ~ 1 + exposure * NAP + (1 | Beach)
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B1ML 5 -9.5188 -0.48549 9.7594
BOML 6 -11.7034 -0.86347 11.8517 4.1846 1 0.04079 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> anova(B1ML,B0ML)
Data: rikz
Models:
B1ML: ShannonW ~ exposure + NAP + (1 | Beach)
BOML: ShannonW ~ 1 + exposure * NAP + (1 | Beach)
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B1ML 5 -9.5188 -0.48549 9.7594
BOML 6 -11.7034 -0.86347 11.8517 4.1846 1 0.04079 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

The model B0 (or B0ML) with interaction between NAP and exposure fits significantly better.

When random and fixed parameters have to be selected we apply the following strategy:

1. Start with a model that contains as many of the relevant parameters and interactions as possible.
2. First select random parameters. To decide between models which have different random parameters, fit models with REML and choose model of minimal AIC.
3. Now select fixed parameters. This can be done with the help of AIC or with likelihood ratio tests. If likelihood ratio tests are used, apply ML to fit the models to the data.
4. Never remove covariates that are still involved in interactions.
5. Fit the final model with REML.
$>\mathrm{B} 2<-\operatorname{lmer}\left(\text { ShannonW }{ }^{\sim} 1+\text { (exposure }+ \text { salinity }+N A P+h u m u s\right)^{\wedge} 2+($ [TRUNCATED]
0: -5.8942807: 0.730297
1: $\quad-5.8978355: 0.838579$
2: -5.9174068: 0.789454
3: $\quad-5.9175376: 0.784845$
4: -5.9175385: 0.785156
5: -5.9175385: 0.785156
```
> summary(B2)
Linear mixed model fit by REML
Formula: ShannonW ~ 1 + (exposure + salinity + NAP + humus)^2
                                    + (1 | Beach)
```

 Data: rikz
 AIC BIC logLik deviance REMLdev
 $20.0843 .57 \quad 2.959 \quad-37.55 \quad-5.918$
Random effects:

Groups	Name	Variance	Std.Dev.
Beach	(Intercept)	0.015652	0.12511
Residual		0.025390	0.15934

Number of obs: 45, groups: Beach, 9

Fixed effects:

	Estimate	Std. Error t value	
(Intercept)	40.32851	21.45346	1.880
exposure	-4.16161	2.12543	-1.958
salinity	-1.38750	0.74706	-1.857
NAP	0.65692	0.92037	0.714
humus	40.36916	16.33692	2.471
exposure:salinity	0.14522	0.07425	1.956

```
[..]
Correlation of Fixed Effects:
    (Intr) exposr salnty NAP humus expsr:s ex:NAP expsr
exposure -0.998
salinity -0.999 0.998
NAP -0.079 0.062 0.074
humus 0.117 -0.142 -0.129 0.152
expsr:slnty 0.996 -0.999 -0.998 -0.057 0.155
exposur:NAP 0.173 -0.165 -0.177 -0.661 0.067 0.167
exposur:hms -0.285 0.295 0.306 -0.008 -0.694 -0.315 -0.331
salinty:NAP 0.005 0.012 0.003 -0.920 -0.224 -0.020 0.316 0.18
salinty:hms 0.025 0.002 -0.022 -0.197 -0.888 -0.006 0.128 0.28
NAP:humus 0.149 -0.145 -0.158 0.109 -0.119 0.154 0.215 -0.14
    slnty:
exposure
salinity
NAP
humus
expsr:slnty
exposur:NAP
exposur:hms
```

```
> B3 <- lmer(ShannonW~1+(exposure+salinity+NAP+humus)^2
+ +(1+NAP|Beach), data=rikz,verbose=TRUE)
    0: -1.5323306: 0.730297 0.700275 0.00000
    1: -5.4597824: 1.16363 0.00000 -0.193541
    2: -5.7892458: 1.04081 4.21403e-06 -0.0735358
    3: -5.9531543: 0.913041 6.58205e-06 -0.188264
[..]
    12: -6.0798268: 0.829521 0.00000-0.109646
    13: -6.0798268: 0.829519 0.00000-0.109651
    14: -6.0798268: 0.829519 0.00000-0.109651
```

Next, we fit a model where there is not only a random intercept for every beach but also a random coefficient of NAP. Again, let S_{i} and N_{i} be the ShannonW and the NAP observed at plot i, which is on beach k. The model says

$$
S_{i}=\mathbf{a}+[\text { fixed effects terms }]+\alpha_{k}+\beta_{k} \cdot N_{i}+\varepsilon_{i} .
$$

$\varepsilon_{1}, \ldots, \varepsilon_{45}$ are independently $\mathcal{N}\left(0, \sigma^{2}\right)$-distributed, $\alpha_{1}, \ldots, \alpha_{9}$ are independently $\mathcal{N}\left(0, \sigma_{\alpha}^{2}\right)$-distributed, $\beta_{1}, \ldots, \beta_{9}$ are independently $\mathcal{N}\left(0, \sigma_{\beta}^{2}\right)$-distributed,

Next, we fit a model where there is not only a random intercept for every beach but also a random coefficient of NAP. Again, let S_{i} and N_{i} be the ShannonW and the NAP observed at plot i, which is on beach k. The model says

$$
S_{i}=\boldsymbol{a}+[\text { fixed effects terms }]+\alpha_{k}+\beta_{k} \cdot N_{i}+\varepsilon_{i} .
$$

$\varepsilon_{1}, \ldots, \varepsilon_{45}$ are independently $\mathcal{N}\left(0, \sigma^{2}\right)$-distributed, $\alpha_{1}, \ldots, \alpha_{9}$ are independently $\mathcal{N}\left(0, \sigma_{\alpha}^{2}\right)$-distributed, $\beta_{1}, \ldots, \beta_{9}$ are independently $\mathcal{N}\left(0, \sigma_{\beta}^{2}\right)$-distributed,

Besides the fixed-effects coefficients we have to estimate σ, σ_{α} and σ_{β}.

```
> summary(B3)
[..]
    AIC BIC logLik deviance REMLdev
    23.92 51.02 3.04 -37.69 -6.08
Random effects:
\begin{tabular}{lllll} 
Groups & Name & Variance & Std.Dev. Corr \\
Beach & (Intercept) & 0.01730652 & 0.131554 & \\
& NAP & 0.00020808 & 0.014425 & -1.000 \\
Residual & 0.02515108 & 0.158591
\end{tabular}
Number of obs: 45, groups: Beach, 9
```

Fixed effects:

