# Multivariate Statistics in Ecology and Quantitative Genetics 1. ANalysis Of VAriance (ANOVA) 

Dirk Metzler \& Martin Hutzenthaler

http://evol.bio.lmu.de/StatGen.html

17. Mai 2010

ANOVA and $F$-Test

Kruskal-Walis Test

## Are the group means significantly different?



## Are the group means significantly different?




Or does this look like random deviations?

## Are the group means significantly different?




Or does this look like random deviations?
This depends on the ratio of the varibility of group means and the variability within the groups.

## Are the group means significantly different?



Large variability within groups


Small variability with groups

Or does this look like random deviations?
This depends on the ratio of the varibility of group means and the variability within the groups.

## Are the group means significantly different?



Or does this look like random deviations?
This depends on the ratio of the varibility of group means and the variability within the groups.
The analysis of variance (ANOVA) quantifies this ratio and its significance.

## Example

Blood-clotting time in rats under 4 different treatments

| group | observation |  |  |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 62 | 60 | 63 | 59 |  |  |  |  |
| 2 | 63 | 67 | 71 | 64 | 65 | 66 |  |  |
| 3 | 68 | 66 | 71 | 67 | 68 | 68 |  |  |
| 4 | 56 | 62 | 60 | 61 | 63 | 64 | 63 | 59 |

## Example

Blood-clotting time in rats under 4 different treatments

| group | observation |  |  |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 62 | 60 | 63 | 59 |  |  |  |  |
| 2 | 63 | 67 | 71 | 64 | 65 | 66 |  |  |
| 3 | 68 | 66 | 71 | 67 | 68 | 68 |  |  |
| 4 | 56 | 62 | 60 | 61 | 63 | 64 | 63 | 59 |

global mean $\bar{x} . .=64$, group means $\bar{x}_{1} .=61, \bar{x}_{2}=66, \bar{x}_{3 .}=68, \bar{x}_{4}=61$.

## Example

Blood-clotting times in rats under 4 different treatments

| gr. | $\bar{x}_{i}$. | observations |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 61 | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |  |  |  |  |
| 2 | 66 | $\begin{gathered} 63 \\ (63-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 67 \\ (67-66)^{2} \end{gathered}$ | $\begin{gathered} 71 \\ (71-66)^{2} \end{gathered}$ | $\begin{gathered} 64 \\ (64-66)^{2} \end{gathered}$ | $\begin{gathered} 65 \\ (65-66)^{2} \end{gathered}$ | $\begin{gathered} 66 \\ (66-66)^{2} \end{gathered}$ |  |  |
| 3 | 68 | $\begin{gathered} 68 \\ (68-68)^{2} \end{gathered}$ | $\begin{gathered} 66 \\ (66-68)^{2} \end{gathered}$ | $\begin{gathered} 71 \\ (71-68)^{2} \end{gathered}$ | $\begin{gathered} 67 \\ (67-68)^{2} \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \end{gathered}$ |  |  |
| 4 | 61 | $\begin{gathered} 56 \\ (56-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 61 \\ (61-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 64 \\ (64-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |

global mean $\bar{x}_{. .}=64$,
group means $\bar{x}_{1 .}=61, \bar{x}_{2 .}=66, \bar{x}_{3 .}=68, \bar{x}_{4 .}=61$.

## Example

Blood-clotting times in rats under 4 different treatments

| gr. | $\bar{x}_{i}$. | observations |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 61 | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |  |  |  |  |
| 2 | 66 | $\begin{gathered} 63 \\ (63-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 67 \\ (67-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 71 \\ (71-66)^{2} \end{gathered}$ | $\begin{gathered} 64 \\ (64-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 65 \\ (65-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-66)^{2} \end{gathered}$ |  |  |
| 3 | 68 | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 71 \\ (71-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 67 \\ (67-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ |  |  |
| 4 | 61 | $\begin{gathered} 56 \\ (56-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \end{gathered}$ | $\begin{gathered} 61 \\ (61-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 64 \\ (64-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \end{gathered}$ |

global mean $\bar{x}_{. .}=64$,
group means $\bar{x}_{1 .}=61, \bar{x}_{2}=66, \bar{x}_{3 .}=68, \bar{x}_{4}=61$.
The red Differences (unsquared) are the residuals: they are the residual variability which is not explained by the model.

