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Regression toward the mean

Origin of the word “Regression”

Sir Francis Galton (1822–1911): Regression toward the mean.

Tall fathers tend to have sons that are slightly smaller than the
fathers. Sons of small fathers are on average larger than their
fathers.



Regression toward the mean

Origin of the word “Regression”

Sir Francis Galton (1822–1911): Regression toward the mean.

Tall fathers tend to have sons that are slightly smaller than the
fathers. Sons of small fathers are on average larger than their
fathers.



Regression toward the mean

1.4 1.6 1.8 2.0 2.2

1.
4

1.
6

1.
8

2.
0

2.
2

Koerpergroessen

Vater

S
oh

n



Regression toward the mean

1.4 1.6 1.8 2.0 2.2

1.
4

1.
6

1.
8

2.
0

2.
2

Koerpergroessen

Vater

S
oh

n



Regression toward the mean

1.4 1.6 1.8 2.0 2.2

1.
4

1.
6

1.
8

2.
0

2.
2

Koerpergroessen

Vater

S
oh

n



Regression toward the mean

1.4 1.6 1.8 2.0 2.2

1.
4

1.
6

1.
8

2.
0

2.
2

Koerpergroessen

Vater

S
oh

n



Regression toward the mean

1.4 1.6 1.8 2.0 2.2

1.
4

1.
6

1.
8

2.
0

2.
2

Koerpergroessen

Vater

S
oh

n



Regression toward the mean

1.4 1.6 1.8 2.0 2.2

1.
4

1.
6

1.
8

2.
0

2.
2

Koerpergroessen

Vater

S
oh

n



Regression toward the mean

1.4 1.6 1.8 2.0 2.2

1.
4

1.
6

1.
8

2.
0

2.
2

Koerpergroessen

Vater

S
oh

n



Regression toward the mean

1.4 1.6 1.8 2.0 2.2

1.
4

1.
6

1.
8

2.
0

2.
2

Koerpergroessen

Vater

S
oh

n



Regression toward the mean

Similar effects

I In sports: The champion of the season will tend to fail the
high expectations in the next year.

I In school: If the worst 10% of the students get extra lessons
and are not the worst 10% in the next year, then this does
not proof that the extra lessons are useful.
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Univariate linear regression: how and why?

photo (c) by Jörg Hempel

Griffon Vulture
Gypus fulvus
German:
Gänsegeier

http://commons.wikimedia.org/wiki/File:Gyps_fulvus_LC0197.jpg


Univariate linear regression: how and why?

Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy
metabolism, body temperature, and cardiac work in the
Griffon vulture Gyps vulvus - telemetric investigations in the
laboratory and in the field.
Zoology 102, Suppl. II: 15

I Data from Goethe-University, Group of Prof. Prinzinger
I Developed telemetric system for measuring heart beats of

flying birds

I Important for ecological questions: metabolic rate.
I metabolic rate can only be measured in the lab
I can we infer metabolic rate from heart beat frequency?
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Univariate linear regression: how and why?

vulture
day heartbpm metabol minTemp maxTemp medtemp

1 01.04./02.04. 70.28 11.51 -6 2 -2.0
2 01.04./02.04. 66.13 11.07 -6 2 -2.0
3 01.04./02.04. 58.32 10.56 -6 2 -2.0
4 01.04./02.04. 58.63 10.62 -6 2 -2.0
5 01.04./02.04. 58.05 9.52 -6 2 -2.0
6 01.04./02.04. 66.37 7.19 -6 2 -2.0
7 01.04./02.04. 62.43 8.78 -6 2 -2.0
8 01.04./02.04. 65.83 8.24 -6 2 -2.0
9 01.04./02.04. 47.90 7.47 -6 2 -2.0
10 01.04./02.04. 51.29 7.83 -6 2 -2.0
11 01.04./02.04. 57.20 9.18 -6 2 -2.0
. . . . . . .
. . . . . . .
. . . . . . .

(14 different days)



Univariate linear regression: how and why?

> model <- lm(metabol~heartbpm,data=vulture,
subset=day=="17.05.")

> summary(model)
Call:
lm(formula = metabol ~ heartbpm, data = vulture, subset = day ==

"17.05.")
Residuals:

Min 1Q Median 3Q Max
-2.2026 -0.2555 0.1005 0.6393 1.1834
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.73522 0.84543 -9.149 5.60e-08 ***
heartbpm 0.27771 0.01207 23.016 2.98e-14 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.912 on 17 degrees of freedom
Multiple R-squared: 0.9689, Adjusted R-squared: 0.9671
F-statistic: 529.7 on 1 and 17 DF, p-value: 2.979e-14
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Univariate linear regression: how and why?

define the regression line

y = â + b̂ · x

by minimizing the sum of squared residuals:

(â, b̂) = arg min
(a,b)

∑
i

(yi − (a + b · xi))
2

this is based on the model assumption that values a, b exist,
such that, for all data points (xi , yi) we have

yi = a + b · xi + εi ,

whereas all εi are independent and normally distributed with the
same variance σ2.



Univariate linear regression: how and why?

given data:

Y X
y1 x1

y2 x2

y3 x3
...