(Intercept)	40.93936	21.72964	1.884
exposure	-4.22455	2.15239	-1.963
salinity	-1.40881	0.75753	-1.860
NAP	0.67896	0.93389	0.727
humus	40.42412	16.30099	2.480
exposure:salinity	0.14742	0.07528	1.958
exposure:NAP	0.08480	0.03663	2.315
exposure:humus	-2.10698	0.78447	-2.686

```
> B4 <- lmer(ShannonW~1+(exposure+salinity+NAP+humus)^2
+ +(1+NAP+exposure|Beach),data=rikz,verbose=TRUE)
    -1.6536097: 0.730297 0.700275 0.0711568 0.00000 0.00000
    -3.4551238: 0.700827 0.500322 0.00000 -0.0225207 -0.207903
    -5.5427746: 0.630604 0.176807 0.00000 -0.00365199 -0.00670
    -5.7754683: 0.635022 0.175143 0.00000 -0.00439670 0.027882
[...]
267:
268:
269: -6.2309242: 0.0242437 1.71415e-05 7.45081e-05 -3.81706 3.1
```

```
> summary(B4)
[..]
    AIC BIC logLik deviance REMLdev
29.77 62.29 3.115 -38.41 -6.231
```

Random effects:

Groups	Name	Variance	Std.Dev. Corr		
Beach	(Intercept)	$1.4754 \mathrm{e}-05$	0.0038411		
	NAP	$2.1496 \mathrm{e}-04$	0.0146616	-1.000	
	exposure	$1.4259 \mathrm{e}-04$	0.0119410	1.000	-1.000
Residual		$2.5102 \mathrm{e}-02$	0.1584364		

Number of obs: 45, groups: Beach, 9

Fixed effects:

	Estimate	Std. Error t value	
(Intercept)	42.77575	20.81776	2.055
exposure	-4.41472	2.06398	-2.139
salinity	-1.47464	0.72415	-2.036
NAP	0.67731	0.93297	0.726
humus	40.48334	16.27068	2.488
exposure:salinity	0.15425	0.07203	2.142
exposure:NAP	0.08472	0.03662	2.313


```
> summary(B5)
Linear mixed model fit by REML
Formula: ShannonW ~ 1 + (exposure + salinity + NAP + humus)^2
                        + (1 + NAP + exposure | Beach) + (1 | Week)
```

Data: rikz
AIC BIC logLik deviance REMLdev
$28.8763 .2 \quad 4.564 \quad-40.07 \quad$-9.129
Random effects:

Groups	Name	Variance	Std.Dev. Corr		
Beach	(Intercept)	0.44901920	0.670089		
	NAP	0.00046904	0.021657	1.000	
	exposure	0.00430800	0.065635	-1.000	-1.000
Week	(Intercept)	0.02093924	0.144704		
Residual		0.02427827	0.155815		
Number of obs: 45, groups: Beach, $9 ;$ Week, 4					

Fixed effects:

(Intercept)	21.42334	15.49344	1.383
exposure	-2.34537	1.53851	-1.524
salinity	-0.74919	0.54787	-1.367

```
> anova(B2,B3,B4,B5)
Data: rikz
Models:
B2: ShannonW ~ 1 + (exposure + salinity + NAP + humus)^2
    + (1 | Beach)
B3: ShannonW ~ 1 + (exposure + salinity + NAP + humus)^2
    + (1 + NAP | Beach)
B4: ShannonW ~ 1 + (exposure + salinity + NAP + humus) ^2
    + (1 + NAP + exposure | Beach)
B5: ShannonW ~ 1 + (exposure + salinity + NAP + humus)^2
    + (1 + NAP + exposure | Beach) + (1 | Week)
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B2 13 -11.5528 11.934 18.776
B3 15 -7.6911 19.409 18.846 0.1383 2 0. 10, 0.9332
B4 18 -2.4079 30.112 19.204 0.7168 3 0.8693
B5 19 -2.0744 32.252 20.037 1.6665 1 0.1967
```

Don't trust the p-values on the previous slide! The problem is not only that the models were fitted with REML. The main problem ist that the null hypotheses (e.g. $\sigma_{\beta}=0$ in the case of $\mathrm{B} 2 / \mathrm{B} 3)$ are on the boundary of the parameter space. σ_{β} can only be ≥ 0, and deviations from $\sigma_{\beta}=0$ are thus only possible in one direction. The χ^{2}-approximation of likelihood ratio tests are only reliable when deviations from the expectation under the null hypothesis are possible in all directions, for example if the null hypothesis $\theta=0$ is tested for some parameter θ, and estimates of θ can lead to positive as well as negative values.

Don't trust the p-values on the previous slide! The problem is not only that the models were fitted with REML. The main problem ist that the null hypotheses (e.g. $\sigma_{\beta}=0$ in the case of $\mathrm{B} 2 / \mathrm{B} 3$) are on the boundary of the parameter space. σ_{β} can only be ≥ 0, and deviations from $\sigma_{\beta}=0$ are thus only possible in one direction. The χ^{2}-approximation of likelihood ratio tests are only reliable when deviations from the expectation under the null hypothesis are possible in all directions, for example if the null hypothesis $\theta=0$ is tested for some parameter θ, and estimates of θ can lead to positive as well as negative values.

Thus, we rather base our decision on the AIC values. This is, of course, also not stringent. However, in our case, all criteria favor model B2.

Now we keep the random effects "(1 | Beach)" and search for a a good selection of fixed effects. Here, our aim is to get a simple, understandable model. Therefore apply a strict criterion an remove all variables which do not significantly improve the model fit on the 5% level.

Now we keep the random effects "(1 | Beach)" and search for a a good selection of fixed effects. Here, our aim is to get a simple, understandable model. Therefore apply a strict criterion an remove all variables which do not significantly improve the model fit on the 5% level.
(If our aim was a model to make good predictions, we would rather take AIC as a criterion, which leaves more parameters in.)

```
> summary(B2)
Linear mixed model fit by REML
Formula: ShannonW ~ 1 + (exposure + salinity + NAP + humus)^2
                                    +(1 | Beach)
[..]
Fixed effects:
\begin{tabular}{lrrr} 
& Estimate & Std. Error & t value \\
(Intercept) & 40.32851 & 21.45346 & 1.880 \\
exposure & -4.16161 & 2.12543 & -1.958 \\
salinity & -1.38750 & 0.74706 & -1.857 \\
NAP & 0.65692 & 0.92037 & 0.714 \\
humus & 40.36916 & 16.33692 & 2.471 \\
exposure:salinity & 0.14522 & 0.07425 & 1.956 \\
exposure:NAP & 0.08357 & 0.03615 & 2.312 \\
exposure:humus & -2.06931 & 0.78148 & -2.648 \\
salinity:NAP & -0.06337 & 0.02639 & -2.401 \\
salinity:humus & -0.67100 & 0.43169 & -1.554 \\
NAP:humus & 1.01589 & 0.59247 & 1.715
\end{tabular}
    [..]
```

