Multivariate Statistics in Ecology and Quantitative Genetics
 3. Linear Regression and Linear Models

Dirk Metzler \& Martin Hutzenthaler

http://evol.bio.lmu.de/StatGen.html

19. Mai 2010

Contents

Regression toward the mean
Univariate linear regression: how and why?
t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights root of numbers of inhabitants and deaths

Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia
Cross validation and AIC

Origin of the word "Regression"

Sir Francis Galton (1822-1911): Regression toward the mean.

Origin of the word "Regression"

Sir Francis Galton (1822-1911): Regression toward the mean.

Tall fathers tend to have sons that are slightly smaller than the fathers. Sons of small fathers are on average larger than their fathers.

Similar effects

- In sports: The champion of the season will tend to fail the high expectations in the next year.

Similar effects

- In sports: The champion of the season will tend to fail the high expectations in the next year.
- In school: If the worst 10% of the students get extra lessons and are not the worst 10% in the next year, then this does not proof that the extra lessons are useful.

Contents

Regression toward the mean

Univariate linear regression: how and why?

t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia
Cross validation and AIC

Griffon Vulture Gypus fulvus German: Gänsegeier

圆 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field. Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds

圆 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds
- Important for ecological questions: metabolic rate.

围 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds
- Important for ecological questions: metabolic rate.
- metabolic rate can only be measured in the lab

回 Prinzinger, R., E. Karl, R. Bögel, Ch. Walzer (1999): Energy metabolism, body temperature, and cardiac work in the Griffon vulture Gyps vulvus - telemetric investigations in the laboratory and in the field.
Zoology 102, Suppl. II: 15

- Data from Goethe-University, Group of Prof. Prinzinger
- Developed telemetric system for measuring heart beats of flying birds
- Important for ecological questions: metabolic rate.
- metabolic rate can only be measured in the lab
- can we infer metabolic rate from heart beat frequency?
griffon vulture, 17.05.99, 16 degrees C

griffon vulture, 17.05.99, 16 degrees C

vulture

day heartbpm metabol minTemp maxTemp medtemp

1	$01.04 . / 02.04$.	70.28	11.51	-6	2	-2.0
2	$01.04 . / 02.04$.	66.13	11.07	-6	2	-2.0
3	$01.04 . / 02.04$.	58.32	10.56	-6	2	-2.0
4	$01.04 . / 02.04$.	58.63	10.62	-6	2	-2.0
5	$01.04 . / 02.04$.	58.05	9.52	-6	2	-2.0
6	$01.04 . / 02.04$.	66.37	7.19	-6	2	-2.0
7	$01.04 . / 02.04$.	62.43	8.78	-6	2	-2.0
8	$01.04 . / 02.04$.	65.83	8.24	-6	2	-2.0
9	$01.04 . / 02.04$.	47.90	7.47	-6	2	-2.0
10	$01.04 . / 02.04$.	51.29	7.83	-6	2	-2.0
11	$01.04 . / 02.04$.	57.20	9.18	-6	2	-2.0

(14 different days)

```
> model <- lm(metabol~heartbpm,data=vulture,
    subset=day=="17.05.")
```

> summary(model)
Call:
lm(formula $=$ metabol \sim heartbpm, data $=$ vulture, subset $=$ day
"17.05.")

Residuals:

Min	1Q	Median	3Q	Max
-2.2026	-0.2555	0.1005	0.6393	1.1834

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
(Intercept)	-7.73522	0.84543	-9.149	5.60e-08	***
heartbpm	0.27771	0.01207	23.016	$2.98 \mathrm{e}-14$	***

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. 0.11 Residual standard error: 0.912 on 17 degrees of freedom Multiple R-squared: 0.9689, Adjusted R-squared: 0.9671 F-statistic: 529.7 on 1 and 17 DF , p-value: $2.979 \mathrm{e}-14$

Univariate linear regression: how and why?

Univariate linear regression: how and why?

Univariate linear regression: how and why?

Univariate linear regression: how and why?

the line must minimize the sum of squared residuals

define the regression line

$$
y=\hat{a}+\hat{b} \cdot x
$$

by minimizing the sum of squared residuals:

$$
(\hat{a}, \hat{b})=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2}
$$

this is based on the model assumption that values a, b exist, such that, for all data points $\left(x_{i}, y_{i}\right)$ we have

$$
y_{i}=a+b \cdot x_{i}+\varepsilon_{i}
$$

whereas all ε_{i} are independent and normally distributed with the same variance σ^{2}.

given data:

\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

given data:

\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

Model: there are values a, b, σ^{2} such that

$$
\begin{aligned}
y_{1}= & a+b \cdot x_{1}+\varepsilon_{1} \\
y_{2}= & a+b \cdot x_{2}+\varepsilon_{2} \\
y_{3}= & a+b \cdot x_{3}+\varepsilon_{3} \\
\vdots & \vdots \\
y_{n}= & a+b \cdot x_{n}+\varepsilon_{n}
\end{aligned}
$$

given data:

\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

Model: there are values a, b, σ^{2} such that

$$
\begin{aligned}
y_{1}= & a+b \cdot x_{1}+\varepsilon_{1} \\
y_{2}= & a+b \cdot x_{2}+\varepsilon_{2} \\
y_{3}= & a+b \cdot x_{3}+\varepsilon_{3} \\
\vdots & \vdots \\
y_{n}= & a+b \cdot x_{n}+\varepsilon_{n}
\end{aligned}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are independent $\sim \mathcal{N}\left(0, \sigma^{2}\right)$.

given data:

\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

Model: there are values a, b, σ^{2} such that

$$
\begin{aligned}
y_{1}= & a+b \cdot x_{1}+\varepsilon_{1} \\
y_{2}= & a+b \cdot x_{2}+\varepsilon_{2} \\
y_{3}= & a+b \cdot x_{3}+\varepsilon_{3} \\
\vdots & \vdots \\
y_{n}= & a+b \cdot x_{n}+\varepsilon_{n}
\end{aligned}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are independent $\sim \mathcal{N}\left(0, \sigma^{2}\right)$.
$\Rightarrow y_{1}, y_{2}, \ldots, y_{n}$ are independent $y_{i} \sim \mathcal{N}\left(a+b \cdot x_{i}, \sigma^{2}\right)$.

given data:	
\mathbf{Y}	\mathbf{X}
y_{1}	x_{1}
y_{2}	x_{2}
y_{3}	x_{3}
\vdots	\vdots
y_{n}	x_{n}

Model: there are values a, b, σ^{2} such that

$$
\begin{aligned}
y_{1}= & a+b \cdot x_{1}+\varepsilon_{1} \\
y_{2}= & a+b \cdot x_{2}+\varepsilon_{2} \\
y_{3}= & a+b \cdot x_{3}+\varepsilon_{3} \\
\vdots & \vdots \\
y_{n}= & a+b \cdot x_{n}+\varepsilon_{n}
\end{aligned}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are independent $\sim \mathcal{N}\left(0, \sigma^{2}\right)$.
$\Rightarrow y_{1}, y_{2}, \ldots, y_{n}$ are independent $y_{i} \sim \mathcal{N}\left(a+b \cdot x_{i}, \sigma^{2}\right)$.
a, b, σ^{2} are unknown, but not random.