...

yn xn

Model: there are values
a, b, σ2 such that

y1 = a + b · x1 + ε1

y2 = a + b · x2 + ε2

y3 = a + b · x3 + ε3
...

...

yn = a + b · xn + εn

ε1, ε2, . . . , εn are independent ∼ N (0, σ2).

⇒ y1, y2, . . . , yn are independent yi ∼ N (a + b · xi , σ
2).

a, b, σ2 are unknown, but not random.
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Univariate linear regression: how and why?

We estimate a and b by computing

(â, b̂) := arg min
(a,b)

∑
i

(yi − (a + b · xi))
2.

Theorem
Compute â and b̂ by

b̂ =

∑
i(yi − ȳ) · (xi − x̄)∑

i(xi − x̄)2 =

∑
i yi · (xi − x̄)∑

i(xi − x̄)2

and
â = ȳ − b̂ · x̄ .

Please keep in mind:
The line y = â + b̂ · x goes through the center of gravity of the
cloud of points (x1, y1), (x2, y2), . . . , (xn, yn).
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(â, b̂) := arg min
(a,b)

∑
i

(yi − (a + b · xi))
2.

Theorem
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Univariate linear regression: how and why?

> model <- lm(metabol~heartbpm,data=vulture,
subset=day=="17.05.")

> summary(model)
Call:
lm(formula = metabol ~ heartbpm, data = vulture,

subset = day == "17.05.")
Residuals:

Min 1Q Median 3Q Max
-2.2026 -0.2555 0.1005 0.6393 1.1834
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.73522 0.84543 -9.149 5.60e-08 ***
heartbpm 0.27771 0.01207 23.016 2.98e-14 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.912 on 17 degrees of freedom
Multiple R-squared: 0.9689, Adjusted R-squared: 0.9671
F-statistic: 529.7 on 1 and 17 DF, p-value: 2.979e-14



Univariate linear regression: how and why?

Optimizing clutch sizes

Example:Cowpea weevil (also bruchid beetle)
Callosobruchus maculatus
German: Erbsensamenkäfer

Wilson, K. (1994) Evolution of clutch size in insects. II. A test
of static optimality models using the beetle Callosobruchus
maculatus (Coleoptera: Bruchidae).
Journal of Evolutionary Biology 7: 365–386.

How does survival probability depnend on clutch size?

Which clutch size optimizes the expected number of surviving
offspring?
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t-test for linear regression
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t-test for linear regression

Example: red deer (Cervus elaphus)

theory: femals can influence the sex of their offspring

Evolutionary stable strategy: weak animals may tend to have
female offspring, strong animals may tend to have male
offspring.

Clutton-Brock, T. H. , Albon, S. D., Guinness, F. E. (1986)
Great expectations: dominance, breeding success and
offspring sex ratios in red deer.
Anim. Behav. 34, 460-471.
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t-test for linear regression

> hind

rank ratiomales

1 0.01 0.41

2 0.02 0.15

3 0.06 0.12

4 0.08 0.04

5 0.08 0.33

6 0.09 0.37

. . .

. . .

. . .

52 0.96 0.81

53 0.99 0.47

54 1.00 0.67

CAUTION: Simulated data,
inspired by original paper
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t-test for linear regression

> mod <- lm(ratiomales~rank,data=hind)

> summary(mod)

Call:

lm(formula = ratiomales ~ rank, data = hind)

Residuals:

Min 1Q Median 3Q Max

-0.32798 -0.09396 0.02408 0.11275 0.37403

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.20529 0.04011 5.119 4.54e-06 ***

rank 0.45877 0.06732 6.814 9.78e-09 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.154 on 52 degrees of freedom

Multiple R-squared: 0.4717, Adjusted R-squared: 0.4616

F-statistic: 46.44 on 1 and 52 DF, p-value: 9.78e-09



t-test for linear regression

Model:
Y = a + b · X + ε mit ε ∼ N (0, σ2)

How to compute the significance of a relationship between the
explanatory trait X and the target variable Y ?

In other words: How can we test the null hypothesis b = 0?

We have estimated b by b̂ 6= 0. Could the true b be 0?

How large is the standard error of b̂?
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t-test for linear regression

t-test for b̂

Estimate σ2 by

s2 =

∑
i

(
yi − â− b̂ · xi

)2

n − 2
.

Then,
b̂ − b

s
/√∑

i (xi − x̄)2

is t-distributed with n − 2 degrees of freedom. Thus, we can
apply a t-test to test the null-hypothesis b = 0.
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Examples with transformed variables log-scaling brain sizes and body weights

Data example: typical body weight [kg] and and brain weight [g]
of 62 mammals species (and 3 dinosaurs)
> data
weight.kg. brain.weight.g species extinct

1 6654.00 5712.00 african elephant no
2 1.00 6.60 no
3 3.39 44.50 no
4 0.92 5.70 no
5 2547.00 4603.00 asian elephant no
6 10.55 179.50 no
7 0.02 0.30 no
8 160.00 169.00 no
9 3.30 25.60 cat no
10 52.16 440.00 chimpanzee no
11 0.43 6.40
. . . .
. . . .
. . . .