## Example

Blood-clotting times in rats under 4 different treatments

| gr. | $\bar{x}_{i}$. | observations |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 61 | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |  |  |  |  |
| 2 | 66 | $\begin{gathered} 63 \\ (63-66)^{2} \end{gathered}$ | $\begin{gathered} 67 \\ (67-66)^{2} \end{gathered}$ | $\begin{gathered} 71 \\ (71-66)^{2} \end{gathered}$ | $\begin{gathered} 64 \\ (64-66)^{2} \end{gathered}$ | $\begin{gathered} 65 \\ (65-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-66)^{2} \\ \hline \end{gathered}$ |  |  |
| 3 | 68 | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 71 \\ (71-68)^{2} \end{gathered}$ | $\begin{gathered} 67 \\ (67-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ |  |  |
| 4 | 61 | $\begin{gathered} 56 \\ (56-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \end{gathered}$ | $\begin{gathered} 61 \\ (61-61)^{2} \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 64 \\ (64-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |

global mean $\bar{x}_{. .}=64$,
group means $\bar{x}_{1 .}=61, \bar{x}_{2}=66, \bar{x}_{3 .}=68, \bar{x}_{4}=61$.
The red Differences (unsquared) are the residuals: they are the residual variability which is not explained by the model.
Sums of squares within groups:
$S s_{\text {within }}=112$,

## Example

Blood-clotting times in rats under 4 different treatments

| gr. | $\bar{x}_{i}$. | observations |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 61 | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |  |  |  |  |
| 2 | 66 | $\begin{gathered} 63 \\ (63-66)^{2} \end{gathered}$ | $\begin{gathered} 67 \\ (67-66)^{2} \end{gathered}$ | $\begin{gathered} 71 \\ (71-66)^{2} \end{gathered}$ | $\begin{gathered} 64 \\ (64-66)^{2} \end{gathered}$ | $\begin{gathered} 65 \\ (65-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-66)^{2} \\ \hline \end{gathered}$ |  |  |
| 3 | 68 | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 71 \\ (71-68)^{2} \end{gathered}$ | $\begin{gathered} 67 \\ (67-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ |  |  |
| 4 | 61 | $\begin{gathered} 56 \\ (56-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \end{gathered}$ | $\begin{gathered} 61 \\ (61-61)^{2} \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 64 \\ (64-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |

global mean $\bar{x}_{. .}=64$,
group means $\bar{x}_{1 .}=61, \bar{x}_{2}=66, \bar{x}_{3 .}=68, \bar{x}_{4}=61$.
The red Differences (unsquared) are the residuals: they are the residual variability which is not explained by the model.
Sums of squares within groups:
$S S_{\text {within }}=112,20$ degrees of freedom (df)

## Example

Blood-clotting times in rats under 4 different treatments

| gr. | $\bar{x}_{i}$. | observations |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 61 | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |  |  |  |  |
| 2 | 66 | $\begin{gathered} 63 \\ (63-66)^{2} \end{gathered}$ | $\begin{gathered} 67 \\ (67-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 71 \\ (71-66)^{2} \end{gathered}$ | $\begin{gathered} 64 \\ (64-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 65 \\ (65-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-66)^{2} \end{gathered}$ |  |  |
| 3 | 68 | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 71 \\ (71-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 67 \\ (67-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ |  |  |
| 4 | 61 | $\begin{gathered} 56 \\ (56-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \end{gathered}$ | $\begin{gathered} 61 \\ (61-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 64 \\ (64-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \end{gathered}$ |

global mean $\bar{x}_{. .}=64$,
group means $\bar{x}_{1 .}=61, \bar{x}_{2}=66, \bar{x}_{3 .}=68, \bar{x}_{4}=61$.
The red Differences (unsquared) are the residuals: they are the residual variability which is not explained by the model.
Sums of squares within groups:
$s s_{\text {within }}=112,20$ degrees of freedom (df)
Sums of squares between groups:
$s s_{\text {betw }}=4 \cdot(61-64)^{2}+6 \cdot(66-64)^{2}+6 \cdot(68-64)^{2}+8 \cdot(61-64)^{2}=228$,