> B6 <- update(B2, ~.-salinity:humus)
0: -3.3840456: 0.730297
1: $\quad-3.3848655: 0.748586$
2: -3.3851681: 0.742306
3: -3.3851681: 0.742296
4: -3.3851681: 0.742299
5: $\quad-3.3851681: 0.742299$

```
> anova(B6,B2)
Data: rikz
Models:
B6: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B6: exposure:salinity + exposure:NAP + exposure:humus + salinit
B6: NAP:humus
B2: ShannonW ~ 1 + (exposure + salinity + NAP + humus)^2 + (1 | Bea
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B6 12 -10.720 10.960 17.360
B2 13 -11.553 11.934 18.776 2.8329 1 0.09235.
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Remember that we should better use ML instead of REML if we want to apply likelihood ratio tests!

```
> B2ML <- update(B2,REML=FALSE)
    0: -37.815253: 0.730297
    1: -38.227458: 0.520323
    2: -38.238951: 0.555035
    3: -38.239535: 0.548840
    4: -38.239535: 0.548745
    5: -38.239535: 0.548714
    6: -38.239535: 0.548724
```

> B6ML <- update(B6, REML=FALSE)
0: -34.786862: 0.730297
1: $\quad-35.481002: 0.455308$
2: -35.502068: 0.503911
3: $\quad-35.503579: 0.494055$
4: -35.503579: 0.493868
5: $\quad-35.503579: 0.493857$
6: -35.503579: 0.493844
7. $-35 \quad 5 \cap 2570 \cdot \cap 102811$

```
> anova(B6ML,B2ML)
Data: rikz
Models:
B6ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B6ML: exposure:salinity + exposure:NAP + exposure:humus + salin
B6ML: NAP:humus
B2ML: ShannonW ~ 1 + (exposure + salinity + NAP + humus)^2 + (1 | B
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B6ML 12 -11.504 10.176 17.752
B2ML 13 -12.239 11.247 19.120 2.736 1 0.09811 .
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> summary(B6)
Linear mixed model fit by REML
Formula: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach)
    exposure:salinity + exposure:NAP + exposure:humus + salinity:N
                                    NAP:humus
[...]
(Intercept) \(40.98076 \quad 21.18993 \quad 1.934\)
\begin{tabular}{llll} 
exposure & -4.13572 & 2.10009 & -1.969
\end{tabular}
salinity \(\quad-1.40592 \quad 0.73832-1.904\)
\begin{tabular}{llll} 
NAP & 0.37102 & 0.92444 & 0.401
\end{tabular}
humus }\begin{array}{llll}{17.61688}&{7.69600}&{2.289}
exposure:salinity 0.14382 0.07340 1.959
exposure:NAP 0.09008 0.03673 2.453
exposure:humus -1.70126 0.76643 -2.220
salinity:NAP 
NAP:humus
    1.24688
    0.58490 2.132
[..]
```

```
> B7 <- update(B6, ~.-exposure:salinity)
    0: -3.0026064: 0.730297
    1: -3.2146723: 1.04756
    2: -3.2845341: 0.957924
    3: -3.2886569: 0.926746
    4: -3.2887713: 0.931248
    5: -3.2887715: 0.931100
    6: -3.2887715: 0.931099
> B7ML <- update(B7,REML=FALSE)
    0: -30.038157: 0.730297
    1: -30.038162: 0.725726
    2: -30.038210: 0.727949
    3: -30.038210: 0.727947
```

```
> anova(B7ML,B6ML)
Data: rikz
Models:
B7ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B7ML: exposure:NAP + exposure:humus + salinity:NAP + NAP:humus
B6ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B6ML: exposure:salinity + exposure:NAP + exposure:humus + salin
B6ML: NAP:humus
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B7ML 11 -8.0382 11.835 15.019
B6ML 12 -11.5036 10.176 17.752 5.4654 1 0.01940 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

> B8 <- update(B6,~. -salinity:NAP)
0: -4.5729780: 0.730297
1: -4.6975945: 0.596090
2: -4.6982261: 0.606261
3: -4.6982498: 0.604628
4: -4.6982498: 0.604628
5: $\quad-4.6982498: 0.604628$
> B8ML <- update(B8,REML=FALSE)
0: -29.489856: 0.730297
1: -30.710552: 0.00000
2: -30.710552: 2.50994e-05
3: -30.710558: 0.000649769
4: -31.015846: 0.162724
5: $\quad-31.356389: 0.335700$
6: -31.356637: 0.345734
7: $\quad-31.356869: 0.341604$
8: -31.356869: 0.341641
9: $\quad-31.356869: 0.341630$

```
> anova(B8ML,B6ML)
Data: rikz
Models:
B8ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B8ML: exposure:salinity + exposure:NAP + exposure:humus + NAP:h
B6ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B6ML: exposure:salinity + exposure:NAP + exposure:humus + salin
B6ML: NAP:humus
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B8ML 11 -9.3569 10.516 15.678
B6ML 12 -11.5036 10.176 17.752 4.1467 1 0.04172 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

> summary(B6)
[...]
(Intercept)
exposure
salinity
NAP
humus
exposure:salinity
exposure:NAP
exposure:humus
salinity:NAP
NAP:humus
[...]

```
> B9 <- update(B6, ~.-NAP:humus)
    0: 1.7262210: 0.730297
    1: 1.4342459: 0.527474
2: 1.4326078: 0.545056
3: 1.4324476: 0.540992
4: 1.4324476: 0.540993
5: 1.4324476: 0.540993
6: 1.4324476: 0.540993
```

> B9ML <- update (B9, REML=FALSE)
0: -29.340922: 0.730297
1: -31.445430: 0.00000
2: $\quad-31.445430: 1.57944 \mathrm{e}-05$
3: $\quad-31.445431: 0.000268510$
4: -31.471347: 0.0479773
5: -31.646917: 0.147977
6: -31.778206: 0.347977
7: $\quad-31.821753: 0.257110$
8: $\quad-31.831799: 0.282988$
9: -31.831884: 0.285733
10: -31.831884: 0.285584
11: -31.831884: 0.285537
12: -31.831884: 0.285545