64 9400.00 70.00 Triceratops yes
65 87000.00 154.50 Brachiosaurus yes



Examples with transformed variables log-scaling brain sizes and body weights
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Examples with transformed variables log-scaling brain sizes and body weights
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Examples with transformed variables log-scaling brain sizes and body weights

> modell <- lm(brain.weight.g~weight.kg.,subset=extinct=="no")
> summary(modell)
Call:
lm(formula = brain.weight.g ~ weight.kg., subset = extinct ==

"no")
Residuals:

Min 1Q Median 3Q Max
-809.95 -87.43 -78.55 -31.17 2051.05
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 89.91213 43.58134 2.063 0.0434 *
weight.kg. 0.96664 0.04769 20.269 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 334.8 on 60 degrees of freedom
Multiple R-squared: 0.8726, Adjusted R-squared: 0.8704
F-statistic: 410.8 on 1 and 60 DF, p-value: < 2.2e-16



Examples with transformed variables log-scaling brain sizes and body weights

qqnorm(modell$residuals)
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Examples with transformed variables log-scaling brain sizes and body weights

plot(modell$fitted.values,modell$residuals)
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Examples with transformed variables log-scaling brain sizes and body weights

plot(modell$fitted.values,modell$residuals,log=’x’)
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Examples with transformed variables log-scaling brain sizes and body weights

plot(modell$model$weight.kg.,modell$residuals)
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Examples with transformed variables log-scaling brain sizes and body weights

plot(modell$model$weight.kg.,modell$residuals,log=’x’ )
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Examples with transformed variables log-scaling brain sizes and body weights

We see that the residuals’ varaince depends on the fitted values
(or the body weight): “heteroscadiscity”

The model assumes homoscedascity, i.e. the random deviations
must be (almost) independent of the explaining traits (body
weight) and the fitted values.
variance-stabilizing transformation:
can be rescale body- and brain size to make deviations
independent of variables
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Examples with transformed variables log-scaling brain sizes and body weights

We see that the residuals’ varaince depends on the fitted values
(or the body weight): “heteroscadiscity”
The model assumes homoscedascity, i.e. the random deviations
must be (almost) independent of the explaining traits (body
weight) and the fitted values.
variance-stabilizing transformation:
can be rescale body- and brain size to make deviations
independent of variables



Examples with transformed variables log-scaling brain sizes and body weights

Actually not so surprising: An elephant’s brain of typically 5 kg
can easily be 500 g lighter or heavier from individual to
individual. This can not happen for a mouse brain of typically
5 g. The latter will rather also vary by 10%, i.e. 0.5 g. Thus, the
variance is not additive but rather multiplicative:

brain mass = (expected brain mass) · random

We can convert this into something with additive randomness by
taking the log:

log(brain mass) = log(expected brain mass) + log(random)



Examples with transformed variables log-scaling brain sizes and body weights

> logmodell <- lm(log(brain.weight.g)~log(weight.kg.),subset=extinct=="no")
> summary(logmodell)

Call:
lm(formula = log(brain.weight.g) ~ log(weight.kg.), subset = extinct ==

"no")
Residuals:

Min 1Q Median 3Q Max
-1.68908 -0.51262 -0.05016 0.46023 1.97997

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.11067 0.09794 21.55 <2e-16 ***
log(weight.kg.) 0.74985 0.02888 25.97 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.7052 on 60 degrees of freedom
Multiple R-squared: 0.9183, Adjusted R-squared: 0.9169
F-statistic: 674.3 on 1 and 60 DF, p-value: < 2.2e-16



Examples with transformed variables log-scaling brain sizes and body weights

qqnorm(modell$residuals)
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Examples with transformed variables log-scaling brain sizes and body weights

plot(logmodell$fitted.values,logmodell$residuals)
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Examples with transformed variables log-scaling brain sizes and body weights

plot(logmodell$fitted.values,logmodell$residuals,log=’x’

)
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Examples with transformed variables log-scaling brain sizes and body weights

plot(weight.kg.[extinct==’no’],logmodell$residuals)
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Examples with transformed variables log-scaling brain sizes and body weights

plot(weight.kg.[extinct=’no’],logmodell$residuals,log=’x’

)
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Examples with transformed variables root of numbers of inhabitants and deaths

Contents
Regression toward the mean

Univariate linear regression: how and why?

t-test for linear regression

Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths

Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia

Cross validation and AIC



Examples with transformed variables root of numbers of inhabitants and deaths

Data: For 301 US-american (Counties) number of white female
inhabitants from 1960 and number of deaths by breast cancer in
this group between 1950 and 1960. (Rice (2007) Mathematical
Statistics and Data Analysis.)

> canc
deaths inhabitants

1 1 445
2 0 559
3 3 677
4 4 681
5 3 746
6 4 869
. . .
. . .
. . .

300 248 74005
301 360 88456



Examples with transformed variables root of numbers of inhabitants and deaths

Is the average number of deaths proportional to population size,
i.e.