## Example

Blood-clotting times in rats under 4 different treatments

| gr. | $\bar{x}_{i}$. | observations |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 61 | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |  |  |  |  |
| 2 | 66 | $\begin{gathered} 63 \\ (63-66)^{2} \end{gathered}$ | $\begin{gathered} 67 \\ (67-66)^{2} \end{gathered}$ | $\begin{gathered} 71 \\ (71-66)^{2} \end{gathered}$ | $\begin{gathered} 64 \\ (64-66)^{2} \end{gathered}$ | $\begin{gathered} 65 \\ (65-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-66)^{2} \\ \hline \end{gathered}$ |  |  |
| 3 | 68 | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 71 \\ (71-68)^{2} \end{gathered}$ | $\begin{gathered} 67 \\ (67-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ |  |  |
| 4 | 61 | $\begin{gathered} 56 \\ (56-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \end{gathered}$ | $\begin{gathered} 61 \\ (61-61)^{2} \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 64 \\ (64-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |

global mean $\bar{x}_{. .}=64$,
group means $\bar{x}_{1 .}=61, \bar{x}_{2}=66, \bar{x}_{3 .}=68, \bar{x}_{4}=61$.
The red Differences (unsquared) are the residuals: they are the residual variability which is not explained by the model.
Sums of squares within groups:
$s s_{\text {within }}=112,20$ degrees of freedom (df)
Sums of squares between groups:
$s s_{\text {betw }}=4 \cdot(61-64)^{2}+6 \cdot(66-64)^{2}+6 \cdot(68-64)^{2}+8 \cdot(61-64)^{2}=228$,
3 degrees of freedom (df)

## Example

Blood-clotting times in rats under 4 different treatments

| gr. | $\bar{x}_{i}$. | observations |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 61 | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \\ \hline \end{gathered}$ |  |  |  |  |
| 2 | 66 | $\begin{gathered} 63 \\ (63-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 67 \\ (67-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 71 \\ (71-66)^{2} \end{gathered}$ | $\begin{gathered} 64 \\ (64-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 65 \\ (65-66)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-66)^{2} \end{gathered}$ |  |  |
| 3 | 68 | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 66 \\ (66-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 71 \\ (71-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 67 \\ (67-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 68 \\ (68-68)^{2} \\ \hline \end{gathered}$ |  |  |
| 4 | 61 | $\begin{gathered} 56 \\ (56-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 62 \\ (62-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 60 \\ (60-61)^{2} \end{gathered}$ | $\begin{gathered} 61 \\ (61-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 64 \\ (64-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 63 \\ (63-61)^{2} \\ \hline \end{gathered}$ | $\begin{gathered} 59 \\ (59-61)^{2} \end{gathered}$ |

global mean $\bar{x}_{. .}=64$,
group means $\bar{x}_{1 .}=61, \bar{x}_{2}=66, \bar{x}_{3 .}=68, \bar{x}_{4}=61$.
The red Differences (unsquared) are the residuals: they are the residual variability which is not explained by the model.
Sums of squares within groups:
$S S_{\text {within }}=112,20$ degrees of freedom (df)
Sums of squares between groups:
$s s_{\text {betw }}=4 \cdot(61-64)^{2}+6 \cdot(66-64)^{2}+6 \cdot(68-64)^{2}+8 \cdot(61-64)^{2}=228$,
3 degrees of freedom (df)
$F=\frac{s S_{\text {betw }} / 3}{s S_{\text {within }} / 20}=\frac{76}{5.6}=13.57$

## Example: Blood-clotting times in rats under 4 different treatments.

ANOVA table (,ANalysis Of VAriance")

|  | df | sum of <br> squares <br> (ss) | mean <br> of <br> $(\mathrm{ss} / \mathrm{df})$ | sum <br> squares | $F$ value |
| :---: | :---: | :---: | :--- | :--- | :--- |
| groups | 3 | 228 |  | 76 | 13.57 |
| residuals | 20 | 112 | 5.6 |  |  |

## Example: Blood-clotting times in rats under 4 different treatments.

ANOVA table (,ANalysis Of VAriance")

|  | df | sum of <br> squares <br> (ss) | mean <br> of <br> $(\mathrm{ss} / \mathrm{df})$ | sum <br> squares | $F$ value |
| :---: | :---: | :---: | :--- | :--- | :--- |
| groups | 3 | 228 |  | 76 | 13.57 |
| residuals | 20 | 112 | 5.6 |  |  |

Under the Null-Hypothesis $H_{0}$ "the group means are equal" (and assuming independent, normally distributed observations) is $F$ Fisher-distributed with 3 and 20 degrees of freedom, and $p=$ Fisher $_{3,20}([13.57, \infty)) \leq 5 \cdot 10^{-5}$.