```
> anova(B9ML,B6ML)
Data: rikz
Models:
B9ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B9ML: exposure:salinity + exposure:NAP + exposure:humus + salin
B6ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B6ML: exposure:salinity + exposure:NAP + exposure:humus + salin
B6ML: NAP:humus
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B9ML 11 -9.8319 10.041 15.916
B6ML 12 -11.5036 10.176 17.752 3.6717 1 0.05534
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> summary(B9)
[..]
(Intercept) 33.46430 18.61198 1.798
exposure
salinity
NAP
humus 12.41735 7.87781 1.576
exposure:salinity 0.11548 0.06449 1.791
exposure:NAP 0.07247 0.03847 1.884
exposure:humus -1.21902 0.78897 -1.545
salinity:NAP -0.03552 0.02661 -1.335
[..]
```

> B10 <- update(B9, ~.-salinity:NAP)
0: -1.7647565: 0.730297
1: $\quad-2.2271740: 0.471298$
2: $\quad-2.2311842: 0.500273$
3: -2.2317909: 0.492691
4: -2.2317912: 0.492525
5: -2.2317912: 0.492501
6: -2.2317912: 0.492501
> B10ML <- update(B10,REML=FALSE)
0: -26.956276: 0.730297
1: -29.939179: 0.00000
2: -29.939179: 1.55125e-06
3: -29.939179: 1.55125e-06

```
> anova(B10ML,B9ML)
Data: rikz
Models:
B10ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B10ML: exposure:salinity + exposure:NAP + exposure:humus
B9ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B9ML: exposure:salinity + exposure:NAP + exposure:humus
B9ML + salinity:NAP
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B10ML 10 -9.9392 8.1274 14.970
B9ML 11 -9.8319 10.0414 15.916 1.8927 1 0.1689
```

```
> summary(B10)
    [..]
\begin{tabular}{lrrr} 
(Intercept) & 34.86718 & 18.02729 & 1.934 \\
exposure & -3.47464 & 1.78723 & -1.944 \\
salinity & -1.17017 & 0.62943 & -1.859 \\
NAP & -1.16367 & 0.37065 & -3.139 \\
humus & 11.46664 & 7.96861 & 1.439 \\
exposure:salinity & 0.11852 & 0.06259 & 1.894 \\
exposure:NAP & 0.09198 & 0.03577 & 2.571 \\
exposure:humus & -1.12149 & 0.79790 & -1.406
\end{tabular}
```

[..]
> B11 <- update(B10,~. -exposure:humus)
0: 1.9746978: 0.730297
1: 1.8085855: 0.00000
2: 1.8085855: 0.00000
> B11ML <- update(B11,REML=FALSE)
0: -24.123141: 0.730297
1: -28.644278: 0.00000
2: -28.644278: 0.00000

```
> anova(B11ML,B10ML)
Data: rikz
Models:
B11ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B11ML: exposure:salinity + exposure:NAP
B10ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B10ML: exposure:salinity + exposure:NAP + exposure:humus
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B11ML 9 -10.6443 5.6157 14.322
B10ML 10 -9.9392 8.1274 14.970 1.2949 1
```

```
> B11
Linear mixed model fit by REML
Formula: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach)
[..]
Fixed effects:
(Intercept) \(25.44676 \quad 12.14435 \quad 2.095\)
exposure
salinity
\(-2.53976 \quad 1.20472-2.108\)
-0.82116 0.41941 -1.958
NAP -0.89459 0.35486 -2.521
humus 0.26450 0.51705 0.511
exposure:salinity 0.08385 0.04175 2.008
exposure:NAP 0.06663 0.03459 1.926
[...]
```

 \(+\quad\) exposure:salinity + exposure:N
 > B12 <- update(B11, ~.-exposure:salinity)
0: -0.098587691: 0.730297
1: -0.66093519: 0.474219
2: -0.66484670: 0.500408
3: -0.66548356: 0.493367
4: -0.66548380: 0.493228
5: - $\quad 0.66548380: 0.493229$
> B12ML <- update(B12,REML=FALSE)
0: -22.593499: 0.730297
1: $\quad-24.104251: 0.00000$
2: $\quad-24.104251: 6.18232 \mathrm{e}-06$
3: -24.104252: 0.000170993
4: -24.139061: 0.0457497
5: $\quad-24.470138: 0.165738$
6: -24.715631: 0.405714
7: -24.801367: 0.303438
8. - ○^ 8115に7. ○ 200111

```
> anova(B12ML ,B11ML)
Data: rikz
Models:
B12ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B12ML: exposure:NAP
B11ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach)
B11ML: exposure:salinity + exposure:NAP
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B12ML 8 -8.8116 5.6417 12.406
B11ML 9 -10.6443 5.6157 14.322 3.8327 1 0.05026 .
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> B12
Linear mixed model fit by REML
Formula: ShannonW ~ exposure + salinity + NAP + humus +
                (1 | Beach) + exposure:NAP
[..]
\begin{tabular}{lrrr} 
& Estimate & Std. Error & t value \\
(Intercept) & 1.15024 & 1.46738 & 0.784 \\
exposure & -0.12376 & 0.05269 & -2.349 \\
salinity & 0.01993 & 0.04045 & 0.493 \\
NAP & -0.93216 & 0.34402 & -2.710 \\
humus & 0.35074 & 0.51842 & 0.677 \\
exposure:NAP & 0.07059 & 0.03354 & 2.105
\end{tabular}
[..]
```

```
> B13 <- update(B12, ~.-salinity)
    0: -4.0925532: 0.730297
    1: -5.0279973: 0.406952
    2: -5.0421919: 0.454465
    3: -5.0447002: 0.441360
    4: -5.0447011: 0.441102
    5: -5.0447011: 0.441104
```

> B13ML <- update(B13,REML=FALSE)
0: -22.405729: 0.730297
1: -23.632872: 0.00000
2: $\quad-23.632872: 6.82081 \mathrm{e}-06$
3: -23.632873: 0.000209714
4: -23.702115: 0.0625813
5: $\quad-24.233233: 0.221826$
6: -24.453896: 0.338432
7: $\quad-24.454528: 0.346503$


```
> anova(B13ML,B12ML)
Data: rikz
Models:
B13ML: ShannonW ~ exposure + NAP + humus + (1 | Beach) + exposure:N
B12ML: ShannonW ~ exposure + salinity + NAP + humus + (1 | Beach) +
B12ML: exposure:NAP
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B13ML 7 -10.4546 2.1921 12.227
B12ML 8 -8.8116 5.6417 12.406 0.357 1 0.50, 0.5502
```

```
> B13
Linear mixed model fit by REML
Formula: ShannonW ~ exposure + NAP + humus +
    (1 | Beach) + exposure:NAP
[..]
(Intercept) 1.82886 0.45860 3.988
exposure -0.13557 0.04412 -3.073
NAP
humus
    0.40236 0.50705 0.794
exposure:NAP 0.07087 0.03343 2.120
[..]
```