Edeaths = b · inhabitants

or does the cancer risk depend on the size of the county, such
that a different model fits better? e.g.

Edeaths = a + b · inhabitants

with a 6= 0.



Examples with transformed variables root of numbers of inhabitants and deaths

> modell <- lm(deaths~inhabitants,data=canc)
> summary(modell)
Call:
lm(formula = deaths ~ inhabitants, data = canc)
Residuals:

Min 1Q Median 3Q Max
-66.0215 -4.1279 0.6769 5.2357 87.2989
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.261e-01 9.692e-01 -0.543 0.588
inhabitants 3.578e-03 5.446e-05 65.686 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 13 on 299 degrees of freedom
Multiple R-squared: 0.9352, Adjusted R-squared: 0.935
F-statistic: 4315 on 1 and 299 DF, p-value: < 2.2e-16



Examples with transformed variables root of numbers of inhabitants and deaths

The intercept is estimated to -0.526, but not significantly
different from 0.

Thus we cannot reject the null hypothesis that the county size
has no influence on the cancer risk.
But.. does the model fit?
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Examples with transformed variables root of numbers of inhabitants and deaths

The intercept is estimated to -0.526, but not significantly
different from 0.
Thus we cannot reject the null hypothesis that the county size
has no influence on the cancer risk.
But.. does the model fit?



Examples with transformed variables root of numbers of inhabitants and deaths

qqnorm(modell$residuals)
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Examples with transformed variables root of numbers of inhabitants and deaths

plot(modell$fitted.values,modell$residuals)
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Examples with transformed variables root of numbers of inhabitants and deaths

plot(modell$fitted.values,modell$residuals,log=’x’)
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Examples with transformed variables root of numbers of inhabitants and deaths

plot(canc$inhabitants,modell$residuals,log=’x’)
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Examples with transformed variables root of numbers of inhabitants and deaths

The variance of the residuals depends on the fitted values.
Heteroscedasticity

The linear model assumgs Homoscedasticity.
Variance Stabilizing Transformation:
How can we rescale the population size such that we obtain
homoscedastic data?
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Examples with transformed variables root of numbers of inhabitants and deaths

Where does the variance come from?

If n is the number of white female inhabitants and p the
individual probability to die by breast cancer within 10 years,
then np is the expected number of deaths and the variance is

n · p · (1− p) ≈ n · p

(Maybe approximate binomial by Poisson). Standard deviation:√
n · p.

In this case we can approximately stabilize variance by taking
the root on both sides of the equation.
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Examples with transformed variables root of numbers of inhabitants and deaths

Explanation:
√

y = b ·
√

x + ε

⇒ y = (b ·
√

x + ε)2

= b2 · x + 2 · b ·
√

x · ε + ε2

SD is not exactly proportional to
√

x , but at least 2 · b ·
√

x · ε has
SD prop. to

√
x , namely 2 · b ·

√
x · σ. The Term ε2 is the σ2-fold

of a χ2
1-distributed random variable and has SD=σ2 ·

√
2. If σ is

small compared to b ·
√

x , the approximation

y ≈ b2 · x + 2 · b ·
√

x · ε

is reasonable and the SD of y is approximately proportional to√
x .



Examples with transformed variables root of numbers of inhabitants and deaths

> modellsq <- lm(sqrt(deaths)~sqrt(inhabitants),data=canc)
> summary(modellsq)
Call:
lm(formula = sqrt(deaths) ~ sqrt(inhabitants), data = canc)
Residuals:

Min 1Q Median 3Q Max
-3.55639 -0.51900 0.06204 0.54277 2.99434
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0664320 0.0974338 0.682 0.496
sqrt(inhabitants) 0.0583722 0.0009171 63.651 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.8217 on 299 degrees of freedom
Multiple R-squared: 0.9313, Adjusted R-squared: 0.931
F-statistic: 4051 on 1 and 299 DF, p-value: < 2.2e-16



Examples with transformed variables root of numbers of inhabitants and deaths

qqnorm(modell$residuals)
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Examples with transformed variables root of numbers of inhabitants and deaths

plot(modellsq$fitted.values,modellsq$residuals,log=’x’)

plot(canc$inhabitants,modellsq$residuals,log=’x’)
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Examples with transformed variables root of numbers of inhabitants and deaths

The qqnorm plot is not perfect by at least the variance is
stabilized.

The result remains the same: No significant relation between
county size and breast cancer death risk.
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Multivariate Regression

Contents
Regression toward the mean

Univariate linear regression: how and why?

t-test for linear regression

Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths

Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia

Cross validation and AIC
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Multivariate Regression

Multivariate Regression
Problem: Predict Y from X1, X2,. . . ,Xm.

Observations:

Y1 , X11, X21, . . . , Xm1

Y2 , X12, X22, . . . , Xm2
...

...
Yn , X1n, X2n, . . . , Xmn

Model: Y = a + b1 · X1 + b2 · X2 + · · ·+ bm · Xm + ε
Equation system to determine a, b1, b2, . . . , bm:

Y1 = a + b1 · X11 + b2 · X21 + . . . + bm · Xm1 + ε1

Y2 = a + b1 · X12 + b2 · X22 + . . . + bm · Xm2 + ε2
...