## Example: Blood-clotting times in rats under 4 different treatments.

ANOVA table (,ANalysis Of VAriance")

|  | df | sum of <br> squares <br> (ss) | mean <br> of <br> $(\mathrm{ss} / \mathrm{df})$ | sum <br> squares | $F$ value |
| :---: | :---: | :---: | :--- | :--- | :--- |
| groups | 3 | 228 |  | 76 | 13.57 |
| residuals | 20 | 112 | 5.6 |  |  |

Under the Null-Hypothesis $H_{0}$ "the group means are equal" (and assuming independent, normally distributed observations) is $F$ Fisher-distributed with 3 and 20 degrees of freedom, and $p=$ Fisher $_{3,20}([13.57, \infty)) \leq 5 \cdot 10^{-5}$.
Thus, we can reject $H_{0}$.


Sir Ronald Aylmer Fisher, 1890-1962

F-Test
$n=n_{1}+n_{2}+\cdots+n_{l}$ obersvations in / groups, $X_{i j}=j$-th observation in $i$-th group, $j=1, \ldots, n_{i}$.
$F$-Test
$n=n_{1}+n_{2}+\cdots+n_{l}$ obersvations in / groups, $X_{i j}=j$-th observation in $i$-th group, $j=1, \ldots, n_{i}$.
Model assumption: $X_{i j}=\mu_{i}+\varepsilon_{i j}$, with independent, normally distributed $\varepsilon_{i j}, \mathbb{E}\left[\varepsilon_{i j}\right]=0, \operatorname{Var}\left[\varepsilon_{i j}\right]=\sigma^{2}$
$F$-Test
$n=n_{1}+n_{2}+\cdots+n_{l}$ obersvations in / groups,
$X_{i j}=j$-th observation in $i$-th group, $j=1, \ldots, n_{i}$.
Model assumption: $X_{i j}=\mu_{i}+\varepsilon_{i j}$, with independent, normally distributed $\varepsilon_{i j}, \mathbb{E}\left[\varepsilon_{i j}\right]=0, \operatorname{Var}\left[\varepsilon_{i j}\right]=\sigma^{2}$ ( $\mu_{i}$ is the "true" mean within group $i$.)

## F-Test

$n=n_{1}+n_{2}+\cdots+n_{l}$ obersvations in / groups,
$X_{i j}=j$-th observation in $i$-th group, $j=1, \ldots, n_{i}$.
Model assumption: $X_{i j}=\mu_{i}+\varepsilon_{i j}$, with independent, normally distributed $\varepsilon_{i j}, \mathbb{E}\left[\varepsilon_{i j}\right]=0, \operatorname{Var}\left[\varepsilon_{i j}\right]=\sigma^{2}$ ( $\mu_{i}$ is the "true" mean within group $i$.)
$\bar{X}_{. .}=\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n_{i}} X_{i j}$ (empirical) "global mean"
$\bar{X}_{i .}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i j}$ (empirical) mean of group $i$

F-Test
$n=n_{1}+n_{2}+\cdots+n_{l}$ obersvations in / groups,
$X_{i j}=j$-th observation in $i$-th group, $j=1, \ldots, n_{i}$.
Model assumption: $X_{i j}=\mu_{i}+\varepsilon_{i j}$, with independent, normally distributed $\varepsilon_{i j}, \mathbb{E}\left[\varepsilon_{i j}\right]=0, \operatorname{Var}\left[\varepsilon_{i j}\right]=\sigma^{2}$ ( $\mu_{i}$ is the "true" mean within group $i$.)
$\bar{X}_{. .}=\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n_{i}} X_{i j}$ (empirical) "global mean"
$\bar{X}_{i .}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i j}$ (empirical) mean of group $i$
$S S_{\text {within }}=\sum_{i=1}^{1} \sum_{i}^{n_{i}}\left(X_{i j}-\bar{X}_{i}\right)^{2} \quad$ sum of squares within the groups,
$n-l$ degrees of freedom
$S S_{\text {betw }}=\sum_{i=1}^{1} n_{i}\left(\bar{X}_{i .}-\bar{X}_{. .}\right)^{2} \quad$ sum of squares between the groups, $l-1$ degrees of freedom