```
> B14 <- update(B13, ..-humus)
    0: -3.1079878: 0.730297
    1: -3.9300741: 0.431067
    2: -3.9406377: 0.471682
    3: -3.9424344: 0.460627
    4: -3.9424352: 0.460386
    5: -3.9424352: 0.460388
> B14ML <- update(B14,REML=FALSE)
0: -21.820395: 0.730297
1: -22.739010: 0.00000
2: -22.739010: 7.52231e-06
3: -22.739011: 0.000259128
4: -22.880262: 0.0868904
5: -23.616152: 0.288666
6: -23.703097: 0.366825
7: -23.703443: 0.361997
8. -02 702^1^. n 260061
```

```
> anova(B14ML,B13ML)
Data: rikz
Models:
B14ML: ShannonW ~ exposure + NAP + (1 | Beach) + exposure:NAP
B13ML: ShannonW ~ exposure + NAP + humus + (1 | Beach) + exposure:N
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B14ML 6 -11.703 -0.86347 11.852
B13ML 7 -10.455 2.19207 12.227 0.7511 1 0.3861
```

```
> B14
[..]
Fixed effects:
```

	Estimate	Std. Error	t value
(Intercept)	1.92603	0.44765	4.303
exposure	-0.14294	0.04368	-3.272
NAP	-0.89673	0.33620	-2.667
exposure:NAP	0.06661	0.03270	2.037

 [..]
 > B15 <- update(B14, ~.-exposure:NAP)
0: -3.5739227: 0.730297

1: -4.1112507: 0.00000
2: -4.1112507: 3.65618e-06
3: -4.1112511: 0.000144407
4: $\quad-4.1650501: 0.0555603$
5: -4.7984144: 0.246592
6: -5.0104872: 0.374551
7: -5.0104967: 0.373651
8: -5.0104968: 0.373725
9: -5.0104968: 0.373722
> B15ML <- update(B15, REML=FALSE)
0: -16.875166: 0.730297
1: -19.518802: 0.00000
2: -19.518802: 3.18807e-06

```
> anova(B15ML,B14ML)
Data: rikz
Models:
B15ML: ShannonW ~ exposure + NAP + (1 | Beach)
B14ML: ShannonW ~ exposure + NAP + (1 | Beach) + exposure:NAP
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
B15ML 5 -9.5188 -0.48549 9.7594
B14ML 6 -11.7034 -0.86347 11.8517 4.1846 1 0.04079 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> summary(B14)
[..]
Fixed effects:
    Estimate Std. Error t value
(Intercept) 1.92603 0.44765 4.303
exposure
    -0.14294 0.04368 -3.272
NAP -0.89673 0.33620 -2.667
exposure:NAP 0.06661 0.03270 2.037
[..]
```


> samp14 <- mcmcsamp $(B 14,1000)$
 > densityplot(samp14)

> sum (samp14@ST==0)/1000
[1] 0.153
15.3% of the sampled parameter sets have $\sigma_{\alpha}=0$. This means, with a posterior probability of 15.3% there is no beach effect.
> plot(data.frame(t(samp14@fixef)))

> confint(pr14)

	2.5%	97.5%
.sig01	NA	0.15806902
.lsig	-1.9478665471	-1.48146028
(Intercept)	1.0759293994	2.78295226
exposure	-0.2265797054	-0.06004775
NAP	-1.5386892998	-0.21810411
exposure:NAP	0.0003071935	0.12889265

> dotplot(ranef(B14,postVar=TRUE))

> qqmath(ranef(B14, postVar=TRUE))

Contents

The random effect of the beach

How to select a mixed-effects model

Split-plot experiment: Back to the oats.

Generalized linear mixed-effects models

```
> library(MASS)
> oats.aov <- aov(Y~N+V+Error(B/V), data=oats,qr=T)
> model.tables(oats.aov,type="mean")
Grand mean
103.9722
N
0.0cwt 0.2cwt 0.4cwt 0.6cwt
    79.39 98.89 114.22 123.39
V
Golden.rain Marvellous Victory
        104.50 109.79 97.63
> oats.lmer <- lmer(Y~N+V+(1 | B/V),data=oats)
> fixef(oats.lmer)
        (Interc) NO.2cwt NO.4cwt NO.6cwt VMarvellous VVictory
        79.917 19.50 34.83 44.0 5.292 -6.875
```

> oats.pr <- profile(oats.lmer)
> confint(oats.pr)

	2.5 \%	\% 97.5 \%
.sig01	4.511185	16.646920
.sig02	5.482973	29.072479
.lsig	2.339491	2.718178
(Intercept)	63.786567	96.046767
NO. 2 cwt	11.258823	27.741177
NO. 4 cwt	26.592156	43.074511
NO.6cwt	35.758823	52.241177
VMarvellous	-8.461640	19.045023
VVictory	-20.628307	6.878357

Split-plot experiment: Back to the oats.

Contents

The random effect of the beach

How to select a mixed-effects model

Split-plot experiment: Back to the oats.

Generalized linear mixed-effects models

- Generalized linear mixed-effects models can be fitted with the glmer command in the Ime4 package.
- Generalized linear mixed-effects models can be fitted with the glmer command in the Ime4 package.
- REML is not applied, more complex algorithms are applied to fit models.
- Generalized linear mixed-effects models can be fitted with the glmer command in the Ime4 package.
- REML is not applied, more complex algorithms are applied to fit models.
- All p-values can be very imprecise, so do not trust them too much, especially if they are close to the significance level.
- Generalized linear mixed-effects models can be fitted with the glmer command in the Ime4 package.
- REML is not applied, more complex algorithms are applied to fit models.
- All p-values can be very imprecise, so do not trust them too much, especially if they are close to the significance level.
- Mcmc methods or other nice methods to visualize the results of a mixed-effects GLM are not yet implemented in Ime4.
- Generalized linear mixed-effects models can be fitted with the glmer command in the Ime4 package.
- REML is not applied, more complex algorithms are applied to fit models.
- All p-values can be very imprecise, so do not trust them too much, especially if they are close to the significance level.
- Mcmc methods or other nice methods to visualize the results of a mixed-effects GLM are not yet implemented in Ime4.
- As an example we fit an overdispersed Poisson model to the RIKZ data with Richness as the response variable.