...
...

...
...

...
...

... . . . ...
...

...
...

Yn = a + b1 · X1n + bn · X2n + . . . + bm · Xmn + εn
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Multivariate Regression

Model:

Y1 = a + b1 · X11 + b2 · X21 + . . . + bm · Xm1 + ε1

Y2 = a + b1 · X12 + b2 · X22 + . . . + bm · Xm2 + ε2
...

...
...

...
...

...
...

... . . . ...
...

...
...

Yn = a + b1 · X1n + bn · X2n + . . . + bm · Xmn + εn

target variable Y
explanatory variables X1, X2, . . . , Xm

parameter to be estimated a, b1, . . . , bm

independent normally distributed pertubations ε1, . . . , εm with
unknown variance σ2.



Multivariate Regression Example: species richness on sandy beaches

Contents
Regression toward the mean
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t-test for linear regression

Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths

Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia

Cross validation and AIC



Multivariate Regression Example: species richness on sandy beaches

I Which factors influence the species richness on sandy
beaches?

I Data from the dutch National Institute for Coastal and
Marine Management Rijkswaterstaat/RIKZ

I see also

Zuur, Ieno, Smith (2007) Analysing Ecological Data.
Springer



Multivariate Regression Example: species richness on sandy beaches

richness angle2 NAP grainsize humus week

1 11 96 0.045 222.5 0.05 1

2 10 96 -1.036 200.0 0.30 1

3 13 96 -1.336 194.5 0.10 1

4 11 96 0.616 221.0 0.15 1

. . . . . . .

. . . . . . .

21 3 21 1.117 251.5 0.00 4

22 22 21 -0.503 265.0 0.00 4

23 6 21 0.729 275.5 0.10 4

. . . . . . .

. . . . . . .

43 3 96 -0.002 223.0 0.00 3

44 0 96 2.255 186.0 0.05 3

45 2 96 0.865 189.5 0.00 3



Multivariate Regression Example: species richness on sandy beaches

Meaning of the Variables

richness Number of species that were found in a plot.
angle2 slope of the beach a the plot

NAP altitude of the plot compared to the mean sea level.
grainsize average diameter of sand grains

humus fraction of organic material
week in which of 4 was this plot probed.

(many more variables in original data set)



Multivariate Regression Example: species richness on sandy beaches

Model 0:

richness = a + b1 · angle2 + b2 · NAP + b3 · grainsize +

+b4 · humus + ε

in R notation:
richness ∼ angle2 + NAP + grainsize + humus
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Multivariate Regression Example: species richness on sandy beaches

> modell0 <- lm(richness ~ angle2+NAP+grainsize+humus,
+ data = rikz)
> summary(modell0)
Call:
lm(formula = richness ~ angle2 + NAP + grainsize + humus, data = rikz)
Residuals:

Min 1Q Median 3Q Max
-4.6851 -2.1935 -0.4218 1.6753 13.2957
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.35322 5.71888 3.209 0.00262 **
angle2 -0.02277 0.02995 -0.760 0.45144
NAP -2.90451 0.59068 -4.917 1.54e-05 ***
grainsize -0.04012 0.01532 -2.619 0.01239 *
humus 11.77641 9.71057 1.213 0.23234
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 3.644 on 40 degrees of freedom
Multiple R-squared: 0.5178, Adjusted R-squared: 0.4696
F-statistic: 10.74 on 4 and 40 DF, p-value: 5.237e-06



Multivariate Regression Example: species richness on sandy beaches

I e.g. -2.90451 is the estimator for b2, the coefficient of NAP

I The p value Pr(>|t|) refers to the null hypothesis that the
true parameter value may be 0, i.e. the (potentially)
explanatory variable (e.g. NAP) has actually no effect on the
target variable (the species richness).

I NAP is judged to be highly significant, grainsize also.
I Is there a significant week effect?
I Not the number 1,2,3,4 of the week should be multiplied

with a coefficient. Instead, the numbers are taken as a
non-numerical factor, i.e. each of the weeks 2,3,4 get a
parameter that describes how much the species richness is
increased compared to week 1.

I In R this is done by changing week into a factor.
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Multivariate Regression Example: species richness on sandy beaches

Model 0:

richness = a + b1 · angle2 + b2 · NAP + b3 · grainsize +

+b4 · humus +

b5 · Iweek=2 + b6 · Iweek=3 + b7 · Iweek=4 + ε

Iweek=k is a so-called indicator variable which is 1 if week= k and
0 otherwise.

e.g. b7 describes, by how much the species richness in an
average plot probed in week 3 is increased compared to week 1.

in R notation:
richness ∼ angle2 + NAP + grainsize + humus +

factor(week)



Multivariate Regression Example: species richness on sandy beaches

Model 0:

richness = a + b1 · angle2 + b2 · NAP + b3 · grainsize +

+b4 · humus +

b5 · Iweek=2 + b6 · Iweek=3 + b7 · Iweek=4 + ε

Iweek=k is a so-called indicator variable which is 1 if week= k and
0 otherwise.

e.g. b7 describes, by how much the species richness in an
average plot probed in week 3 is increased compared to week 1.

in R notation:
richness ∼ angle2 + NAP + grainsize + humus +

factor(week)



Multivariate Regression Example: species richness on sandy beaches

Model 0:
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Multivariate Regression Example: species richness on sandy beaches

> modell <- lm(richness ~ angle2+NAP+grainsize+humus

+ +factor(week), data = rikz)

> summary(modell)

.