F-Test
$n=n_{1}+n_{2}+\cdots+n_{l}$ obersvations in / groups,
$X_{i j}=j$-th observation in $i$-th group, $j=1, \ldots, n_{i}$.
Model assumption: $X_{i j}=\mu_{i}+\varepsilon_{i j}$,
with independent, normally distributed $\varepsilon_{i j}, \mathbb{E}\left[\varepsilon_{i j}\right]=0, \operatorname{Var}\left[\varepsilon_{i j}\right]=\sigma^{2}$
( $\mu_{i}$ is the "true" mean within group $i$.)
$\bar{X}_{. .}=\frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{n_{i}} X_{i j}$ (empirical) "global mean"
$\bar{X}_{i .}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} X_{i j}$ (empirical) mean of group $i$
$S S_{\text {within }}=\sum_{i=1}^{1} \sum_{j=1}^{n_{i}}\left(X_{i j}-\bar{X}_{i .}\right)^{2}$
sum of squares within the groups,
$n-l$ degrees of freedom
$S S_{\text {betw }}=\sum_{i=1}^{1} n_{i}\left(\bar{X}_{i .}-\bar{X}_{. .}\right)^{2} \quad$ sum of squares between the groups, $l-1$ degrees of freedom
$F=\frac{S S_{\text {betw }} /(I-1)}{S S_{\text {within }} /(n-I)}$
$F$-Test
$X_{i j}=j$-th observation $i$-th group, $j=1, \ldots, n_{i}$,
Model assumption: $X_{i j}=\mu_{i}+\varepsilon_{i j} . \mathbb{E}\left[\varepsilon_{i j}\right]=0, \operatorname{Var}\left[\varepsilon_{i j}\right]=\sigma^{2}$
$S S_{\text {within }}=\sum_{i=1}^{1} \sum_{i}^{n_{i}}\left(X_{i j}-\bar{X}_{i}\right)^{2} \quad$ sum of squares within groups, $n-l$ degrees of feedom
$S S_{\text {betw }}=\sum_{i=1}^{1} n_{i}\left(\bar{X}_{i .}-\bar{X}_{. .}\right)^{2} \quad$ sum of squares between groups, I- 1 degrees of freedom
$F=\frac{S S_{\text {betw }} /(I-1)}{S S_{\text {within }} /(n-I)}$
Under the hypothesis $H_{0}: \mu_{1}=\cdots=\mu_{I}$ ("all $\mu_{i}$ are equal") $F$ is Fisher-distributed with $I-1$ and $n-I$ degrees of freedom (no matter what the true joint value of $\mu_{i}$ is).
$F$-Test: We reject $H_{0}$ on the level of significance $\alpha$ if $F \geq q_{\alpha}$, whereas $q_{\alpha}$ is the $(1-\alpha)$-quantile of the Fisher-distribution with $I-1$ and $n-I$ degrees of freedom.

## The statistic of the Kruskal-Wallis test

$$
\left[\frac{12}{\sum^{a} n_{i}\left(\sum^{a} n_{i}+1\right)} \sum^{a} \frac{\left(\sum^{n_{i}} R\right)_{i}^{2}}{n_{i}}\right]-3 \cdot\left(\sum^{a} n_{i}+1\right)
$$

## The statistic of the Kruskal-Wallis test

$$
\left[\frac{12}{\sum^{a} n_{i}\left(\sum^{a} n_{i}+1\right)} \sum^{a} \frac{\left(\sum^{n_{i}} R\right)_{i}^{2}}{n_{i}}\right]-3 \cdot\left(\sum^{a} n_{i}+1\right)
$$

Explanations are given verbally in the lecture and in Sokal and Rohlf (1995) Biometry, 3rd ed., on pp. 423-426.