We estimate a and b by computing

$$
(\hat{a}, \hat{b}):=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2} .
$$

We estimate a and b by computing

$$
(\hat{a}, \hat{b}):=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2} .
$$

Theorem
Compute an and \hat{b} by

$$
\hat{b}=\frac{\sum_{i}\left(y_{i}-\bar{y}\right) \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i} y_{i} \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

and

$$
\hat{a}=\bar{y}-\hat{b} \cdot \bar{x} .
$$

We estimate a and b by computing

$$
(\hat{a}, \hat{b}):=\arg \min _{(a, b)} \sum_{i}\left(y_{i}-\left(a+b \cdot x_{i}\right)\right)^{2} .
$$

Theorem
Compute and \hat{b} by

$$
\hat{b}=\frac{\sum_{i}\left(y_{i}-\bar{y}\right) \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i} y_{i} \cdot\left(x_{i}-\bar{x}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
$$

and

$$
\hat{a}=\bar{y}-\hat{b} \cdot \bar{x} .
$$

Please keep in mind:

The line $y=\hat{a}+\hat{b} \cdot x$ goes through the center of gravity of the cloud of points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.

vulture

day heartbpm metabol minTemp maxTemp medtemp

1	$01.04 . / 02.04$.	70.28	11.51	-6	2	-2.0
2	$01.04 . / 02.04$.	66.13	11.07	-6	2	-2.0
3	$01.04 . / 02.04$.	58.32	10.56	-6	2	-2.0
4	$01.04 . / 02.04$.	58.63	10.62	-6	2	-2.0
5	$01.04 . / 02.04$.	58.05	9.52	-6	2	-2.0
6	$01.04 . / 02.04$.	66.37	7.19	-6	2	-2.0
7	$01.04 . / 02.04$.	62.43	8.78	-6	2	-2.0
8	$01.04 . / 02.04$.	65.83	8.24	-6	2	-2.0
9	$01.04 . / 02.04$.	47.90	7.47	-6	2	-2.0
10	$01.04 . / 02.04$.	51.29	7.83	-6	2	-2.0
11	$01.04 . / 02.04$.	57.20	9.18	-6	2	-2.0

(14 different days)
> model <- lm(metabol~heartbpm,data=vulture,
subset=day=="17.05.")
> summary(model)
Call:

```
lm(formula = metabol ~ heartbpm, data = vulture,
    subset = day == "17.05.")
```

Residuals:

Min	1Q	Median	3Q	Max
-2.2026	-0.2555	0.1005	0.6393	1.1834

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	-7.73522	0.84543	-9.149	$5.60 \mathrm{e}-08 * * *$	
heartbpm	0.27771	0.01207	23.016	$2.98 \mathrm{e}-14$	$* * *$

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11 Residual standard error: 0.912 on 17 degrees of freedom Multiple R-squared: 0.9689, Adjusted R-squared: 0.9671 F-statistic: 529.7 on 1 and 17 DF, p-value: 2.979e-14

Optimizing clutch sizes

Example:Cowpea weevil (also bruchid beetle)
Callosobruchus maculatus
German: Erbsensamenkäfer
击 Wilson, K. (1994) Evolution of clutch size in insects. II. A test of static optimality models using the beetle Callosobruchus maculatus (Coleoptera: Bruchidae).
Journal of Evolutionary Biology 7: 365-386.
How does survival probability depnend on clutch size?

Optimizing clutch sizes

Example:Cowpea weevil (also bruchid beetle)
Callosobruchus maculatus
German: Erbsensamenkäfer
围 Wilson, K. (1994) Evolution of clutch size in insects. II. A test of static optimality models using the beetle Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Evolutionary Biology 7: 365-386.
How does survival probability depnend on clutch size?
Which clutch size optimizes the expected number of surviving offspring?

Contents

Regression toward the mean

Univariate linear regression: how and why?
t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia
Cross validation and AIC

Example: red deer (Cervus elaphus)

theory: femals can influence the sex of their offspring

Example: red deer (Cervus elaphus)

theory: femals can influence the sex of their offspring
Evolutionary stable strategy: weak animals may tend to have female offspring, strong animals may tend to have male offspring.
目 Clutton-Brock, T. H. , Albon, S. D., Guinness, F. E. (1986) Great expectations: dominance, breeding success and offspring sex ratios in red deer.
Anim. Behav. 34, 460-471.

> rank		
1	0.01	0.41
2	0.02	0.15
3	0.06	0.12
4	0.08	0.04
5	0.08	0.33
6	0.09	0.37
.	.	.
.	.	.
.	.	.
52	0.96	0.81
53	0.99	0.47
54	1.00	0.67

hind\$rank

hind\$rank

```
> mod <- lm(ratiomales~rank,data=hind)
> summary(mod)
Call:
lm(formula = ratiomales ~ rank, data = hind)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.32798 & -0.09396 & 0.02408 & 0.11275 & 0.37403
\end{tabular}
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

| (Intercept) | 0.20529 | 0.04011 | 5.119 | $4.54 \mathrm{e}-06$ |
| :--- | :--- | :--- | :--- | :--- |$* * *$

Signif. codes: 0 *** $0.001 * * 0.01 * 0.05$. 0.11

Residual standard error: 0.154 on 52 degrees of freedom Multiple R-squared: 0.4717, Adjusted R-squared: 0.4616

Model:

$$
Y=a+b \cdot X+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Model:

$$
Y=a+b \cdot X+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

How to compute the significance of a relationship between the explanatory trait X and the target variable Y ?

Model:

$$
Y=a+b \cdot X+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

How to compute the significance of a relationship between the explanatory trait X and the target variable Y ?

In other words: How can we test the null hypothesis $b=0$?

Model:

$$
Y=a+b \cdot X+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

How to compute the significance of a relationship between the explanatory trait X and the target variable Y ?

In other words: How can we test the null hypothesis $b=0$?
We have estimated b by $\hat{b} \neq 0$. Could the true b be 0 ?

Model:

$$
Y=a+b \cdot X+\varepsilon \quad \text { mit } \varepsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

How to compute the significance of a relationship between the explanatory trait X and the target variable Y ?

In other words: How can we test the null hypothesis $b=0$?
We have estimated b by $\hat{b} \neq 0$. Could the true b be 0 ?
How large is the standard error of \hat{b} ?

t-test for \hat{b}

Estimate σ^{2} by

$$
s^{2}=\frac{\sum_{i}\left(y_{i}-\hat{a}-\hat{b} \cdot x_{i}\right)^{2}}{n-2} .
$$

Then,

$$
\frac{\hat{b}-b}{s / \sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}
$$

is t-distributed with $n-2$ degrees of freedom. Thus, we can apply a t-test to test the null-hypothesis $b=0$.

Contents

Regression toward the mean

Univariate linear regression: how and why?
t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights root of numbers of inhabitants and deaths