```
> mmod11 <- glmer(Richness~1+(exposure+salinity+NAP+humus)^2
+ +(1 | Beach),
family=quasipoisson,data=rikz,verbose=TRUE)
    0: 49.833560: 0.730297 64.4576 -6.91148-2.16330 2.32707[.
    1: 49.818337: 0.730288 64.4576 -6.91149 -2.16331 2.32707[..
    2: 49.813761: 0.730246 64.4576 -6.91148-2.16330 2.32707[..
[...]
52:
53:
54:
    32.698606: 2.36530e-08 64.4582 -6.91155 -2.16332 2.32[..
    32.698606: 1.27632e-08 64.4582 -6.91155 -2.16332 2.32[..
    32.698606: 2.55421e-09 64.4582 -6.91155 -2.16332 2.32[..
```

> summary (mmod11)
Generalized linear mixed model fit by the Laplace approximation Formula: Richness ~ 1 + (exposure + salinity + NAP + humus) ^2 + (1 | Beach)
Data: rikz

AIC	BIC logLik deviance		
58.7	82.19	-16.35	32.7

Random effects:

Groups	Name	Variance	Std.Dev.
Beach	(Intercept)	$1.2605 \mathrm{e}-17$	$3.5504 \mathrm{e}-09$
Residual		$1.9321 \mathrm{e}+00$	$1.3900 \mathrm{e}+00$

Number of obs: 45, groups: Beach, 9

Fixed effects:

	Estimate	Std. Error t value	
(Intercept)	64.45819	45.35670	1.421
exposure	-6.91155	4.44718	-1.554
salinity	-2.16332	1.56826	-1.379
NAP	2.32704	4.22804	0.550
humus	62.83613	49.51439	1.269
exposure:salinity	0.23884	0.15421	1.549

```
> mmod12 <- glmer(Richness~1+(exposure+salinity+NAP+humus)^2
    +(1+NAP | Beach),
    family=quasipoisson,data=rikz,verbose=TRUE)
    59.544991: 0.730297 0.700275 0.00000 64.4576 -6.91148 -2
    59.537494: 0.730285 0.700265 -5.54163e-08 64.4576 -6.9114
    59.531152: 0.730266 0.700248-2.01145e-07 64.4576 -6.9114
[...]
    59:
    60:
    61:
    62:
    32.698606:
        0.00000 0.00000 0.134189
        64.4553 -6.91124 -2
    32.698606: 0.00000 0.00000 0.134153 64.4577 -6.91148 -2
    32.698606: 0.00000 7.78293e-09 0.134153 64.4577 -6.91148
    32.698606: 0.00000 6.42409e-09 0.134153 64.4577 -6.91148
```

> summary (mmod12)
Generalized linear mixed model fit by the Laplace approximation Formula: Richness ~ 1 + (exposure + salinity + NAP + humus) ^2

Data: rikz
AIC BIC logLik deviance
62.789 .8 -16.35 32.7

Random effects:

Groups	Name	Variance	Std.Dev.	Corr
Beach	(Intercept)	$0.0000 \mathrm{e}+00$	$0.0000 \mathrm{e}+00$	
	NAP	$7.9737 \mathrm{e}-17$	$8.9296 \mathrm{e}-09$	NaN
Residual	$1.9321 \mathrm{e}+00$	$1.3900 \mathrm{e}+00$		

Number of obs: 45, groups: Beach, 9

Fixed effects:

(Intercept)	64.45774	45.35664	1.421
exposure	-6.91148	4.44718	-1.554
salinity	-2.16330	1.56826	-1.379
NAP	2.32709	4.22804	0.550
humus	62.83178	49.51448	1.269

```
> anova(mmod11,mmod12)
Data: rikz
Models:
mmod11: Richness ~ 1 + (exposure + salinity + NAP + humus)^2
mmod12: Richness ~ 1 + (exposure + salinity + NAP + humus)^2
                        + (1 + NAP | Beach)
\begin{tabular}{llrrrccr} 
& Df & AIC & BIC & logLik & Chisq Chi Df & Pr (>Chisq) \\
mmod11 & 13 & 58.699 & 82.185 & -16.349 & & & \\
mmod12 & 15 & 62.699 & 89.799 & -16.349 & \(4.148 \mathrm{e}-10\) & 2 & 1
\end{tabular}
```

```
> summary(mmod11)
[...]
```

(Intercept)
Estimate Std. Error t value
$64.45819 \quad 45.35670 \quad 1.421$
exposure
salinity
NAP
humus
$62.83613 \quad 49.51439 \quad 1.269$
exposure:salinity
$0.23884 \quad 0.15421$
1.549
exposure:NAP

0.23884	0.15421	1.549
-0.01075	0.13433	-0.080
-3.34134	2.07648	-1.609

exposure:humus
salinity:NAP
salinity:humus
NAP:humus
$-3.34134 \quad 2.07648-1.609$
-6.91155 $4.44718-1.554$
-2.16332 $1.56826-1.379$
$2.32704 \quad 4.22804 \quad 0.550$
-0.10649 $0.12179-0.874$
[...]

```
> mmod13 <- update(mmod11,~.-exposure:NAP)
    0:
    49.843351: 0.730297 64.9374 -6.96048 -2.18191
    49.827666: 0.730288 64.9374 -6.96048 -2.18192
2.08793[.
    1:
64.9374 -6.96048-2.18190
2.08794[.
[...]
56: 32.710979: 3.62620e-05 64.9381 -6.96054 -2.18195 2.08291
57: 32.710979: 0.00000 64.9381 -6.96056 -2.18193 2.08813[..
58: 32.710979: 0.00000 64.9381 -6.96055 -2.18194 2.08799[..
59: 32.710979: 0.00000 64.9381 -6.96056 -2.18193 2.08798[..
60: 32.710979: 0.00000 64.9381 -6.96056 -2.18193 2.08794[..
```

```
> anova(mmod13,mmod11)
Data: rikz
Models:
mmod13: Richness ~ exposure + salinity + NAP + humus + (1 | Beach)
mmod13: exposure:salinity + exposure:humus + salinity:NAP +
mmod13: salinity:humus + NAP:humus
mmod11: Richness ~ 1 + (exposure + salinity + NAP + humus)^2 + (1
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mmod13 12 56.711 78.391 -16.355
mmod11 13 58.699 82.185 -16.349 0.0124 1 0.9114
```

```
> summary(mmod13)
Generalized linear mixed model fit by the Laplace approximation
Formula: Richness ~ exposure + salinity + NAP + humus +
    (1 | Beach) + exposure:salinity + exposure:humus +
    salinity:NAP + salinity:humus + NAP:humus
[..]
```

Fixed effects:

	Estimate	Std. Error t value	
(Intercept)	64.9381	45.1037	1.440
exposure	-6.9606	4.4192	-1.575
salinity	-2.1819	1.5560	-1.402
NAP	2.0879	3.0016	0.696
humus	63.5644	48.7489	1.304
exposure:salinity	0.2407	0.1529	1.575
exposure:humus	-3.4145	1.8665	-1.829
salinity:NAP	-0.1018	0.1073	-0.949
salinity:humus	-0.9299	1.3925	-0.668
NAP:humus	4.4724	2.3660	1.890