.

.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.298448 7.967002 1.167 0.250629

angle2 0.016760 0.042934 0.390 0.698496

NAP -2.274093 0.529411 -4.296 0.000121 ***

grainsize 0.002249 0.021066 0.107 0.915570

humus 0.519686 8.703910 0.060 0.952710

factor(week)2 -7.065098 1.761492 -4.011 0.000282 ***

factor(week)3 -5.719055 1.827616 -3.129 0.003411 **

factor(week)4 -1.481816 2.720089 -0.545 0.589182

---



Multivariate Regression Example: species richness on sandy beaches

I Obviously, in weeks 2 and 3 significantly less species were
found than in week 1, which is our reference point here.

I The estimated Intercept is thus the expected species
richness in week 1 in a plot where all other parameters take
the value 0.

I An alternative representation without Intercept takes 0 as
reference point.
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I Obviously, in weeks 2 and 3 significantly less species were
found than in week 1, which is our reference point here.

I The estimated Intercept is thus the expected species
richness in week 1 in a plot where all other parameters take
the value 0.

I An alternative representation without Intercept takes 0 as
reference point.



Multivariate Regression Example: species richness on sandy beaches

> modell.alternativ <- lm(richness ~ angle2+NAP+

+ grainsize+humus+factor(week)-1, data = rikz)

> summary(modell.alternativ)

.

.

.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

angle2 0.016760 0.042934 0.390 0.698496

NAP -2.274093 0.529411 -4.296 0.000121 ***

grainsize 0.002249 0.021066 0.107 0.915570

humus 0.519686 8.703910 0.060 0.952710

factor(week)1 9.298448 7.967002 1.167 0.250629

factor(week)2 2.233349 8.158816 0.274 0.785811

factor(week)3 3.579393 8.530193 0.420 0.677194

factor(week)4 7.816632 6.522282 1.198 0.238362



Multivariate Regression Example: species richness on sandy beaches

the p values refer to the question whether the four intercepts for
the different weeks are significantly different from 0.
The four p values refer to the null hypotheses that the additive
parameter of a week is 0.



Multivariate Regression Example: species richness on sandy beaches

How do we test whether there is a difference between the
weeks?

We saw before that weeks 2 and 3 are significantly different
from week 1. However, the p value refers to the situation of
single testing.

If we perform pairwise test for the weeks, we end up with
(4

2

)
= 6

tests.

Bonferroni correction: Multiply each p value with the number of
tests performed, in our case 6.
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Multivariate Regression Example: species richness on sandy beaches

Bonferroni correction

Problem: If you perform many tests, some of them will reject
the null hypothesis even if the null hypothesis is true.

Example: If you perform 20 tests where the null hypothesis is
actually true, then on average 1 test will falsly reject
the null hypothesis on the 5% level.

Bonferroni correction: Multiply all p values with the number of
tests performed. Reject the null hypotheses where
the result is still smaller than the significance level.

Disadvantage: Conservative: Often, the null hypothies cannot
be rejected even it is not true (type-2-error).
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Multivariate Regression Example: species richness on sandy beaches

Alternative: Test whether there is a week effect by using an
analysis of variance (anova) to compare a model with week
effect to a model without week effect.

Only works for nested models, i.e. the simpler model can be
obtained by restricting some parameters of the richer model to
certain values or equations. In our case: “all week summands
are equal”.
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Multivariate Regression Example: species richness on sandy beaches

> modell0 <- lm(richness ~ angle2+NAP+grainsize+humus,
+ data = rikz)
> modell <- lm(richness ~ angle2+NAP+grainsize+humus
+ +factor(week), data = rikz)
> anova(modell0, modell)
Analysis of Variance Table

Model 1: richness ~ angle2 + NAP + grainsize + humus
Model 2: richness ~ angle2 + NAP + grainsize + humus + factor(week)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 40 531.17
2 37 353.66 3 177.51 6.1902 0.00162 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Multivariate Regression Example: species richness on sandy beaches

We reject the null hypothesis that the weeks have no effect with
a p-value of 0.00162.

But wait! We can only do that if the more complex model fits well
to the data. We check this graphically.
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Multivariate Regression Example: species richness on sandy beaches

plot(modell)
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Multivariate Regression Example: species richness on sandy beaches

Probes 22, 42, and 9 are considered as outliers.

Can we explain this by taking more parameters into account or
are these real outliers, which are atypical and must be analysed
separately.
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Probes 22, 42, and 9 are considered as outliers.

Can we explain this by taking more parameters into account or
are these real outliers, which are atypical and must be analysed
separately.