```
Multivariate Regression
Example: species richness on sandy beaches Example: Success of different therapies Example: Daphnia
```

Cross validation and AIC

Contents

Regression toward the mean

Univariate linear regression: how and why?
t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia
Cross validation and AIC

Data example: typical body weight [kg] and and brain weight [g] of 62 mammals species (and 3 dinosaurs)

> data

weight.kg. brain.weight.g		species	extinct
6654.00	5712.00	african elephant	no
1.00	6.60		no
3.39	44.50		no
0.92	5.70		no
2547.00	4603.00	asian elephant	no
10.55	179.50		no
0.02	0.30		no
160.00	169.00		no
3.30	25.60	cat	no
52.16	440.00	chimpanzee	no
0.43	6.40		

typische Werte bei 62 Saeugeierarten

typische Werte bei 65 Saeugeierarten

typische Werte bei 65 Saeugeierarten

> modell <- lm(brain.weight.g~weight.kg., subset=extinct=="no".
> summary(modell)
Call:
$\operatorname{lm}($ formula $=$ brain.weight.g \sim weight.kg., subset $=$ extinct $==$ "no")
Residuals:

Min	1Q	Median	3Q	Max
-809.95	-87.43	-78.55	-31.17	2051.05

Coefficients:

| | Estimate | Std. Error | t value $\operatorname{Pr}(>\|t\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 89.91213 | 43.58134 | 2.063 | $0.0434 *$ |
| weight.kg. | 0.96664 | 0.04769 | 20.269 | $<2 \mathrm{e}-16 * * *$ |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11 Residual standard error: 334.8 on 60 degrees of freedom Multiple R-squared: 0.8726, Adjusted R-squared: 0.8704 F-statistic: 410.8 on 1 and 60 DF, p-value: < $2.2 \mathrm{e}-16$

qqnorm(modell\$residuals)

Normal Q-Q Plot

plot(modell\$fitted.values,modell\$residuals)

plot(modell\$fitted.values,modell\$residuals,log='x')

plot(modell\$model\$weight.kg.,modell\$residuals)

plot(modell\$model\$weight.kg., modell\$residuals,log='x')

We see that the residuals' varaince depends on the fitted values (or the body weight): "heteroscadiscity"

We see that the residuals' varaince depends on the fitted values (or the body weight): "heteroscadiscity" The model assumes homoscedascity, i.e. the random deviations must be (almost) independent of the explaining traits (body weight) and the fitted values.

We see that the residuals' varaince depends on the fitted values (or the body weight): "heteroscadiscity" The model assumes homoscedascity, i.e. the random deviations must be (almost) independent of the explaining traits (body weight) and the fitted values. variance-stabilizing transformation: can be rescale body- and brain size to make deviations independent of variables

Actually not so surprising: An elephant's brain of typically 5 kg can easily be 500 g lighter or heavier from individual to individual. This can not happen for a mouse brain of typically 5 g . The latter will rather also vary by 10%, i.e. 0.5 g . Thus, the variance is not additive but rather multiplicative:

$$
\text { brain mass }=(\text { expected brain mass }) \cdot \text { random }
$$

We can convert this into something with additive randomness by taking the log:
$\log ($ brain mass $)=\log ($ expected brain mass $)+\log ($ random $)$
> logmodell <- lm(log(brain.weight.g) $\sim \log ($ weight.kg.), subset= > summary(logmodell)

Call:
$\operatorname{lm}(f o r m u l a=\log (b r a i n . w e i g h t . g) \sim \log (w e i g h t . k g$.$) , subset =$
"no")

Residuals:

Min	1Q	Median	3Q	Max
-1.68908	-0.51262	-0.05016	0.46023	1.97997

Coefficients:

	Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	2.11067	0.09794	21.55	$<2 \mathrm{e}-16 * * *$
log(weight.kg.)	0.74985	0.02888	25.97	$<2 \mathrm{e}-16 * * *$

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. $0.1 \quad 1$ Residual standard error: 0.7052 on 60 degrees of freedom Multiple R-squared: 0.9183, Adjusted R-squared: 0.9169 F-statistic: 674.3 on 1 and 60 DF. p -value: $<2.2 \mathrm{e}=16$

qqnorm(modell\$residuals)

Normal Q-Q Plot

Theoretical Quantiles

plot(logmodell\$fitted.values,logmodell\$residuals)

plot(logmodell\$fitted.values,logmodell\$residuals,log='x'

)
logmodell\$fitted.values

plot(weight.kg.[extinct=='no'],logmodell\$residuals)

plot(weight.kg. [extinct='no'],logmodell\$residuals,log='x'

)

Contents

Regression toward the mean

Univariate linear regression: how and why?
t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths

```
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia
```

Cross validation and AIC

Data: For 301 US-american (Counties) number of white female inhabitants from 1960 and number of deaths by breast cancer in this group between 1950 and 1960. (Rice (2007) Mathematical Statistics and Data Analysis.)
$>$ canc

	deaths	inhabitants
1	1	445
2	0	559
3	3	677
4	4	681
5	3	746
6	4	869
.	\cdot	\cdot
\cdot	\cdot	\cdot
\cdot	\cdot	
300	248	74005
301	360	88456

Is the average number of deaths proportional to population size, i.e.

$$
\mathbb{E} d e a t h s=b \cdot \text { inhabitants }
$$

or does the cancer risk depend on the size of the county, such that a different model fits better? e.g.

Edeaths $=a+b \cdot$ inhabitants
with $a \neq 0$.
> modell <- lm(deaths~inhabitants,data=canc)
> summary (modell)
Call:
lm(formula = deaths ~ inhabitants, data = canc)
Residuals:

Min	1Q	Median	3Q	Max
-66.0215	-4.1279	0.6769	5.2357	87.2989

Coefficients:

| | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | $-5.261 \mathrm{e}-01$ | $9.692 \mathrm{e}-01$ | -0.543 | 0.588 |
| inhabitants | $3.578 \mathrm{e}-03$ | $5.446 \mathrm{e}-05$ | 65.686 | $<2 \mathrm{e}-16 * * *$ |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11 Residual standard error: 13 on 299 degrees of freedom Multiple R-squared: 0.9352, Adjusted R-squared: 0.935 F-statistic: 4315 on 1 and 299 DF, p-value: < 2.2e-16

The intercept is estimated to -0.526 , but not significantly different from 0 .

The intercept is estimated to -0.526 , but not significantly different from 0 .
Thus we cannot reject the null hypothesis that the county size has no influence on the cancer risk.

The intercept is estimated to -0.526 , but not significantly different from 0 .
Thus we cannot reject the null hypothesis that the county size has no influence on the cancer risk. But.. does the model fit?

qqnorm(modell\$residuals)

Normal Q-Q Plot

plot(modell\$fitted.values,modell\$residuals)

plot(modell\$fitted.values,modell\$residuals,log='x')

plot(canc\$inhabitants,modell\$residuals,log='x')

The variance of the residuals depends on the fitted values. Heteroscedasticity

The variance of the residuals depends on the fitted values. Heteroscedasticity The linear model assumgs Homoscedasticity.

The variance of the residuals depends on the fitted values. Heteroscedasticity The linear model assumgs Homoscedasticity. Variance Stabilizing Transformation:
How can we rescale the population size such that we obtain homoscedastic data?

Where does the variance come from?

Where does the variance come from?
If n is the number of white female inhabitants and p the individual probability to die by breast cancer within 10 years, then $n p$ is the expected number of deaths and the variance is

$$
n \cdot p \cdot(1-p) \approx n \cdot p
$$

(Maybe approximate binomial by Poisson). Standard deviation:
$\sqrt{n \cdot p}$.

Where does the variance come from?
If n is the number of white female inhabitants and p the individual probability to die by breast cancer within 10 years, then $n p$ is the expected number of deaths and the variance is

$$
n \cdot p \cdot(1-p) \approx n \cdot p
$$

(Maybe approximate binomial by Poisson). Standard deviation:
$\sqrt{n \cdot p}$.
In this case we can approximately stabilize variance by taking the root on both sides of the equation.

Explanation:

$$
\begin{aligned}
\sqrt{y} & =b \cdot \sqrt{x}+\varepsilon \\
\Rightarrow \quad y & =(b \cdot \sqrt{x}+\varepsilon)^{2} \\
& =b^{2} \cdot x+2 \cdot b \cdot \sqrt{x} \cdot \varepsilon+\varepsilon^{2}
\end{aligned}
$$

SD is not exactly proportional to \sqrt{x}, but at least $2 \cdot b \cdot \sqrt{x} \cdot \varepsilon$ has SD prop. to \sqrt{x}, namely $2 \cdot b \cdot \sqrt{x} \cdot \sigma$. The Term ε^{2} is the σ^{2}-fold of a χ_{1}^{2}-distributed random variable and has $\mathrm{SD}=\sigma^{2} \cdot \sqrt{2}$. If σ is small compared to $b \cdot \sqrt{x}$, the approximation

$$
y \approx b^{2} \cdot x+2 \cdot b \cdot \sqrt{x} \cdot \varepsilon
$$

is reasonable and the SD of y is approximately proportional to \sqrt{x}.