```
> mmod14 <- update(mmod13, ~.-salinity:humus)
    0: 50.977682: 0.730297 68.3906 -7.14795 -2.29828 2.41247
    1: 50.963879: 0.730289 68.3906 -7.14795 -2.29829 2.41247
    2: 50.963059: 0.730193 68.3906 -7.14795 -2.29828 2.41247
    3: 50.007435: 0.636302 68.3910 -7.14725 -2.29102 2.41331
    4: 47.892486: 0.542366 68.3913 -7.14654 -2.28372
    5: 39.995619: 0.166545 68.3925 -7.14406 -2.25563
    39.769482: 0.166545 68.3925 -7.14406 -2.25565
        2.41702
    39.647185: 0.166543 68.3925 -7.14406 -2.25566 2.41701
0.242384 -3.00727-0
[...]
    62: 33.567645: 1.55968e-07 68.3895 -7.14784 -2.29824 2.41238
    63: 33.567645: 0.00000 68.3904 -7.14793 -2.29827 2.41247 3
    64: 33.567645: 1.19137e-09 68.3906 -7.14795 -2.29828 2.41247
```

```
> anova(mmod14,mmod13)
Data: rikz
Models:
mmod14: Richness ~ exposure + salinity + NAP + humus + (1 | Beach)
mmod14: exposure:salinity + exposure:humus + salinity:NAP + NAP
mmod13: Richness ~ exposure + salinity + NAP + humus + (1 | Beach)
mmod13: exposure:salinity + exposure:humus + salinity:NAP + sal
mmod13: NAP:humus
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mmod14 11 55.568 75.441 -16.784
mmod13 12 56.711 78.391 -16.355 0.8567 1 0.3547
```

```
> summary(mmod14)
[..]
```

(Intercept)
exposure
salinity
NAP
humus
exposure: salinity

Estimate Std. Error t value

(Intercept)	68.3906	45.2987	1.510
exposure	-7.1479	4.4665	-1.600
salinity	-2.2983	1.5638	-1.470
NAP	2.4125	3.0405	0.794
humus	33.2900	17.8258	1.867
exposure:salinity	0.2468	0.1546	1.596
exposure:humus	-3.0208	1.7998	-1.678
salinity:NAP	-0.1145	0.1088	-1.052
NAP:humus	5.1862	2.1676	2.393

[..]
> mmod15 <- update(mmod14, ~.-salinity:NAP)

0 :
54.119609: 0.730297
$64.2333-6.76223-2.13153$
54.105967: $0.73028964 .2333-6.76224-2.13154-$ 54.105023: $0.73019164 .2333-6.76223-2.13154-$ [...]
33:
34 :
35.825219: 0.00000
$64.2334-6.76224-2.13154$ $35.825219: 0.0000064 .2333-6.76223-2.13153-$

```
> anova(mmod15,mmod14)
Data: rikz
Models:
mmod15: Richness ~ exposure + salinity + NAP + humus + (1 | Beach)
mmod15: exposure:salinity + exposure:humus + NAP:humus
mmod14: Richness ~ exposure + salinity + NAP + humus + (1 | Beach)
mmod14: exposure:salinity + exposure:humus + salinity:NAP + NAP
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mmod15 10 55.825 73.892 -17.913
mmod14 11 55.568 75.441 -16.784 2.2576 1 0.1330
```

$>$ summary(mmod15)			
[...]			
	Estimate	Std. Error t value	
(Intercept)	64.2333	45.8648	1.400
exposure	-6.7622	4.5261	-1.494
salinity	-2.1315	1.5821	-1.347
NAP	-0.7919	0.1650	-4.800
humus	26.3211	17.2232	1.528
exposure:salinity	0.2313	0.1566	1.477
exposure:humus	-2.3704	1.7606	-1.346
NAP:humus	4.1208	1.9210	2.145
[...]			


```
> anova(mmod16,mmod15)
Data: rikz
Models:
mmod16: Richness ~ exposure + salinity + NAP + humus + (1 | Beach)
mmod16: exposure:salinity + NAP:humus
mmod15: Richness ~ exposure + salinity + NAP + humus + (1 | Beach)
mmod15: exposure:salinity + exposure:humus + NAP:humus
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mmod16 9 57.633 73.893 -19.817
mmod15 10 55.825 73.892 -17.913 3.8082 1 0.051 .
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

> summary(mmod16)			
[...]	Estimate	Std. Error t value	
	46.8935	47.4863	0.988
(Intercept)	-5.0170	4.6770	-1.073
exposure	-1.4826	1.6240	-0.913
salinity	-0.7177	0.1653	-4.341
NAP	3.2326	1.7443	1.853
humus	0.1658	0.1604	1.034
exposure:salinity	4.0391	2.0136	2.006
NAP:humus			
[...]			

$>$ mmod17	$<-$ update(mmod16, ~.-exposure:salinity)				
$0:$	$58.637737: 0.730297-2.14684$	-0.183246	0.196099		
$1:$	$58.598479:$	$0.729260-2.14690$	-0.183880	0.194558	
$2:$	$58.564423:$	$0.727583-2.14686$	-0.183644	0.195548	
$[\ldots]$.					
$33:$	$42.290178: 8.33188 \mathrm{e}-06-2.14646$	-0.183254	0.1960		
$34:$	$42.290178:$	$3.01290 \mathrm{e}-06$	-2.14671	-0.183249	0.1960
$35:$	$42.290178:$	$2.25278 \mathrm{e}-09$	-2.14684	-0.183246	0.1960
$36:$	$42.290178:$	$1.36106 \mathrm{e}-11$	$-2.14684-0.183246$	0.1960	

```
> anova(mmod17,mmod16)
Data: rikz
Models:
mmod17: Richness ~ exposure + salinity + NAP + humus + (1
mmod17: NAP:humus
mmod16: Richness ~ exposure + salinity + NAP + humus + (1
mmod16: exposure:salinity + NAP:humus
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mmod17 8 58.290 72.743-21.145
mmod16 9 57.633 73.893 -19.817 2.6567 1 0.1031
```

> summary(mmod17)			
[...]			
	Estimate	Std. Error	t value
(Intercept)	-2.1468	4.0782	-0.526
exposure	-0.1832	0.1281	-1.430
salinity	0.1961	0.1137	1.725
NAP	-0.7116	0.1780	-3.997
humus	3.4743	1.8951	1.833
NAP:humus	3.8253	2.1777	1.757
[...]			