Multivariate Regression Example: species richness on sandy beaches

Is there an interaction between NAP and angle2?

richness = a + b1 · angle2 + b2 · NAP + b3 · grainsize +

+b4 · humus +

+b5 · Iweek=2 + b6 · Iweek=3 + b7 · Iweek=4

b8 · angle2 · NAP + ε

in R notation:
richness ∼ angle2 + NAP + angle2:NAP+grainsize + humus

+ factor(week)

short-cut:
richness ∼ angle2*NAP+grainsize + humus + factor(week)
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Multivariate Regression Example: species richness on sandy beaches

> modell3 <- lm(richness ~ angle2*NAP+grainsize+humus

+ +factor(week), data = rikz)

> summary(modell3)

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.438985 8.148756 1.281 0.208366

angle2 0.007846 0.044714 0.175 0.861697

NAP -3.011876 1.099885 -2.738 0.009539 **

grainsize 0.001109 0.021236 0.052 0.958658

humus 0.387333 8.754526 0.044 0.964955

factor(week)2 -7.444863 1.839364 -4.048 0.000262 ***

factor(week)3 -6.052928 1.888789 -3.205 0.002831 **

factor(week)4 -1.854893 2.778334 -0.668 0.508629

angle2:NAP 0.013255 0.017292 0.767 0.448337

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Multivariate Regression Example: species richness on sandy beaches

Different types of ANOVA tables

If you apply the R command anova to a single model, the variables are
added consecutively in the same order as in the command. Each p
value refers to the test wether the model gets significantly better by
adding the variable to only those that are listed above the variable. In
contrast to this, the p values that are given by summary or by dropterm

from the MASS library always compare the model to a model where
only the corresponding variable is set to 0 and all other variables can
take any values. The p values given by anova thus depend on the
order in which the variables are given in the command. This is not the
case for summary and dropterm. The same options exist in other
software packages, sometimes under the names “type I analysis” and
“type II analysis”.



Multivariate Regression Example: species richness on sandy beaches

The same model is specified twice:

> modellA <- lm(richness ~ angle2+NAP+humus

+ +factor(week)+grainsize,data = rikz)

> modellB <- lm(richness ~ angle2+grainsize

+ +NAP+humus+factor(week), data = rikz)

Look at the p-valus of grainsize



Multivariate Regression Example: species richness on sandy beaches

> anova(modellA)

Analysis of Variance Table

Response: richness

Df Sum Sq Mean Sq F value Pr(>F)

angle2 1 124.86 124.86 13.0631 0.0008911 ***

NAP 1 319.32 319.32 33.4071 1.247e-06 ***

humus 1 35.18 35.18 3.6804 0.0627983 .

factor(week) 3 268.51 89.50 9.3638 9.723e-05 ***

grainsize 1 0.11 0.11 0.0114 0.9155704

Residuals 37 353.66 9.56

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Multivariate Regression Example: species richness on sandy beaches

> anova(modellB)

Analysis of Variance Table

Response: richness

Df Sum Sq Mean Sq F value Pr(>F)

angle2 1 124.86 124.86 13.0631 0.00089 ***

grainsize 1 35.97 35.97 3.7636 0.06003 .

NAP 1 390.11 390.11 40.8127 1.8e-07 ***

humus 1 19.53 19.53 2.0433 0.16127

factor(week) 3 177.51 59.17 6.1902 0.00162 **

Residuals 37 353.66 9.56

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Multivariate Regression Example: species richness on sandy beaches

> library(MASS)
> dropterm(modellA,test="F")
Single term deletions

Model:
richness ~ angle2 + NAP + humus + factor(week) + grainsize

Df Sum of Sq RSS AIC F Value Pr(F)
<none> 353.66 108.78
angle2 1 1.46 355.12 106.96 0.15 0.6984
NAP 1 176.37 530.03 124.98 18.45 0.0001 ***
humus 1 0.03 353.70 106.78 0.003565 0.9527
factor(week)3 177.51 531.17 121.08 6.19 0.0016 **
grainsize 1 0.11 353.77 106.79 0.01 0.9155
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Multivariate Regression Example: species richness on sandy beaches

> dropterm(modellB,test="F")

Single term deletions

Model:

richness ~ angle2 + grainsize + NAP + humus + factor(week)

Df Sum of Sq RSS AIC F Value Pr(F)

<none> 353.66 108.78

angle2 1 1.46 355.12 106.96 0.15 0.6984

grainsize 1 0.11 353.77 106.79 0.01 0.9155

NAP 1 176.37 530.03 124.98 18.45 0.0001 ***

humus 1 0.03 353.70 106.78 0.003565 0.9527

factor(week)3 177.51 531.17 121.08 6.19 0.0016 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Multivariate Regression Example: species richness on sandy beaches

> summary(modellA)

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.298448 7.967002 1.167 0.2506

angle2 0.016760 0.042934 0.390 0.6984

NAP -2.274093 0.529411 -4.296 0.0001 ***

humus 0.519686 8.703910 0.060 0.9527

factor(week)2 -7.065098 1.761492 -4.011 0.0002 ***

factor(week)3 -5.719055 1.827616 -3.129 0.0034 **

factor(week)4 -1.481816 2.720089 -0.545 0.5891

grainsize 0.002249 0.021066 0.107 0.9155

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Multivariate Regression Example: species richness on sandy beaches