```
> modellsq <- lm(sqrt(deaths)~sqrt(inhabitants),data=canc)
```

> summary (modellsq)
Call:
$\operatorname{lm}(f o r m u l a=s q r t(d e a t h s) ~ \sim ~ s q r t(i n h a b i t a n t s), ~ d a t a ~=~ c a n c) ~$
Residuals:

Min	$1 Q$	Median	3Q	Max
-3.55639	-0.51900	0.06204	0.54277	2.99434

Coefficients:

	Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	0.0664320	0.0974338	0.682	0.496
sqrt(inhabitants)	0.0583722	0.0009171	63.651	$<2 \mathrm{e}-16 * * *$

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11 Residual standard error: 0.8217 on 299 degrees of freedom Multiple R-squared: 0.9313, Adjusted R-squared: 0.931 F-statistic: 4051 on 1 and 299 DF, p-value: < 2.2e-16

qqnorm(modell\$residuals)

Normal Q-Q Plot

plot(modellsq\$fitted.values, modellsq\$residuals,log='x') plot(canc\$inhabitants,modellsq\$residuals,log='x')

The qqnorm plot is not perfect by at least the variance is stabilized.

The qqnorm plot is not perfect by at least the variance is stabilized.
The result remains the same: No significant relation between county size and breast cancer death risk.

Contents

Regression toward the mean

U'ivariate linear regression: how and why?
t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights root of numbers of inhabitants and deaths

Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia
Cross validation and AIC

Multivariate Regression

Multivariate Regression Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$.

Multivariate Regression Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$. Observations:

$$
\begin{aligned}
Y_{1} & , X_{11}, X_{21}, \ldots, X_{m 1} \\
Y_{2} & , \\
\vdots & X_{12}, X_{22}, \ldots, X_{m 2} \\
\vdots & \vdots \\
Y_{n} & , X_{1 n}, X_{2 n}, \ldots, X_{m n}
\end{aligned}
$$

Multivariate Regression

Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$. Observations:

$$
\begin{aligned}
Y_{1} & , X_{11}, X_{21}, \ldots, X_{m 1} \\
Y_{2}, & X_{12}, X_{22}, \ldots, X_{m 2} \\
\vdots & \vdots \\
Y_{n} & X_{1 n}, X_{2 n}, \ldots, X_{m n}
\end{aligned}
$$

Model: $Y=a+b_{1} \cdot X_{1}+b_{2} \cdot X_{2}+\cdots+b_{m} \cdot X_{m}+\varepsilon$

Multivariate Regression

Problem: Predict Y from $X_{1}, X_{2}, \ldots, X_{m}$.
Observations:

$$
\begin{aligned}
Y_{1} & , X_{11}, X_{21}, \ldots, X_{m 1} \\
Y_{2}, & X_{12}, X_{22}, \ldots, X_{m 2} \\
\vdots & \vdots \\
Y_{n} & , X_{1 n}, X_{2 n}, \ldots, X_{m n}
\end{aligned}
$$

Model: $Y=a+b_{1} \cdot X_{1}+b_{2} \cdot X_{2}+\cdots+b_{m} \cdot X_{m}+\varepsilon$ Equation system to determine $a, b_{1}, b_{2}, \ldots, b_{m}$:

$$
\begin{array}{ccccccccccccc}
Y_{1} & = & a & + & b_{1} \cdot X_{11} & + & b_{2} \cdot X_{21} & + & \ldots & + & b_{m} \cdot X_{m 1} & + & \varepsilon_{1} \\
Y_{2} & = & a & + & b_{1} \cdot X_{12} & + & b_{2} \cdot X_{22} & + & \ldots & + & b_{m} \cdot X_{m 2} & + & \varepsilon_{2} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
Y_{n} & = & a & + & b_{1} \cdot X_{1 n} & + & b_{n} \cdot X_{2 n} & + & \ldots & + & b_{m} \cdot X_{m n} & + & \varepsilon_{n}
\end{array}
$$

Model:

$$
\begin{array}{cccccccccccc}
Y_{1} & = & a & + & b_{1} \cdot X_{11} & + & b_{2} \cdot X_{21} & + & \ldots & + & b_{m} \cdot X_{m 1} & + \\
\varepsilon_{1} \\
Y_{2} & = & a & + & b_{1} \cdot X_{12} & + & b_{2} \cdot X_{22} & + & \ldots & + & b_{m} \cdot X_{m 2} & + \\
\varepsilon_{2} \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
\vdots \\
Y_{n} & = & a & + & b_{1} \cdot X_{1 n} & + & b_{n} \cdot X_{2 n} & + & \ldots & + & b_{m} \cdot X_{m n} & + \\
\varepsilon_{n}
\end{array}
$$

target variable Y
explanatory variables $X_{1}, X_{2}, \ldots, X_{m}$ parameter to be estimated a, b_{1}, \ldots, b_{m} independent normally distributed pertubations $\varepsilon_{1}, \ldots, \varepsilon_{m}$ with unknown variance σ^{2}.

Contents

Regression toward the mean

Univariate linear regression: how and why?
t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia
Cross validation and AIC

- Which factors influence the species richness on sandy beaches?
- Data from the dutch National Institute for Coastal and Marine Management Rijkswaterstaat/RIKZ
- see also

固 Zuur, Ieno, Smith (2007) Analysing Ecological Data. Springer

	richness	angle2 NAP	grainsize	humus	week
1	11	960.045	222.5	0.05	1
2	10	96-1.036	200.0	0.30	1
3	13	96-1.336	194.5	0.10	1
4	11	960.616	221.0	0.15	1
.	.	. .			
\cdot	-	- ${ }^{\text {c }}$			
21	3	211.117	251.5	0.00	4
22	22	$21-0.503$	265.0	0.00	4
23	6	210.729	275.5	0.10	4
-	-
\cdot	-	. .		.	
43	3	96-0.002	223.0	0.00	3
44	0	962.255	186.0	0.05	3
45	2	960.865	189.5	0.00	3

Meaning of the Variables

richness Number of species that were found in a plot.
angle2 slope of the beach a the plot
NAP altitude of the plot compared to the mean sea level.
grainsize average diameter of sand grains
humus fraction of organic material
week in which of 4 was this plot probed.
(many more variables in original data set)

Model 0:
richness $=a+b_{1} \cdot$ angle $2+b_{2} \cdot$ NAP $+b_{3} \cdot$ grainsize + $+b_{4} \cdot$ humus $+\varepsilon$

Model 0:
richness $=a+b_{1} \cdot$ angle $2+b_{2} \cdot$ NAP $+b_{3} \cdot$ grainsize + $+b_{4}$.humus $+\varepsilon$
in R notation:
richness ~ angle2 + NAP + grainsize + humus
> modell0 <- lm(richness ~ angle2+NAP+grainsize+humus,
data $=~ r i k z)$
> summary(modell0)

Call:
lm(formula $=$ richness \sim angle2 + NAP + grainsize + humus, dat Residuals:

Min	1Q	Median	3Q	Max
-4.6851	-2.1935	-0.4218	1.6753	13.2957

Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	18.35322	5.71888	3.209	$0.00262 * *$	
angle2	-0.02277	0.02995	-0.760	0.45144	
NAP	-2.90451	0.59068	-4.917	$1.54 \mathrm{e}-05{ }^{* * *}$	
grainsize	-0.04012	0.01532	-2.619	$0.01239{ }^{*}$	
humus	11.77641	9.71057	1.213	0.23234	

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11 Residual standard error: 3.644 on 40 degrees of freedom Multiole R-squared: 0.5178. Adiusted R-squared: 0.4696

- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- The p value $\operatorname{Pr}(>|t|)$ refers to the null hypothesis that the true parameter value may be 0 , i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- The p value $\operatorname{Pr}(>|t|)$ refers to the null hypothesis that the true parameter value may be 0 , i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- The p value $\operatorname{Pr}(>|t|)$ refers to the null hypothesis that the true parameter value may be 0 , i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- Is there a significant week effect?
- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- The p value $\operatorname{Pr}(>|t|)$ refers to the null hypothesis that the true parameter value may be 0 , i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- Is there a significant week effect?
- Not the number $1,2,3,4$ of the week should be multiplied with a coefficient. Instead, the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a parameter that describes how much the species richness is increased compared to week 1.
- e.g. -2.90451 is the estimator for b_{2}, the coefficient of NAP
- The p value $\operatorname{Pr}(>|t|)$ refers to the null hypothesis that the true parameter value may be 0 , i.e. the (potentially) explanatory variable (e.g. NAP) has actually no effect on the target variable (the species richness).
- NAP is judged to be highly significant, grainsize also.
- Is there a significant week effect?
- Not the number $1,2,3,4$ of the week should be multiplied with a coefficient. Instead, the numbers are taken as a non-numerical factor, i.e. each of the weeks 2,3,4 get a parameter that describes how much the species richness is increased compared to week 1.
- In R this is done by changing week into a factor.

Model 0:
richness $=a+b_{1} \cdot$ angle $2+b_{2} \cdot$ NAP $+b_{3} \cdot$ grainsize + $+b_{4} \cdot$ humus +
$b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4}+\varepsilon$
$I_{\text {week }=k}$ is a so-called indicator variable which is 1 if week $=k$ and 0 otherwise.

Model 0:
richness $=a+b_{1} \cdot$ angle $2+b_{2} \cdot$ NAP $+b_{3} \cdot$ grainsize + $+b_{4} \cdot$ humus +

$$
b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4}+\varepsilon
$$

$I_{\text {week }=k}$ is a so-called indicator variable which is 1 if week $=k$ and 0 otherwise.
e.g. b_{7} describes, by how much the species richness in an average plot probed in week 3 is increased compared to week 1.

Model 0:
richness $=a+b_{1} \cdot$ angle $2+b_{2} \cdot$ NAP $+b_{3} \cdot$ grainsize + $+b_{4}$. humus +

$$
b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4}+\varepsilon
$$

$I_{\text {week }=k}$ is a so-called indicator variable which is 1 if week $=k$ and 0 otherwise.
e.g. b_{7} describes, by how much the species richness in an average plot probed in week 3 is increased compared to week 1.
in R notation:
richness \sim angle2 + NAP + grainsize + humus +
factor(week)
> modell <- lm(richness ~ angle2+NAP+grainsize+humus