> mmod18 <- update(mmod17, ~.-exposure)

0 :
1:
2 :
3:
4:
5:
$6:$
7:
8:
9 :
10:
11:
12 :
13:
14:
15:
16.
59.363947: 0.730297 -6.50861 $0.283750-0.782548$
59.309792: $0.729344-6.508680 .281666-0.782629$
59.249973: $0.724342-6.508590 .283825-0.783080$ 49.314348: $0.249654-6.507430 .281775-0.821932$ 49.028180: $0.0874159-6.506210 .286181-0.768039$ 47.878333: $0.0874274-6.506300 .283516-0.768044$ 47.829181: $0.111395-6.505970 .283569-0.776400$ 47.811523: $0.108337-6.487570 .282663-0.780176$ 47.782569: $0.107177-6.385370 .279448-0.780133$ 47.771312: $0.120894-6.286770 .276050-0.770252$ 47.770238: $0.117932-6.266890 .275277-0.772068$ 47.769283: $0.116689-6.254960 .274892-0.775140$ 47.768895: $0.118127-6.252120 .274784-0.773427$ 47.768886: $0.118026-6.249130 .274674-0.773555$ 47.768886: $0.118044-6.247920 .274631-0.773578$ 47.768885: $0.118049-6.247800 .274626-0.773576$


```
> anova(mmod18,mmod17)
Data: rikz
Models:
mmod18: Richness ~ salinity + NAP + humus + (1 | Beach) + NAP:humus
mmod17: Richness ~ exposure + salinity + NAP + humus + (1 | Beach)
mmod17: NAP:humus
    Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
mmod18 7 61.769 74.416 -23.884
mmod17 8 58.290 72.743 -21.145 5.4787 1 0.01925 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

> summary(mmod17)			
[...]			
	Estimate	Std. Error	t value
(Intercept)	-2.1468	4.0782	-0.526
exposure	-0.1832	0.1281	-1.430
salinity	0.1961	0.1137	1.725
NAP	-0.7116	0.1780	-3.997
humus	3.4743	1.8951	1.833
NAP:humus	3.8253	2.1777	1.757
[..]			

> mmod19 <- update(mmod17, ~. -NAP:humus)

0 :
1:
2:
3:
4:
5 :
$6:$
7:
8:
9 :
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
69.899155: $0.730297-0.528882-0.2887140 .180644-0.498037$
69.858054: $0.729229-0.528938-0.2893610 .179067-0.498187$ 69.822146: $0.727528-0.528902-0.2891100 .180093-0.498425$ 69.752883: $0.723874-0.528954-0.2898910 .178653-0.498916$ 59.543657: $0.331011-0.528734-0.3145670 .189047-0.545780$ 56.406034: $0.224112-0.528678-0.3206230 .190064-0.550253$ 54.889391: $0.136913-0.528511-0.3245210 .195036-0.558595$ 54.771875: $0.0497220-0.528591-0.3295480 .191390-0.56709$ 53.704231: $0.00628396-0.528348-0.3250590 .194014-0.5708$ 52.557547: $0.0391547-0.528090-0.2983800 .183467-0.56589$ 52.326076: $0.00000-0.527933-0.2913550 .181607-0.563221$ 52.106386: $0.00000-0.528402-0.3240210 .191978-0.491460$ 52.008303: 3.46690e-15-0.528380-0.323749 0.192565-0.491 51.758028: 4.00663e-13 -0.528270 -0.314098 0.188878-0.492 51.716750: $0.00000-0.528142-0.3053730 .187209-0.488564$ 51.457747: $0.00000-0.527829-0.2970490 .183507-0.489009$ 51.427700: $0.00000-0.527500-0.2947520 .182725-0.496743$ 51.426304: $0.00277884-0.527461-0.2944400 .182564-0.4964$
> mmod20 <- update(mmod17, ~.-salinity)
0: 59.931609: 0.730297 4.64070-0.307879-0.705878
59.931609: 0.730297 4.64070-0.307879-0.705878
3.87577
59.686506: 0.720204 4.63974-0.318464-0.705170
59.438573: $0.7082364 .64065-0.310064-0.704618$
58.974741: 0.681684 4.63965-0.322306-0.703439
53.658984: $0.000004 .65615-0.299096-0.648086$
51.878726: 6.21175e-08 4.65523-0.308198-0.648525 51.089349: 0.00000
$4.66017-0.308044-0.704827$
3.70271
51.085319: $0.000004 .65088-0.309370-0.7047843 .74770$
51.005801: $0.000004 .64691-0.307597-0.704035$
3.77021
50.974766: $0.000004 .64425-0.307696-0.711910 \quad 3.79163$ 50.607459: 0.0432925 4.62618-0.307252-0.698582 3.96917 50.157784: 0.0897194 4.60979-0.305835-0.686628 4.13325 50.124822: $0.09029444 .60961-0.307876-0.6866904 .13318$
50.106719: 0.0905979 4.60987-0.306959-0.686892 4.13179
50.087485: 0.0919311 4.61015-0.307911-0.687372
50.068168: 0.0915007 4.61097-0.307049-0.687990 50.043262: $0.09189634 .61239-0.308146-0.689342$ 50.022777: 0.0885245 4.61654-0.307269-0.691585 49.988336: 0.0991556 4.61353-0.308123-0.687550 49.914042: $0.09565074 .62255-0.307547-0.692348$
3.87486
3.87391
3.87166
3.71811

```
> mmod17
Generalized linear mixed model fit by the Laplace approximation
Formula: Richness ~ exposure + salinity + NAP + humus + (1 | Beach)
    Data: rikz
    AIC BIC logLik deviance
58.29 72.74 -21.15 42.29
Random effects:
Groups Name Variance Std.Dev.
Beach (Intercept) 5.2533e-22 2.2920e-11
Residual 2.8358e+00 1.6840e+00
Number of obs: 45, groups: Beach, 9
Fixed effects:
\begin{tabular}{lrrr} 
& Estimate & Std. Error & t value \\
(Intercept) & -2.1468 & 4.0782 & -0.526 \\
exposure & -0.1832 & 0.1281 & -1.430 \\
salinity & 0.1961 & 0.1137 & 1.725 \\
NAP & -0.7116 & 0.1780 & -3.997 \\
humus & 3.4743 & 1.8951 & 1.833 \\
NAP:humus & 3.8253 & 2.1777 & 1.757
\end{tabular}
```