> summary(modellB)

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.298448 7.967002 1.167 0.2506

angle2 0.016760 0.042934 0.390 0.6984

grainsize 0.002249 0.021066 0.107 0.9155

NAP -2.274093 0.529411 -4.296 0.0001 ***

humus 0.519686 8.703910 0.060 0.9527

factor(week)2 -7.065098 1.761492 -4.011 0.0002 ***

factor(week)3 -5.719055 1.827616 -3.129 0.0034 **

factor(week)4 -1.481816 2.720089 -0.545 0.5891

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Multivariate Regression Example: Success of different therapies
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Multivariate Regression Example: Success of different therapies

For young anorexia patients the effect of family therapy (FT) and
cognitive behavioral therapy (CBT) is compared to a control
group (Cont) by comparing the weight before (Prewt) and after
(Postwt) the treatment (Treat).

Hand, D. J., Daly, F., McConway, K., Lunn, D. and Ostrowski,
E. eds (1993) A Handbook of Small Data Sets. Chapman &
Hall



Multivariate Regression Example: Success of different therapies

Model lm1 There is a linear relation with the pre-weight. Each
treatment changes the weight by a value that
depends on the treatment but not on the treatment.

Model lm2 Interaction between Treatment und Preweight: The
effect of the pre-weight depends on the kind of
treatment.
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Multivariate Regression Example: Success of different therapies

> lm1 <- lm(Postwt~Prewt+Treat,anorexia)

> lm2 <- lm(Postwt~Prewt*Treat,anorexia)

> anova(lm1,lm2)

Analysis of Variance Table

Model 1: Postwt ~ Prewt + Treat

Model 2: Postwt ~ Prewt * Treat

Res.Df RSS Df Sum of Sq F Pr(>F)

1 68 3311.3

2 66 2844.8 2 466.5 5.4112 0.006666 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Multivariate Regression Example: Success of different therapies

result: the more camplex model fits significantly better than
the nested model.

interpretation: The role of the weight before the treatment
depends on the type of the treatment.
or: The difference between effects of the treatments
depends on the weight before the treetment.
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Multivariate Regression Example: Daphnia

> daph <- read.table("daphnia_justina.csv",h=T)

> daph

counts foodlevel species

1 68 high magna

2 54 high magna

3 59 high magna

4 24 high galeata

5 27 high galeata

6 16 high galeata

7 20 low magna

8 18 low magna

9 18 low magna

10 5 low galeata

11 8 low galeata

12 9 low galeata



Multivariate Regression Example: Daphnia

> mod1 <- lm(counts~foodlevel+species,data=daph)

> mod2 <- lm(counts~foodlevel*species,data=daph)

> anova(mod1,mod2)

Analysis of Variance Table

Model 1: counts ~ foodlevel + species

Model 2: counts ~ foodlevel * species

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 710.00

2 8 176.67 1 533.33 24.151 0.001172 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Multivariate Regression Example: Daphnia

> summary(mod2)
[...]
Coefficients:

Estimate Std.Error t.value Pr(>|t|)
(Intercept) 22.33 2.713 8.232 3.55e-05 ***
countslow -15.00 3.837 -3.909 0.00449 **
foodlevelmagna 38.00 3.837 9.904 9.12e-06 ***
countslow:foodlevelmagna -26.67 5.426 -4.914 0.00117 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.699 on 8 degrees of freedom
Multiple R-squared: 0.9643, Adjusted R-squared: 0.9509
F-statistic: 71.95 on 3 and 8 DF, p-value: 3.956e-06



Multivariate Regression Example: Daphnia

result: the more complex model, in which different species react
differently to low food level, fits significantly better.

But can we really assume normal distribution on numbers like 5,
8, 9...?

We will come back to this in the Lecture about GLMs.
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Cross validation and AIC

How to predict the winglength of a Darwin finch by its beak size?

Shall we take beak height, beak length or both into account?
Residual variance should be small....

Leave-one-out cross validation: If you leave out one bird and
fit the model to the others, how well can this model predict the
wing span?

prederrorHL <- numeric()

for (i in 1:46) {

selection <- rep(TRUE,46)

selection[i] <- FALSE

modHL.R <- lm(WingL~N.UBkL+BeakH,data=finchdata,

subset=selection)

prederrorHL[i]=WingL[i]-predict(modHL.R,finchdata[i,])

}
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Cross validation and AIC

Height Length Height and Length
σ(Residuals) 3.83 4.78 3.79

d = (Number Parameters) 2 2 3

σ(Residuals)·
√

n−1
n−d 3.86 4.84 3.87

cross validation. 3.96 4.97 3.977
AIC 259.0 279.5 260.1
BIC 264.4 285.0 267.4

Akaike’s Information Criterion:

AIC = −2 · log L + 2 · (NumberofParameters)

Bayesian Information Criterion:

BIC = −2 · log L + log(n) · (NumberofParameters)
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