```
+ +factor(week), data = rikz)
> summary(modell)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

| (Intercept) | 9.298448 | 7.967002 | 1.167 | 0.250629 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| angle2 | 0.016760 | 0.042934 | 0.390 | 0.698496 |
| NAP | -2.274093 | 0.529411 | -4.296 | 0.000121 |$* * *$

- Obviously, in weeks 2 and 3 significantly less species were found than in week 1, which is our reference point here.
- Obviously, in weeks 2 and 3 significantly less species were found than in week 1, which is our reference point here.
- The estimated Intercept is thus the expected species richness in week 1 in a plot where all other parameters take the value 0 .
- Obviously, in weeks 2 and 3 significantly less species were found than in week 1 , which is our reference point here.
- The estimated Intercept is thus the expected species richness in week 1 in a plot where all other parameters take the value 0 .
- An alternative representation without Intercept takes 0 as reference point.

```
> modell.alternativ <- lm(richness ~ angle2+NAP+
+ grainsize+humus+factor(week)-1, data = rikz)
> summary(modell.alternativ)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

angle2	0.016760	0.042934	0.390	0.698496
NAP	-2.274093	0.529411	-4.296	0.000121

the p values refer to the question whether the four intercepts for the different weeks are significantly different from 0 . The four p values refer to the null hypotheses that the additive parameter of a week is 0 .

How do we test whether there is a difference between the weeks?

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1.

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1 . However, the p value refers to the situation of single testing.

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1 . However, the p value refers to the situation of single testing.

If we perform pairwise test for the weeks, we end up with $\binom{4}{2}=6$ tests.

How do we test whether there is a difference between the weeks?

We saw before that weeks 2 and 3 are significantly different from week 1 . However, the p value refers to the situation of single testing.

If we perform pairwise test for the weeks, we end up with $\binom{4}{2}=6$ tests.

Bonferroni correction: Multiply each p value with the number of tests performed, in our case 6.

Bonferroni correction

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.

Bonferroni correction

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.
Example: If you perform 20 tests where the null hypothesis is actually true, then on average 1 test will falsly reject the null hypothesis on the 5% level.

Bonferroni correction

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.
Example: If you perform 20 tests where the null hypothesis is actually true, then on average 1 test will falsly reject the null hypothesis on the 5% level.
Bonferroni correction: Multiply all p values with the number of tests performed. Reject the null hypotheses where the result is still smaller than the significance level.

Bonferroni correction

Problem: If you perform many tests, some of them will reject the null hypothesis even if the null hypothesis is true.
Example: If you perform 20 tests where the null hypothesis is actually true, then on average 1 test will falsly reject the null hypothesis on the 5% level.
Bonferroni correction: Multiply all p values with the number of tests performed. Reject the null hypotheses where the result is still smaller than the significance level.
Disadvantage: Conservative: Often, the null hypothies cannot be rejected even it is not true (type-2-error).

Alternative: Test whether there is a week effect by using an analysis of variance (anova) to compare a model with week effect to a model without week effect.

Alternative: Test whether there is a week effect by using an analysis of variance (anova) to compare a model with week effect to a model without week effect.

Only works for nested models, i.e. the simpler model can be obtained by restricting some parameters of the richer model to certain values or equations. In our case: "all week summands are equal".

```
> modellO <- lm(richness ~ angle2+NAP+grainsize+humus,
+ data = rikz)
> modell <- lm(richness ~ angle2+NAP+grainsize+humus
+ +factor(week), data = rikz)
> anova(modell0, modell)
Analysis of Variance Table
Model 1: richness ~ angle2 + NAP + grainsize + humus
Model 2: richness ~ angle2 + NAP + grainsize + humus + factor
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 40 531.17
2 37 353.66 3 177.51 6.1902 0.00162 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

We reject the null hypothesis that the weeks have no effect with a p-value of 0.00162 .

We reject the null hypothesis that the weeks have no effect with a p-value of 0.00162 .

But wait! We can only do that if the more complex model fits well to the data. We check this graphically.

Probes 22, 42, and 9 are considered as outliers.

Probes 22, 42, and 9 are considered as outliers.

Can we explain this by taking more parameters into account or are these real outliers, which are atypical and must be analysed separately.

Is there an interaction between NAP and angle2?

Is there an interaction between NAP and angle2?

$$
\begin{aligned}
\text { richness }=a & +b_{1} \cdot \text { angle } 2+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
& +b_{4} \cdot \text { humus }+ \\
& +b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4} \\
& b_{8} \cdot \text { angle } 2 \cdot \text { NAP }+\varepsilon
\end{aligned}
$$

in R notation:

richness \sim angle2 + NAP + angle2:NAP+grainsize + humus

+ factor (week)

Is there an interaction between NAP and angle2?

$$
\begin{aligned}
\text { richness }=a & +b_{1} \cdot \text { angle } 2+b_{2} \cdot \text { NAP }+b_{3} \cdot \text { grainsize }+ \\
& +b_{4} \cdot \text { humus }+ \\
& +b_{5} \cdot I_{\text {week }=2}+b_{6} \cdot I_{\text {week }=3}+b_{7} \cdot I_{\text {week }=4} \\
& b_{8} \cdot \text { angle } 2 \cdot \text { NAP }+\varepsilon
\end{aligned}
$$

in R notation:

richness \sim angle2 + NAP + angle2:NAP+grainsize + humus

+ factor(week)
short-cut:
richness ~ angle2*NAP+grainsize + humus + factor(week)
> modell3 <- lm(richness ~ angle2*NAP+grainsize+humus

```
+ +factor(week), data = rikz)
```

> summary(modell3)
[...]
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

(Intercept)	10.438985	8.148756	1.281	0.208366
angle2	0.007846	0.044714	0.175	0.861697
NAP	-3.011876	1.099885	-2.738	$0.009539 ~ * *$
grainsize	0.001109	0.021236	0.052	0.958658
humus	0.387333	8.754526	0.044	0.964955
factor(week)2	-7.444863	1.839364	-4.048	0.000262

Signif. codes: $0 * * * 0.001 * * 0.01 * 0.05$. $0.1 \quad 1$

Different types of ANOVA tables

If you apply the R command anova to a single model, the variables are added consecutively in the same order as in the command. Each p value refers to the test wether the model gets significantly better by adding the variable to only those that are listed above the variable. In contrast to this, the p values that are given by summary or by dropterm from the MASS library always compare the model to a model where only the corresponding variable is set to 0 and all other variables can take any values. The p values given by anova thus depend on the order in which the variables are given in the command. This is not the case for summary and dropterm. The same options exist in other software packages, sometimes under the names "type I analysis" and "type II analysis".

The same model is specified twice:

```
> modellA <- lm(richness ~ angle2+NAP+humus
+ +factor(week)+grainsize,data = rikz)
> modellB <- lm(richness ~ angle2+grainsize
+ +NAP+humus+factor(week), data = rikz)
```

Look at the p-valus of grainsize

```
> anova(modellA)
Analysis of Variance Table
Response: richness
    Df Sum Sq Mean Sq F value Pr (>F)
\begin{tabular}{lrrrrrr} 
angle2 & 1 & 124.86 & 124.86 & 13.0631 & 0.0008911 & \(* * *\) \\
NAP & 1 & 319.32 & 319.32 & 33.4071 & \(1.247 \mathrm{e}-06\) & \(* * *\) \\
humus & 1 & 35.18 & 35.18 & 3.6804 & 0.0627983 &. \\
factor (week) & 3 & 268.51 & 89.50 & 9.3638 & \(9.723 \mathrm{e}-05\) & \(* * *\) \\
grainsize & 1 & 0.11 & 0.11 & 0.0114 & 0.9155704 & \\
Residuals & 37 & 353.66 & 9.56 & & &
\end{tabular}
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
> anova(modellB)
Analysis of Variance Table
```

Response: richness
Df Sum Sq Mean Sq F value $\quad \operatorname{Pr}(>F)$

angle2	1	124.86	124.86	13.0631	0.00089	$* * *$
grainsize	1	35.97	35.97	3.7636	0.06003	.
NAP	1	390.11	390.11	40.8127	$1.8 \mathrm{e}-07$	$* * *$
humus	1	19.53	19.53	2.0433	0.16127	
factor (week)	3	177.51	59.17	6.1902	0.00162	$* *$
Residuals	37	353.66	9.56			

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

```
> library(MASS)
> dropterm(modellA,test="F")
Single term deletions
```

Model:
richness ~ angle2 + NAP + humus + factor(week) + grainsize
Df Sum of Sq RSS AIC F Value $\operatorname{Pr}(F)$
<none>
$\begin{array}{lllllllllll}\text { angle2 } & 1 & 1.46 & 355.12 & 106.96 & 0.15 & 0.6984\end{array}$
$\begin{array}{lllllllllllllll} \\ \text { NAP } & 1 & 176.37 & 530.03 & 124.98 & 18.45 & 0.0001 & \text { *** }\end{array}$
humus $\quad 1 \quad 0.03 \quad 353.70106 .78 \quad 0.0035650 .9527$
factor(week)3 $177.51531 .17121 .08 \quad 6.190 .0016$ **
grainsize $1 \quad 0.11353 .77106 .79 \quad 0.010 .9155$

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11
> dropterm(modellB,test="F")
Single term deletions

Model:
richness ~ angle2 + grainsize + NAP + humus + factor(week Df Sum of Sq RSS AIC F Value $\operatorname{Pr}(F)$
<none> $\quad 353.66108 .78$

angle2	1	1.46	355.12	106.96	0.15	0.6984
grainsize	1	0.11	353.77	106.79	0.01	0.9155
NAP	1	176.37	530.03	124.98	18.45	$0.0001 ~ * * *$
humus	1	0.03	353.70	106.78	0.003565	0.9527
factor (week)	3	177.51	531.17	121.08	6.19	$0.0016 ~ * *$

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

```
> summary(modellA)
[...]
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

(Intercept)	9.298448	7.967002	1.167	0.2506
angle2	0.016760	0.042934	0.390	0.6984
NAP	-2.274093	0.529411	-4.296	0.0001

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

```
> summary(modellB)
[...]
Coefficients:
```

Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	9.298448	7.967002	1.167	0.2506
angle2	0.016760	0.042934	0.390	0.6984
grainsize	0.002249	0.021066	0.107	0.9155
NAP	-2.274093	0.529411	-4.296	$0.0001 ~ * * *$
humus	0.519686	8.703910	0.060	0.9527
factor (week)2	-7.065098	1.761492	-4.011	$0.0002 * * *$
factor (week)3	-5.719055	1.827616	-3.129	$0.0034 ~ * *$
factor (week)4	-1.481816	2.720089	-0.545	0.5891

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

Contents

Regression toward the mean

Univariate linear regression: how and why?
t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia
Cross validation and AIC

For young anorexia patients the effect of family therapy (FT) and cognitive behavioral therapy (CBT) is compared to a control group (Cont) by comparing the weight before (Prewt) and after (Postwt) the treatment (Treat).
囯 Hand, D. J., Daly, F., McConway, K., Lunn, D. and Ostrowski, E. eds (1993) A Handbook of Small Data Sets. Chapman \& Hall

Model Im1 There is a linear relation with the pre-weight. Each treatment changes the weight by a value that depends on the treatment but not on the treatment.
Model Im2 Interaction between Treatment und Preweight: The effect of the pre-weight depends on the kind of treatment.


```
> lm1 <- lm(Postwt ~Prewt+Treat,anorexia)
> lm2 <- lm(Postwt ~Prewt*Treat,anorexia)
> anova(lm1,lm2)
Analysis of Variance Table
```

Model 1: Postwt ~ Prewt + Treat
Model 2: Postwt ~ Prewt * Treat
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>F)$
1683311.3
2662844.82466 .55 .41120 .006666 **
Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11
result: the more camplex model fits significantly better than the nested model.
result: the more camplex model fits significantly better than the nested model.
interpretation: The role of the weight before the treatment depends on the type of the treatment.
result: the more camplex model fits significantly better than the nested model.
interpretation: The role of the weight before the treatment depends on the type of the treatment. or: The difference between effects of the treatments depends on the weight before the treetment.

Contents

Regression toward the mean

Univariate linear regression: how and why?
t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths
Multivariate Regression
Example: species richness on sandy beaches Example: Success of different therapies

Example: Daphnia

Cross validation and AIC

Question: Is there a difference between Daphnia magna and Daphnia galeata in their reaction on food supply?

Question: Is there a difference between Daphnia magna and Daphnia galeata in their reaction on food supply?

Data from Justina Wolinska's ecology course for Bachelor students.

$>$	daph		
$>$	daph		
read.table("daphnia_justina.csv",h=T)			
counts	foodlevel	species	
1	68	high	magna
2	54	high	magna
3	59	high	magna
4	24	high	galeata
5	27	high	galeata
6	16	high	galeata
7	20	low	magna
8	18	low	magna
9	18	low	magna
10	5	low	galeata
11	8	low	galeata
12	9	low	galeata

> mod1 <- lm(counts ${ }^{\sim}$ foodlevel+species,data=daph)
$>\bmod 2<-1 m(c o u n t s \sim$ foodlevel*species, data=daph)
> anova(mod1,mod2)
Analysis of Variance Table
$\begin{array}{rrrrrr}\text { Model 1: counts } & \sim \text { foodlevel }+ \text { species } \\ \text { Model 2: counts } & \sim & \text { foodlevel * species }\end{array}$

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

```
> summary(mod2)
[...]
Coefficients:
\begin{tabular}{lrrrrl} 
(Intercept) & 22.33 & 2.713 & 8.232 & \(3.55 \mathrm{e}-05\) & *** \\
countslow & -15.00 & 3.837 & -3.909 & 0.00449 & ** \\
foodlevelmagna & 38.00 & 3.837 & 9.904 & \(9.12 \mathrm{e}-06\) & *** \\
countslow:foodlevelmagna & -26.67 & 5.426 & -4.914 & 0.00117 & **
\end{tabular}
```

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

Residual standard error: 4.699 on 8 degrees of freedom Multiple R-squared: 0.9643, Adjusted R-squared: 0.9509 F-statistic: 71.95 on 3 and 8 DF, p-value: $3.956 \mathrm{e}-06$
result: the more complex model, in which different species react differently to low food level, fits significantly better.
result: the more complex model, in which different species react differently to low food level, fits significantly better.

But can we really assume normal distribution on numbers like 5, 8, 9...?
result: the more complex model, in which different species react differently to low food level, fits significantly better.

But can we really assume normal distribution on numbers like 5, 8, 9...?

We will come back to this in the Lecture about GLMs.

Contents

Regression toward the mean

Univariate linear regression: how and why?
t-test for linear regression
Examples with transformed variables
log-scaling brain sizes and body weights
root of numbers of inhabitants and deaths
Multivariate Regression
Example: species richness on sandy beaches
Example: Success of different therapies
Example: Daphnia
Cross validation and AIC

How to predict the winglength of a Darwin finch by its beak size?

How to predict the winglength of a Darwin finch by its beak size? Shall we take beak height, beak length or both into account?

How to predict the winglength of a Darwin finch by its beak size? Shall we take beak height, beak length or both into account? Residual variance should be small....

How to predict the winglength of a Darwin finch by its beak size? Shall we take beak height, beak length or both into account? Residual variance should be small....

Leave-one-out cross validation: If you leave out one bird and fit the model to the others, how well can this model predict the wing span?

How to predict the winglength of a Darwin finch by its beak size? Shall we take beak height, beak length or both into account? Residual variance should be small....

Leave-one-out cross validation: If you leave out one bird and fit the model to the others, how well can this model predict the wing span?

```
prederrorHL <- numeric()
for (i in 1:46) {
    selection <- rep(TRUE,46)
    selection[i] <- FALSE
    modHL.R <- lm(WingL~N.UBkL+BeakH,data=finchdata,
                        subset=selection)
    prederrorHL[i]=WingL[i]-predict(modHL.R,finchdata[i,])
}
```

	Height	Length	Height and Length
σ (Residuals)	3.83	4.78	3.79

	Height	Length	Height and Length
σ (Residuals)	3.83	4.78	3.79
$d=($ Number Parameters $)$	2	2	3

	Height	Length	Height and Length
σ (Residuals)	3.83	4.78	3.79
$d=($ Number Parameters $)$	2	2	3
σ (Residuals $) \cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3.87

	Height	Length	Height and Length
$\sigma=($ Residuals $)$	3.83	4.78	3.79
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3
cross validation.	3.96	4.97	3.87

	Height	Length	Height and Length
σ (Residuals)	3.83	4.78	3.79
$d=($ Number Parameters $)$	2	2	3
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3.87
cross validation.	3.96	4.97	3.977
AIC	259.0	279.5	260.1

	Height	Length	Height and Length
$\sigma=($ Residuals $)$	3.83	4.78	3.79
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3
cross validation.	3.96	4.97	3.87
AIC	259.0	279.5	260.1
BIC	264.4	285.0	267.4

	Height	Length	Height and Length
σ (Residuals)	3.83	4.78	3.79
$d=($ Number Parameters $)$	2	2	3
σ (Residuals) $\cdot \sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3.87
cross validation.	3.96	4.97	3.977
AIC	259.0	279.5	260.1
BIC	264.4	285.0	267.4

Akaike's Information Criterion:

$$
\text { AIC }=-2 \cdot \log L+2 \cdot(\text { NumberofParameters })
$$

	Height	Length	Height and Length
σ (Residuals)	3.83	4.78	3.79
$d=($ Number Parameters $)$	2	2	3
σ (Residuals) $\sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3.87
cross validation.	3.96	4.97	3.977
AIC	259.0	279.5	260.1
BIC	264.4	285.0	267.4

Akaike's Information Criterion:

$$
\text { AIC }=-2 \cdot \log L+2 \cdot(\text { NumberofParameters })
$$

Bayesian Information Criterion:

$$
\text { BIC }=-2 \cdot \log L+\log (n) \cdot(\text { NumberofParameters })
$$

	Height	Length	Height and Length
σ (Residuals)	3.83	4.78	3.79
$d=($ Number Parameters $)$	2	2	3
σ (Residuals) $\sqrt{\frac{n-1}{n-d}}$	3.86	4.84	3.87
cross validation.	3.96	4.97	3.977
AIC	259.0	279.5	260.1
BIC	264.4	285.0	267.4

Akaike's Information Criterion:

$$
\text { AIC }=-2 \cdot \log L+2 \cdot(\text { NumberofParameters })
$$

Bayesian Information Criterion:

$$
\text { BIC }=-2 \cdot \log L+\log (n) \cdot(\text { NumberofParameters })
$$

